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ABSTRACT
LEARNING FROM COLLECTIVE PREFERENCES, BEHAVIOR, AND BELIES
Jennifer Wortman Vaughan

Supervisor: Michael Kearns

Machine learning has become one of the most active and exciting areampbitsr science
research, in large part because of its wide-spread applicability to pnelds diverse as natural
language processing, speech recognition, spam detection, seargiyter vision, gene discovery,
medical diagnosis, and robotics. At the same time, the growing popularity dhtemet and
social networking sites like Facebook has led to the availability of novelkcssusf data on the
preferences, behavior, and beliefs of massive populations of. idatsrally, both researchers and
engineers are eager to apply techniques from machine learning in ordggtegate and make
sense of this wealth of collective information. However, traditional theafdgarning fail to
capture the complex issues that arise in such settings, and as a result, intheytachniques
currently employed are ad hoc and not well understood.

The goal of this dissertation is to narrow this gap between theory and grattichat end, we
present a series of new learning models and algorithms designed tosaddceBluminate prob-
lems commonly faced when aggregating local information across large piopul&Ve build on
the foundations of learning theory to examine the fundamental trade-affatise when aggre-
gating preference data across many similar users to learn a model of asegk tastes. We
introduce and analyze a computational theory of learning from collecéba\ior, in which the
goal of the algorithm is to accurately model and predict the future grobpvier of a large pop-
ulation. We develop a forecaster that is guaranteed to perform rddgamall compared to best
expert in a population but simultaneously never any worse than the avdtiaglly, we investigate
the computational complexity of pricing in prediction markets, betting markets rks$itp ag-
gregate individuals’ opinions about the likelihood of future events, andgse an approximation
technique based on the previously unexplored connection betweeiatinednarket prices and

learning from expert advice.



Contents

Acknowledgments ii
1 Introduction 1
1.1 Learning From Large Populations . . . . . ... ... .. ... ......... 2
1.1.1 Predicting Properties of the Population . . . ... ... .......... 2
1.1.2 Aggregating and Exploiting Individuals’ Knowledge or Opinions .4
1.1.3 Topics This Dissertation Does NotCover . . . .. ... ... ... .... 6
1.1.4 Other Distinguishing Features of Collective Learning Problems . 8.
1.2 Overviewof ThisDissertation . . . . . ... ... ... ... ... .. ...... 8
1.2.1 Learning from Like-Minded Users . . . . . . ... ... ... .. ..... 9
1.2.2 Learning from Collective Behavior . . . . ... ... ... ... ..... 10
1.2.3 Aggregating Opinions Via Expert Advice . . . .. .. ... ... ..... 11
1.2.4 Aggregating Opinions Via PredictionMarkets . . . . . .. ... ... ... 12
1.3 BibliographicNotes . . . . . . . . . . . . ... . 13
2 Learning from Like-Minded Users 14
2.1 OVEIVIEW . . . . o 15
2.2 ThelearningModel ... ........... ... ... ... ..........011
2.3 General Theory for the Multiple Source Problem 18
2.4 Simple Application to Binary Classification . . . . ... ... ... ........ 22
2.5 Bounds Using Rademacher Complexity . . .. .. .. ... ... ... ..... 4, 2
2.5.1 Rademacher Complexity and General Lipschitz-Loss Bounds . 24
2.5.2 Application to Classification Using Rademacher Complexity . . . . . . . . 25



253 Regression . . . .. .. e 26

2.5.4 Remarks on the Use of Data-Dependent Complexity Measures . . ... 27.
2.6 Estimating the Disparity Matrix . . . .. .. ... ... ... ... ... ..... 28
2.7 Synthetic Simulations . . . . . . . ... L e 29
2.8 AFew Words on Domain Adaptation. . . . . ... ... ... ... ........ 32
2.8.1 ABound Using Pairwise Divergence . . . .. .. ... . ... ...... 33
2.8.2 ABound Using Combined Divergence . . . . . .. ... ... ....... 34
29 0OpenQUESLIONS . . . . . . o o 35
Learning from Collective Behavior 36
3.1 OVerVIEW . . . . 37
3.2 TheModel. . . . . . . . 39
3.2.1 Agent Strategies and Collective Trajectories . . . . . ... ... .. .. 39.
3.2.2 ThelearningModel . ... ... .. ... .. .. .. .. .. .. ... 40
323 ANo-ResetVariant. . . .. ... ... ... .. ... 42
3.2.4 Weaker Criteria for Learnability . . . . . ... ... ... .. ... .... 43
3.3 Social Strategy Classes . . . . . . . . . . 44,
3.3.1 Crowd Affinity: Mixture Strategies . . . . . . . . ... .. ... ..... 44
3.3.2 Crowd Affinity: Multiplicative Strategies . . . . . . .. .. ... ... .. 46
3.3.3 Crowd Aversion and Other Variants . . . . . . ... ... ......... 47
3.3.4 Agent Affinity and Aversion Strategies . . . .. .. ... ... ... ... 48
3.3.5 Incorporating Network Structure . . . . . . . ... ... ... ...... 9 4
3.4 AReductiontol..D.Learning . . . . . . .. .. . ... 9 4
3.4.1 A Reduction for Deterministic Strategies . . . .. ... ... ....... 50
3.42 AGeneralReduction . . . ... ... ... 51
3.5 Learning Social Strategy Classes . . . . . . . . .. .. ... .. .. .. ... 53
3.5.1 Learning Crowd Affinity Mixture Models . . . .. ... ... ....... 54
3.5.2 Learning Crowd Affinity Multiplicative Models . . . . . .. ... ... .. 58
3.6 OpenQUESHIONS . . . . . . . . 62

Vi



4 The Trade-Offs of Learning from Expert Advice
4.1 OVEIVIEW . . . i e e e e e e e e e e

4.2 TheExpertsFramework. . . . . . . . . . ...

4.3 TheO(T) Frontier for Difference Algorithms . . . . . . ... ... ... ....

4.3.1 The Difference Frontier LowerBound . . . . .. ... ... ......
4.3.2 A Difference Algorithm Achieving the Frontier . . . . . .. .. .. ..
4.4 Breaking the Difference Frontier . . . . . . .. .. .. ... ... ... . ..

4.4.1 Regrettothe Bestand WorstExperts . . .. .. ... ... .....

4.4.2 PhasedAggression . . . .. . . . ... e

443 D-Prod . . . . . .
45 Sketch of A General LowerBound . . . . . . . . . ... ... ...

46 OpenQUESLIONS . . . . . . .

5 Aggregating Opinions Via Prediction Markets and Machine Learning

5.1 OVerview . . . . . .
5.2 Logarithmic Market ScoringRules . . . . . . . ... .. ... ... ......
5.3 Complexityof Counting . . . . . ... . . . ... ...
5.4 LMSR for PermutationBetting . . . . . . . . . ... ... ... .

541 SubsetBetting . ... .. ... ... .. ..

542 PairBetting . . . . . . . . ... e
5,5 LMSRforBooleanBetting . . .. .. .. ... ... ... ... ... .. ...
5.6 An Approximation Algorithm for SubsetBetting . . . .. .. ... ... ...

5.6.1 Review ofthe Experts Setting . . . . . .. ... .. ... ... ....

5.6.2 Relationshipto LMSR Markets . . . ... .. ... ... .. .....

5.6.3 Considering Permutations . . . .. ... ... ... ... ... ...,

5.6.4 Approximating SubsetBetting . . . . ... ... ... . L.

5.7 0OpenQUESLIONS . . . . . . . . e e e

6 Future Directions
6.1 Improved Models for Collaborative Filtering . . . . . . .. .. ... ... ...

6.2 Network Diffusion and Viral Marketing . . . . . ... ... ... ... ....

vii



6.3 Social Searchand Advertising . . . . .. .. .. .. ... ... ... ... 102

6.4 Additional Connections Between Learningand Markets . . . . . ... .. .. 103
Appendix 104
Al Basic Tools from Probability Theory . . . . . . .. ... ... ... ...... 104
Al1.1 Hoeffding’sInequality . . .. ... ... ... ... .. ... .. . ..., 104
Al.2 McDiarmid'sInequality . .. ... ... ... ... ... .. .. ..... 104
A2 Additional Proofs from Chapter2 . . .. ... ... ... ... ........ 105
A2.1 ProofofLemma3d . . ... ... . . ... 105
A2.2 ProofofLemmab . . ... ... . . ... 106
A2.3 Proofof Theorem5. . . . . . .. ... ... . .. .. . ... 107
A2.4 Proofof Theorem®6 . . . . . . . . . . .. . ... 109
A3 Additional Proofsfrom Chapter3 . . .. ... ... .. ... ......... 109
A3.1 Proof Sketchof Theorem7 . . . . . . ... ... ... ... ... .... 910
A3.2 ProofofLemma8 . . ... ... . . ... 110
A3.3 ProofofLemma9 . . ... ... . .. ... 112
A3.4 ProofofLemmalO . ... ... ... ... . ... 112
A3.5 Handling the case whetg«issmall . . . .. ... ... ......... 112
A3.6 ProofofLemmal2 . . ... ... .. ... ... 115
A3.7 BoundingtheC; . . . ... ... ... 115
A3.8 LearningWithoutResets . . . . . . . ... . ... ... ... ... ..., 116
A4 Additional Proofs from Chapter4 . . . . . .. . ... ... ... ....... 118
A4.1 Proofof Theorem16 . . . . . . . . . . . .. .. ... . 118
A5 Additional Proofs from Chapter5 . . . .. ... ... ... .......... 126
A5.1 Proofof Theorem18 . . . . . . . . . . . . . . ... . . 126
A5.2 Proofof Theorem19 . . . . . . . . . . ... ... .. ... 128
References 130

viii



List of Tables

1.1 A goal-based characterization of problems one might wish to solve witlcdhata

lected across large populations . . . . . ... L

4.1 Summary of the lower bounds presentedin Chapter4 . . . ... ... ...... 66

4.2 Summary of the algorithmic results presented in Chapter4 . . . . .. .. .. 67 .



List of Figures

2.1
2.2

3.1

4.1
4.2

Al

Visual illustration of Theorem 2 . . . . . . . . . . . . . . . . 32

Simulation of the multiple source errorbounds . . . .. .. .. ... ...... 0 3

Sample simulations of a) the crowd affinity mixture model, b) the crowd affinity

multiplicative model, and c) the agent affinity model . . .. ... ......... 46
TheBestWorstlgorithm . . . . . . .. ... ... .. ... .. ... ... 73
ThePhasedAggressioalgorithm . . . . . . . ... .. ... ... ... ...... 74
TheGenerateBadSegrocedure used in the proof of Theorem16 . . . . . . . . .. 119



Chapter 1

Introduction

Every day, web users flock to social networking sites like Faceboakppal data-sharing sites
like Flickr, online prediction markets like Intrade, and massive e-commerceliggeAmazon.
Today’s web users are becoming increasingly comfortable sharingrafan about their interests
and beliefs online, either as a way to keep in touch with family and friends amvasy to obtain
more accurate personalized content in the form of search resultsygbnetommendations, or
advice. As a result, there is now a newfound wealth of available dataphobo the preferences,
behaviors, and beliefs of huge populations of users, but also ondfa liaks between members of
these populations. While researchers and engineers are eager tmappipe learning techniques
to this data, traditional theories of learning are not designed to handle ¥keétypes of problems
that arise. Not surprisingly, many of the systems currently in use aread ho

This dissertation introduces a series of new models and algorithms desigaddrass the
problems faced when aggregating local information across large pomdaifausers. We build
on the theoretical foundations of machine learning to provide answersne gbthe fundamental

guestions that arise when learning from large populations:

e Suppose we want to learn a model of a single web user’s likes and dislikeder what

circumstances can we benefit from data on the preferences of other sisglg?

¢ After observing the behavior of a large interacting population, can werataly predict the

population’s future collective behavior?

e Suppose we would like to build a single forecaster to predict whethergetack prices



will rise or fall each day by aggregating the predictions of a populatiorxpéds. Can we
build a single forecaster that is simultaneously guaranteed to perfornidmotuch worse”

than the most accurate expert in the population and better than the populetiagef?

e How can we efficiently aggregate the individual beliefs of a large populatiw a single

accurate prediction about a future event with exponentially many possitdernes?

Before examining these questions in more detail, we take a step back andepaotrief
overview of the general types of learning problems one might be intergstadving using data

collected across large populations and some of the distinguishing feafuhese problems.

1.1 Learning From Large Populations

There are a variety of natural ways one might choose to characterizgpie of problems that
researchers and engineers are interested in solving with access toaatiafge populations.
Table 1.1 offers one such characterization based on five distinct highgeals or agendas, in-
cluding examples of problems or applications that attack each goal. We sisacis of these goals
in turn below before describing some other distinguishing features ofldearaing problems in

Section 1.1.4.

1.1.1 Predicting Properties of the Population

Perhaps the most natural goal from a machine learning perspectivesis ttata collected from the
population to form predictions about the current or future state of thelptpn. These predictions
may pertain to individuals or to the population as a whole.

Consider the problem of predicting which websites a specific web user ig tikenjoy. We
could attempt to solve this problem in isolation, considering only informationtatloich websites
the user has liked or disliked in the past. However, intuitively it should bsiplesto make more
accurate predictions by incorporating website ratings contributed by osees. The problem of
providing users with accurate recommendations about products they migbt likslike based on
their own recorded preferences and the preferences of othenmima@aly known agollaborative

filtering and is faced by companies such as Amazon and Netflix. In this problem, giiteeimay



1. Predicting (local or global) properties of the population:
Collaborative filtering & preference modeling (Chapter 2)
Predicting the final outcome of an election from evolving voter preferdata (Chapter 3)

2. Aggregating and exploiting the population’s knowledge or beliefs:
Predicting the daily rise or fall of the stock market from expert adviceafifdr 4)
Predicting the final outcome of an election from individuals’ inside knowde@thapter 5)

3. Helping the population perform (collective or individual) tasks:
Designing methods for users to aggregate personal data without violaitragyp[81, 82]
Building reputation systems to help web users decide whom to trust [107, 3]

4. Manipulating the behavior of the population:
Incentivizing populations of advertisers to bid their true values for $eaas [126, 50]
Maximizing the impact of a viral marketing campaign [108]

5. Determining how an individual in the population should behave:
Learning to obtain a high reward in multi-player stochastic games like onliner ptike]
Learning to coordinate with others to achieve a common goal [34, 61]

Table 1.1: A goal-based characterization of the types of problems cbsgaiand engineers might
wish to solve with data collected across large populations, and exampleshdéqms or applica-
tions that attack each goal.

only care about the preferences of one individual, it is the ability to @gdesdata across the entire

population that allows good models to be learned.

As another example, consider the problem of predicting the outcome of etioalbased on
preference data collected over time (for example, via polls). While we migho goyedict which
candidate each individual voter will choose, one could argue that reladly matters is only the
ability to predict properties of theollectiveoutcome of the election, such as the fraction of votes
each candidate is likely to receive or the probability that any single candidigecure at least

half the votes.

Whether the goal is to make predictions about specific individuals or thdgtign as a whole,
there are two high level modeling approaches one might choose to usefirgtheption is to
learn individual models for each user in the population. In the case oboolifive filtering, this
corresponds to learning a separate target function for each usehnpécpee that is explored in more
detail in Chapter 2. When predicting the outcome of an election, this comdsyo first learning
a model of how each individual in the population is likely to behave, andesjsntly combining

the effects of this individual behavior to come up with a collective predictibims technique is

3



discussed in Chapter 3.

The second option is to learn a single model that simultaneously captures thefsthe
population as a whole. For collaborative filtering, this is frequently doigusw-rank matrix
techniques [6, 117, 118]. In this framework, each known prefereaiing is entered into a matrix,
with rows representing users and columns representing (say) weblgitesing entries are then
approximated in such a way that the completed matrix has low rank, under tivg that only
a small number of (unknown) factors influence whether or not a giwem will enjoy a given
website, and a user’s rating of a website depends solely on how much tliatilga user cares
about each of the factors. For election predictions, this might corrésfmfearning a single
model to predict the outcome based on general properties or statisticgpofthkation as a whole.
Learning a single model has the advantage that it can sometimes be moretefffiaie learning
individual models for each user, but there are situations in which a colteatimdividual models

can be more powerful.

1.1.2 Aggregating and Exploiting Individuals’ Knowledge orOpinions

Another natural goal that has received a lot of attention is aggregatngnibwledge or advice
of members of a population, for example to form predictions about the ougcofiature events.
Variants of this problem have been studied in detail by two diverse and naisjiynt communi-

ties, leading to two mature bodies of work of different flavors.

On the one hand, the extensive and still-growing literature on “no-régagting” or “learning
from expert advice” has established that on any sequent@etoéls in which the predictions of
a population ofV individuals (referred to, perhaps misleadingly, as “experts”) arembsl, it is
possible to maintain a dynamically weighted prediction whose cumulative perfioar{a terms
of some kind of reward or loss) is withi®(\/T log N) of the performance of the best single
expert in hindsight (that is, after the full sequence has been reyeadléis amazing guarantee
holds even in a fully adversarial setting, when no distributional assumptrensade about the
experts’ performance; see Cesa-Bianchi and Lugosi [25] for@tiyh overview of this topic.

While these results are extremely impressive, they are based on what wecallgh“needle
in a haystack” point of view. The guarantees have teeth only when we thakeplicit assump-

tion that there exist a small number of individuals in the population who dranigtaxgperform

4



the rest. When this is the case, the goal of the algorithms essentially boils ddvatking the

performance of these superior experts.

Meanwhile, economists have been studying this problem from a diffeespective, using
a natural incentive scheme to entice individuals to contribute to global predictia prediction
markets [62, 63, 105]. Arediction markeis a betting market designed to aggregate individual
beliefs about the outcome of an event into a single prediction. A standad/prediction market
allows bets along a single dimension. For example, bettors might trade slaagcurity that
pays off$1 if and only if Ford files for bankruptcy by the end of the year. If the eatmarket price
of a share i$p, then a rational, risk-neutral bettor should be willing to buy shares if hevesligne
true probability that Ford will go bankrupt is greater thanConversely, he should be willing to
sell shares at this price if he believes that the true probability is lower. Oimerd price per share
can be viewed as an estimate of how likely it is that Ford will go bankrupt tleisgecording to the
population as a whole. Studies have shown that the forecasts obtaineghthmediction markets
are frequently more accurate than the predictions of individual domamadisés. For example,
the price of orange juice futures is a better predictor of weather than thendbWeather Service
forecasts [109], while Oscar markets tend to be more accurate at prgdigtiners than expert

columnists [106].

In contrast to the literature on learning from expert advice, we can thinkeoprediction
market approach as encompassing a “wisdom of crowds” point of vidwere is no longer any
need to assume the existence of a small number of individuals who outpeherest. The power
comes instead from the fact that different individuals have accessfévatit private information

and therefore begin with a diverse set of beliefs.

In this thesis, we aim to get the best of both works. In Chapter 4, we explbat happens
when we import the “wisdom of crowds” way of thinking into the expert ag\getting, while in
Chapter 5, we see how algorithms from the expert advice setting can lbecepypricing problems

in the prediction market setting.

It is worth noting that other interpretations of the problem of harnessingiggom of crowds
have been studied in the machine learning literature as well. One notable exarimerecent
line of work on supervised learning in settings in which individual, possibliiaisais members

of population provide the labeled examples to the learner [44, 45]. Thisiwdirectly applicable

5



to data collected via “crowdsourcing” websites such as Galaxy Zoo,emegrs are invited to
label training images of galaxies, or Amazon’s Mechanical Turk, in whidividuals can receive

a small payment for participating in a wide variety of crowdsourcing tasks.

1.1.3 Topics This Dissertation Does Not Cover

The remaining three high-level goals laid out in Table 1.1 are not addreasetly in this disser-
tation, but are worth elaborating on to obtain a more complete picture of prokiatsome up in
social applications and collective learning as a whole.

First, one might wish to apply machine learning techniques in order to helpdatiom per-
form a task, either collectively or individually using globally-aggregatéormation. For example,
the website hunch.com helps individual users make decisions aboytdasedilemmas such as
which digital camera to purchase, whether or not to donate blood, or widigfht-loss program to
try by automatically aggregating advice from users with similar personality tradesires. The
collaborative filtering problem described above can also be viewedrasgéehis goal; collabo-
rative filtering algorithms help users make better decisions about movies th,aiuks to read,
and websites to visit based on information gathered across the populatiarsirilar vein, the
literature on reputation systems [107, 3] provides tools that help web detngnine who in their
population to trust.

An example of an application designed to help the population perfaroilectivetask is the
recently developed privacy-preserving belief propagation pro{8doB2], which allows members
of a social network to aggregate their private information so that eacbidindil can learn relevant
pieces of information (such as how likely it is that he has a contagious disedétout learning
too much about anyone else on the network (such as which of his frieadlkely to be infected).

There are many situations in which it is desirable to manipulate the behavioragfudation.
Consider the search advertising problem faced by search engineslikgeGand Yahoo [126, 50].
Large pools of advertisers place bids on various search terms with tleedidyaving their ads
displayed. The set of ads displayed when a user searches forratgive is then determined by
an auction mechanism. Advertisers pay the search engine a fee (which tetdsmined by the
auction mechanism) only when their ads are clicked. In this example, theueewaérthe search

engine roughly grows as advertisers’ bids increase, so it is in the ltestsnhof the search engine

6



to motivate each advertiser to choose a bid per click that is close to the tregtiatihe advertiser

has for getting the click.

The search advertising problem is an example of the more general clamchanism design
problems [127, 104, 100]. At a high level, mechanism design refers teutifield of game theory
in which a designer is given control over the rules of the game being playexdesigner can use
this power to achieve his own objective. Prediction market design is anetherple. In this case,
the goal of the designer is to design the rules of the betting market to egeausars to participate
in the first place and to place their bets in such a way as to reveal usajuhiation about their
private beliefs. There have been some recent attempts to study the tontetween mechanism

design and machine learning [8], but this work is far outside the scopésaligsertation.

Interesting motivational problems also arise in settings in which the algorithresigmer is
given little or no control over the rules that the population must obey or thards that they re-
ceive. For example, advertisers are interested in the problem of influaagimization for viral
marketing [108]. Here the goal of the algorithm is to determine the optimal gsbumlividuals
in a social network to target with an advertising campaign in order to cause anoduct or tech-
nology to spread virally throughout the network. Some open problems inrtrasaae discussed in

Chapter 6.

Finally, one might be interested in using machine learning techniques to figtitleeooptimal
way for an individual to behave when interacting with other members of & lpogulation. For
example, when presented with polling data, instead of trying to make a gloddiction about
the outcome of the election as described above, we might instead choogéftthase are ways
in which one individual or small group of individuals can alter their actionstated beliefs in
order to influence the outcome of the election. In the search advertisingygseténmight ask how
individual advertisers can alter their bids in order to achieve a desiredme, such as forcing
their competitors to pay more per click. In other scenarios, we might ask éthsteaa collection
of individuals can independently learn strategies that allow them to cotedivith each other to
achieve a common goal [34, 61]. Variants of this type of problem have &esmined in great de-
tail in the vast literature on multiagent learning [70, 64, 115] and in the litezatnreinforcement

learning more generally [121].



1.1.4 Other Distinguishing Features of Collective Learning’roblems

In addition to the different motivations and goals one might consider fonileguacross large pop-
ulations, there are other distinguishing features of collective learnirtggrs that are worthy of
discussion. One obvious distinguishing feature is the amount of structirexists in the popula-
tion. In some applications, such as viral marketing and the privacy+piagebelief propagation
protocol mentioned above, there is an explicit social network definedmdigiduals, representing
friendships, collaborations, or other binary relationships between merbéne population. In
other problems, such as collaborative filtering, there is an implicit “soft” aghted network over
individuals, for example representing the level of similarity between paipeople. Finally, in
problems such as learning from expert advice, there is generally mbtoessume any structure

over the population at all.

Another distinguishing feature of these problems is how much (and in whattixaalgorithm
is able to observe the population. In collaborative filtering, it is assumed#udt member of the
population voluntarily provides the algorithm with a full description of his erefices over (say)
websites with which he is already familiar. On the contrary, in the prediction eh@denario,
members of the population reveal information about their beliefs only thrthuglbets that they
choose to make, and it is up to the mechanism to entice them to reveal their liefe @2,
90]. One can imagine other variants of the problems described here in thieichgorithm could
have access to more or less information about the population, or evee leetiming variants [41,
9] in which the algorithm is endowed with the ability to query specific individudlsua their

preferences or beliefs.

1.2 Overview of This Dissertation

This dissertation proposes new theoretical models and algorithms desiguddréss some of the
challenging problems introduced above. We now describe each of thaslems in more detail

and summarize the main technical results contained in this document.



1.2.1 Learning from Like-Minded Users

Most real-life collaborative filtering systems, like those used by AmazoriNatilix, rely on com-
plicated combinations of ad hoc techniques with little theoretical justification [4B, While
there has been a surge of theoretical work on the use of low-rank matripletion techniques
for collaborative filtering [6, 117, 118], very little thought has beeregito alternate theoretical

frameworks.

In Chapter 2, we approach this problem from a different angle. Buildmthe basic founda-
tions of learning theory [76, 125] , we develop a full PAC-style theorjeafning from multiple
sources of similar data (in this case, website or movie ratings from multiple siméas)usOur
results illustrate the fundamental trade-offs that arise when combining rdateaf set of users to

learn a personalized model for one particular user.

More specifically, given distinct samples from multiple data sources and éssrofthe dis-
similarities between these sources, we provide a general theory of wangbless should be used
to learn models for each source, establishing a set of error bounddehdyly express a trade-off
between three quantities: the sample size used, a weighted average op#riidgsof the sources
whose data is used, and a model complexity term. These bounds apply in eamigeof learn-
ing paradigms, including classification, regression, and in some casestydestimation. In fact,
the theory can be applied to any learning setting in which the loss functiors abeyapproxi-
mate” triangle inequality and the hypothesis class under consideration wiigéysn convergence

of empirical estimates of loss to their expectations.

We also briefly turn to more recent work on the related problem of domaiptatilan with
multiple sources. The key distinction between this setting and those mentionazlialloat here
the underlying distributionover data points is different for each source, while the labeling func-
tions are assumed to be similar. As an example of a situation in which we mighttekpse
assumptions to hold, suppose that we would like to build a personalized dggariofieach user of
an email system. Here we might guess that any pair of users are likely ®@gmhich messages
should be considered spam, while the distribution over email they recaile loe quite different.
We describe uniform convergence bounds in this setting for algorithmsriimatnize a convex

combination of empirical error on each source of data.
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1.2.2 Learning from Collective Behavior

Sociologists, economists, and researchers in a variety of other fieldsspant decades study-
ing the collective behavior of large populations in countless domains. Thé# i®sn impres-
sive literature on models of collective behavior for phenomena as éiassherding behavior
in financial markets [131], diffusion of government policies such as @mtking laws or state
lottery adoption [114, 119], the spread of new agricultural or medicadtfres [110, 36] or Holly-
wood trends [43], and the contagion properties of obesity [33]. Mecently, collective behavior
has attracted the attention of computer scientists, leading to work on viral tingrk&08, 94],
information propagation on blogs [96, 60], the transmission of infectiousadiss or computer
viruses [46, 18], and the prevention of water contamination [95]. The enadlical details of
these models vary dramatically, but they all share the underlying assumptaretth agent’s cur-
rent behavior is entirely or largely determined by the recent behavioreobther agents. The
population evolves over time according to its own internal dynamics.

Inspired by this exciting line of work, in Chapter 3, we introduce and dles@ new compu-
tational theory of learning from collective behavior. In our model, eaggm& acts according to
a fixed but unknown strategy drawn from a known clas§. A strategy probabilistically maps
the current state of the population (or the state of the agent’s local nelgdmh if a network
structure is defined over the population) to the next state or action fordbat,aand each agent’s
strategy may be different. The goal of the learning algorithm is to accuratetiel and predict
the future behavior of a large population after observing their interactiorieg a training phase
of polynomial length.

As an example of the type of interaction we have in mind, consider a populdtsindents
who must each decide which local bar to patronize each night. Each stadaced with the task
of balancing his desire to frequent the current hot spot with his own gitripreferences based
on decor or price. Similarly, an American citizen voting in a presidential electigt alter her
anticipated voting decision over time in response to primary or polling newsydaggher intrinsic
preferences over the candidates with a desire to avoid wasting a voté wmedectable” candidate.
We consider models in which agents integrate these sometimes opposingvibiesleciding
how to behave at each moment, and study the problem of how a learningtatgaratching the

collective behavior of such a population might produce an accurate robthadir future behavior.
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We start by defining a formal model for efficient learning in such settiagd,go on to develop
general theory for this model. Our main result is a polynomial-time reductionaohileg from
collective behavior to more traditional i.i.d. learning. We then define speddises of agent
strategies, including “crowd affinity” strategies (in which agents balaecggmal preferences with
a desire to be like the crowd) and complementary “crowd aversion” strat@gievhich agents
prefer to stand out from the crowd), and provide provably efficiégorithms for learning from
collective behavior for these classes. We also discuss some natueaitsasf the model, and

describe how to extend our results to these alternative settings.

1.2.3 Aggregating Opinions Via Expert Advice

Suppose that every evening, we would like to predict whether or not ibiilsggto rain the fol-
lowing day. We might base our prediction on the opinions of friends or dasvs, reports from
meteorologists, advice from newscasters, and so on. Each of thgsert®xis sometimes right
and sometimes wrong, and there’s no way of knowing a priori whosegbi@ts will be best. In
such a setting, a natural goal that we might consider is to be able to combipeethietions of our
sources in such a way that our own predictions won't be too much woasethiose of the source
who predicted best in retrospect.

As described above, the literature on no-regret learning shows thapdsisble to do just
that. In particular, on any sequence®trials in which the predictions of a set of experts are
observed, it is possible to guarantee a cumulative reward that is WK log N) of the reward
of the best single expert in hindsight using a simple dynamically weightedcticed® Somewhat
strikingly, this result holds even in a fully adversarial setting in which noiistional assumptions
are made about the performance of the experts.

However, despite the impressiveness of these results, there are maipisgun which com-
peting with the best individual in the population is not good enough. Considdollowing simple
example, in which there are only two experts. The rewards for expelternatel, 0,1,0, - - -,
while the rewards for expeft alternate0, 1,0, 1,---. Due to their aggressive updates, standard

regret minimization algorithms (including Exponential Weights [98, 55], Follow Reeturbed

LIn this setting, the “rewards” can be thought of as scores based omtmwate each expert’s predictions are. For
example, the reward might be 1 for each correct prediction and Gftbr mcorrect prediction.
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Leader [72], and Prod [26]) yield a cumulative rewardl® — ©(1/T'), meeting their guarantee
of O(v/T) regret with respect to the best expert. However, this performancedesmmething to
be desired. In this example, where both experts have similar performalhoé the algorithms

above end up sufferin@(v/T) regret to thavorstexpert as well.

In Chapter 4, we examine no-regret learning ibieriteria setting. We analyze not only the
standard notion of regret to the best expert, but also the regret todhagavof all experts, the regret
to any fixed mixture of experts, and the regret to the worst expert. W et any algorithm
that achieves only)(v/T) cumulative regret to the best expert on a sequencE tfals must,
in the worst case, suffer regré(/T') to the average, and that for a wide class of update rules
that includes many existing no-regret algorithms (such as ExponentiahWeagd Follow the
Perturbed Leader), the product of the regret to the best and thet tegthe average is, in the
worst case{2(7"). We then describe and analyze two alternate new algorithms that both achieve
cumulative regret only)(v/T'log T') to the best expert and have omlgnstantregret to any given
fixed distribution over experts. The key to achieving such guaranteealiswothe aggressiveness
of the algorithm to change over time, updating more aggressively only wiheicdmes clear that
one expert is dominating the rest.

These results demonstrate the inherent tension between aggresdleahinfpthe current best
expert (the “needle in a haystack” approach) and not changing weiglyuickly when there are
small fluctuations in expert performance. We show that existing algoritregaéntly manage this

trade-off poorly, while our new algorithms enjoy optimal bicriteria perforogaguarantees.

1.2.4 Aggregating Opinions Via Prediction Markets

As described above, prediction markets are betting markets designedregaiggbeliefs about
the outcome of a future event into a single accurate prediction. Most foedinarkets operate
over relatively small outcome spaces. A typical horse race market migit b#ttors to choose
one ofn horses as the expected winner, ignoring the fact thatistinct outcomes are possible
if we choose to consider all possible permutations of horses in the race.c@d argue that
such simplifications are necessary. It is difficult for humans to reasout ¥drge outcome spaces,
and computationally demanding to store and update an exponential numb&rest (However,

restricting the betting language in other ways (for example, allowing only béte form “horse A
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will either come in first place or third place”) can simplify the reasoning pgeder bettors while
simultaneously making price computations tractable in certain types of markéts [29

In Chapter 5, we investigate the computational complexity of market maker gadgporithms
for these “combinatorial” prediction markets. We restrict our attention to thelpoppgarithmic
market scoring rule market maker (LMSR) introduced by Hanson [6R, 6&ir goal is to im-
plicitly maintain correct LMSR prices across an exponentially large outcomeesp/NVe examine
both permutation combinatorics, where outcomes are permutations of obgddsiia case in a
horse race or an election), and Boolean combinatorics, where outcoemasabinations of binary
events, and show that even with severely limited languages, LMSR pricif#§-bard. These re-
sults contrast with the results of Chen et al. [29], who show that solvingubgoneer's matching
problem can be done in polynomial time for one of the same languages.

We go on to demonstrate and study the previously unexplored connectiopdre LMSR
prices and the weights maintained by algorithms for learning from expeitedWe propose an
approximation technique for pricing permutation markets which takes adwaatdmown results
for online permutation learning [67]. We believe that this striking connecteiwéen two disjoint

fields may be of independent interest, opening up new directions of fidsearch; see Chapter 6.

1.3 Bibliographic Notes

The model and analysis of learning from like-minded users in Chapter 2asedlprimarily on
joint work with Koby Crammer and Michael Kearns [40]. The extensionsutised in Section 2.8
grew out of work with John Blitzer, Koby Crammer, Alex Kulesza, and FedoaPereira [20]. The
model and analysis of learning from collective behavior in Chapter 3asedon joint work with
Michael Kearns [77]. The new perspective and analysis of learnamg éxpert advice in Chapter 4
are based on joint work with Eyal Even-Dar, Michael Kearns, andagidiansour [52]. Finally,
the work on pricing problems in combinatorial prediction markets and the ctiondo no-regret
learning presented in Chapter 5 are based on joint work with Yiling Chercd Bortnow, Nicolas
Lambert, and David Pennock [31]. All results, figures, and text tha baen published elsewhere

are included with the permission of all authors.

13



Chapter 2

Learning from Like-Minded Users

Over the past decade, the increasing popularity of e-commerce and shtipping sites has led
to the launch of countless product recommendation systems. These systetide veb users
with personalized suggestions for books, movies, music, and more. Ndfflis each of its users
individual movie recommendations based on the user’s own preferamckethe preferences of
other users with similar taste. Amazon offers a variety of personalizediproelcommendations
to each user based on their previous shopping habits and the set of itéothénaimilar shoppers
have viewed or purchased. Such social recommendatiaolt@borative filteringsystems work
reasonably well in practice, but are frequently based on conglomesaifad hoc techniques [13,
14]. While there have been some recent theoretical advancements dyocatilee filtering, these
have largely focused on techniques for low-rank matrix completion [6]. ITYere remains little
foundational understanding of why the complicated systems used in practikeas well as they
do, or how to make them better.

The work presented in this chapter can be seen as a step towards gaisingdiérstanding.
Here we build upon the foundations of learning theory and examine thafiuewtal trade-offs that
arise when combining data from a set of users to learn a personalized fooasingle user. The
specific problem we analyze is the somewhat more general problem oingaccurate models
from multiple sources of “nearby” data. In particular, given distinct dasifrom multiple data
sources and estimates of the dissimilarities between these sources, we prgeideral theory of
which samples should be used to learn models for each source. Thisighappficable in a broad

decision-theoretic learning framework, and yields general resultddssification and regression.
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Most of the work described in this chapter was done in collaboration witly Kisammer and
Michael Kearns [40]. The final section describes joint work with Jolite&, Koby Crammer,

Alex Kulesza, and Fernando Pereira [20].

2.1 Overview

Suppose that for each web user in a large population, we wish to learssifielato predict which
sites that user is likely to find interesting. Assuming we have at least a smalhaofdabeled data
for each user (as might be obtained either through direct feedbawia ordirect means such as
click-throughs following a search), one approach would be to applyatdrearning algorithms
to each user’s data in isolation. However, if there are natural andsableemeasures of similarity
between the interests of pairs of users (as might be obtained through themlrfabellings of
common web sites), an appealing alternative iaggregatethe data of “similar” users when
learning a classifier for each particular user. This alternative is intuitivahjest to a trade-off
between the increased sample size and how different the aggregatednese

We treat this problem in some generality and provide a bound addressiafpteenentioned
trade-off. For the majority of this chapter, we consider a model in whiclethes” unknown data
sources, with sourcegenerating a distinct samplg of n; observations. We assume we are given
only the samples;, and adisparity* matrix D whose entryD (i, 5) bounds the difference between
source: and sourcg. Given these inputs, we wish to decide which subset of the saniphes|
result in the best model for each soutcelur framework includes settings in which the sources
produce data for classification, regression, and in some specia) dasegy estimation (and more
generally any additive-loss learning problem obeying certain conditions)

Our main result is a general theorem establishing a bound on the expesseitidarred by
using all data sources within a given disparity of the target. Optimization of thiedthen yields
a recommended subset of the data to be used in learning a model of each. sQur bound
clearly expresses a trade-off between three quantities: the sampleesiz@uéch increases as we
include data from more distant models), a weighted average of the dispafitiessources whose

data is used, and a model complexity term. It can be applied to any learningsettimich the

We avoid using the term distance since our results include settings in whichdleelying loss measures may not
be formal distances.
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underlying loss function obeys approximatdriangle inequality and the class of hypothesis mod-
els under consideration obeys uniform convergence of empirical estirofligss to expectations.
For classification problems, the standard triangle inequality holds. Faesgign we prove a 2-
approximation to the triangle inequality. Uniform convergence bounds éoséttings we consider
may be obtained via standard data-independent model complexity measthesd/C dimension

and pseudo-dimension, or via data-dependent measures such asaRhdecomplexity.

The final section of this chapter touches on more recent work on thed@iaiblem of domain
adaptation with multiple sources. Suppose that our goal is no longer to gerquitrsonalized
product recommendations, where individual tastes and preferereesuiaial, but instead to build
a personalized spam filter for each user of an email system. We might asisatany pair of
users are likely to agree on which messages should be considered spasver the underlying
distributionover email received by two users could be quite different. We brieflggmeuniform
convergence bounds in this setting for algorithms that minimize a convex catiobivdempirical

error on each source.

The primary framework examined in this chapter can be viewed as a modeidionentary
collaborative filtering. While there have been some theoretical developrrertlaborative
filtering in recent years, almost all of them deal with the problem of lovkrnamatrix comple-
tion [6, 117, 118], in which each known preference rating is entereddanteatrix, with rows
representing users and columns representing movies, and missing enettlesreapproximated in
such a way that the completed matrix has low rank. This work makes the implicihagsns that
preferences can be decomposed into a small number of unknown fantbthat it is not neces-
sary to explicitly define features in order to find this decomposition. While tinesebe settings in
which these assumptions hold, incorporating available feature data camdis when the amount
of training data is limited; as an extreme example, there is no hope of estimatingsaratieg for
a website no other user in the system has rated before unless additatnat féata is considered.

There is little theoretical work on alternate approaches to this problem.

This work can also be viewed as a specific type of multi-task learning oféirdiearning [12,
15, 101]. Wu and Dietterich [133] studied a related problem experimentaltiiercontext of
SVMs. In earlier work [39], we examined the considerably more limited proldé learning a

model when all data sources are corrupted versionssifigle, fixedsource, for instance when
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each data source provides noisy samples of a fixed binary functiorwithutvarying levels of
noise. On the contrary, here the labels on each source may be entirelstadrto those on other
source except as constrained by the bounds on disparities, requiriogdevelop new and more

general techniques.

Chapter Outline: In the next section, we introduce a decision-theoretic framework fdrgpro
bilistic learning that includes classification, regression, density estimatidnmany other settings
as special cases, and then give our multiple source generalization of itkd. imoSection 2.3 we
provide our main result, which is a general bound on the expected logsaddwy using all data
within a given disparity of a target. Section 2.4 discusses the most simple djgplicathis bound
to binary classification using VC theory. In Section 2.5, we give applicattbosir general theory
to classification and regression using Rademacher complexity, and shagererally how the
theory can be applied for any Lipschitz loss function. In Section 2.6 weuslisthe important
detail of how to empirically estimate the disparity matrix from data. In Section 2.7llwgtrate
the theory through synthetic simulations. In Section 2.8, we mention more rgognbn domain
adaptation from multiple sources. Finally, in Section 2.9, we mention some relsgedirections

of research.

2.2 The Learning Model

Before detailing our multiple-source learning model, we first introduce adatdndecision-
theoretic learning framework in which our goal is to find a model minimizing aigdized notion
of empirical loss [65]. Let théaypothesis clas® be a set of models (which might be classifiers,
real-valued functions, densities, etc.), andjldie thetarget modelwhich may or may not lie in
the classH. Let z be a (generalized) data point or observation. For instance, in neise:kas-
sification and regression, consists of a paifz,y) wherey = f(z). We assume that the target
model f induces some underlying distributid?y over observations. In the case of classification
or regressionp’s is induced by drawing the inputsaccording to some underlying distributidn
and then setting = f(x) (possibly corrupted by noise).

Each setting we consider has an associbtesifunctionC(h, z). For example, in classification

we typically consider the 0/1 los&€:(h, (x,y)) = 0if h(z) = y, and 1 otherwise. In regression we
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might consider the squared loss functidth, (z, y)) = (y—h(z))2. In each case, we are interested
in the expected loss of a mode} on targethy, e(h1, ha) = E.p, [L(he,2)]. Expected loss is
not necessarily symmetric.

In our multiple source model, we are presented withdistinct mutually independent sam-
ples orsourcesof data Sy, ..., Sk, and a symmetrid{ x K matrix D. Each source5; con-
tains n; observations that are generated from a fixed and unknown mfdeind D satisfies
max(e(fi, f;),e(f;, fi)) < D(i,5). WhenD is unknown, it often can be estimated from a small
amount of data; see Section 2.6 for more details. Our goal is to decide whiotessS; to use in
order to learn the best approximation (in terms of expected loss) tofeach

While we are interested in accomplishing this goal for e#glit suffices and is convenient
to examine the problem from the perspective of a fixedThus without loss of generality let us
suppose that we are given sourégs..., Sk of sizeny, ..., ng from modelsfy, ..., fx such that
e1 = D(1,1) < e = D(1,2) < --- < exg = D(1,K), and our goal is to learri;. Here we
have simply taken the problem in the preceding paragraph, focused gmablem for f;, and
reordered the other models according to our estimations or their proximify. tdo highlight
the distinguished role of the targét we shall denote iff. We denote the observations.$) by
z{, N z%] We analyze, for every < K, the error of the hypothesig, minimizing the empirical

losség(h) on the firstk sourcesSy, . . ., Sk, thatis

k. ny
. 1 ,
hy, = argmin éx(h) = argmin — Z Z L(h,z]),
heH heH M1k i

where we define the shorthang, = n1 +- - - +nx. We also denote the expected error of function

h with respect to the first sources of data as

2.3 General Theory for the Multiple Source Problem

In this section we provide the first of our main results: a general bounideoexpected loss of the

model minimizing the empirical loss on the nearkesburces. Optimization of this bound leads to
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arecommended set of sources to incorporate when leafriad;. The key ingredients needed to
apply this bound are an approximate triangle inequality and a uniform qgawee bound, which
we define below. In the subsequent sections we demonstrate that thesiénts can indeed be

provided for a variety of natural learning problems.

Definition 1 For o > 1, we say that thex-triangle inequality holds for a class of modelg and

expected loss functianif for all hy, ho, hg € F we have
e(hl, hg) < a(e(hl, hg) + e(hg, h2))

The parametery > 1 is a constant that depends ghande.

The choicex = 1 yields the standard triangle inequality. We note that the restriction to models
in the classF may in some cases be quite weak — for instance, whémall possible classifiers
or real-valued functions with bounded range — or stronger, as in denfitim the exponential
family. Our results require only that the unknowourcemodelsfy, ..., fx lie in F, even when
our hypothesisnodels are chosen from some possibly much more restricted ®lassF. For

now we simply leaveF as a parameter of the definition.

Definition 2 A uniform convergence bound for a hypothesis spact and loss functiorC is a

bound that states that for arty< § < 1, with probability at leasti — ¢ for anyh € 'H

|e(h) — e(h)] < B(n,9) ,

whereé(h) = 1 37 | £(h, z;) for n observations:, . . ., z, generated independently according
to distributions P, ... P,, ande(h) = E[é(h)] where the expectation is taken with respect to
z1,...,2n. Heregis a function of the number of observatianand the confidencé& and depends

onH and/..

This definition simply asserts that for every modefHnits empirical loss on a sample of size
n and the expectation of this loss are “close” wh&m, ) is small. In general the functiof
incorporates standard measures of the complexify,aind is a decreasing function of the sample

sizen, as in the classical(\/d/n) bounds of VC theory. Our bounds are derived from the rich
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literature on uniform convergence. The only twist to our setting is the fatttie observations are
no longer necessarily identically distributed, since they are generatadirdtiple sources. How-
ever, generalizing the standard uniform convergence results to thiggstirostly straightforward
as we show in the upcoming sections on applications of the bound.

We are now ready to present our general bound.

Theorem 1 Lete be the expected loss function for lassand letF be a class of models for which
the a-triangle inequality holds with respect to Let’H C F be a class of hypothesis models for
which there is a uniform convergence boutdor £. LetK, f = fi, f2,..., fx € F, {e},,
{n;}X,, andh;, be defined as above. For adysuch that) < § < 1, with probability at least
1—9¢,foranyk € {1,..., K}

k

e(f, hi) < o gél?I_‘l {e(f,h)} + (a + a?) Z ( i > € + 2aB(ny.k, 6/2K) .

n1.
— \ Nk

Before providing the proof, let us examine the bound of Theorem 1,iwéxpresses a natural
and intuitive trade-off. The first term in the bound is simply #pgroximation error the residual
loss that we incur by limiting our hypothesis model to fall in the restricted c(tas3he second
term is a weighted sum of the disparities of the K models whose data is used with respect to
the target modef = f1. We expect this term tincreaseas we increasg to include more distant
sources. The final term is determined by the uniform convergencedbdMe expect this term to
decreasavith added sources due to the increased sample size. All three terms agadefiuby
the strength of the approximate triangle inequality that we have, as quaniified b

The bound given in Theorem 1 can be loose, but provides an uppedbtecessary for opti-

mization and suggests a natural choice for the number of sokfdesuse to estimate the target:

k N
k* = argmin ((a +a?) Z (Z> € + 2aB(ny.k, 5/2K)> .

n1.
k — \Nk

Theorem 1 and this optimization make the implicit assumption that the best subsetcés to
use is a prefix of the sources — that is, that we should not “skip” a gesmirce in favor of more
distant ones. This assumption is true for typical data-independent smdonvergence bounds,

and is true on average for data-dependent bounds, where wet exjifecm convergence bounds
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to improve with increased sample size. We now give the proof of Theorem 1.

Proof of Theorem 1: By Definition 1, for anyh € H, anyk € {1,... K},andanyi € {1,...,k},

<nfk> (. h) < (L) (ac(f. £:) + aelfih)) -

Summing over ali € {1,...,k}, we find
k
() < 3 () s )+ eetsi)
- o () o () o () rons

In the first line above we have used thetriangle inequality to deliberately introduce a
weighted summation involving th¢g;. In the second line, we have broken up the summation
using the fact that(f, f;) < ¢; and the definition ot (k). Notice that the first summation is a
weighted average of the expected loss of eclvhile the second summation is the expected loss
of h on the data. Using the uniform convergence bound, we may assertithdtigh probability

erx(h) < éx(h) + B(n1.x, 6/2K), and with high probability

k
ér(hy) = min{é,(h)} < mm{Z( i ) e(fi, h) +ﬂ(n1:k,5/2K)} :
=1

heH heH Nk

Putting these pieces together, we find that with high probability

IN

e(f, hw)

aizk; ( ni > € + 208 (n1x, §/2K) + amin {Z <n1k> e(fi,h)}

nq-
1:k =1

k
az( n >ez+2a6<n1k,5/2K>
=1

IN

nik

oS ()52

k .
= (a+a2);( : )ei+2aﬁ(n1:k,5/2K)+a2£ré17r%{e(f,h)} .

nik
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2.4 Simple Application to Binary Classification

We demonstrate the applicability of the general theory given by Theorem dverad standard
learning settings. As a warm-up, we begin with the most straightforward agiplic classification
using VC bounds.

In (noise-free) binary classification, we assume that our target moddlxed, unknown and
arbitrary functionf from some input se’ to {0, 1}, and that there is a fixed and unknown dis-
tribution P on the X. Note that the distributior? over input does not depend on the target
function f. The observations are of the form= (z,y) wherey € {0,1}. The loss function
L(h,{x,y)) is defined a® if y = h(z) and1 otherwise, and the corresponding expected loss is
e(h1, he) = B yyp, [L(h2, (2,y))] = Pro~p [hi(z) # ha(z)].

For 0/1 loss it is well-known and easy to see that the (standatdangle inequality holds.

Classical VC theory [125] provides us with uniform convergence baws.

Lemmal LetH : X — {0, 1} be aclass of functions with VC dimensigrand letL(h, (x,y)) =
|y — h(x)| be the 0/1-loss. The following functighis a uniform convergence bound faf and £

whenn > d/2:

B(n. ) — \/8(d1n(2en/d) +1In(4/6))

n

The proof is analogous to the standard proof of uniform convergasiog the VC Dimension
(see, for example, Chapters 2—4 of Anthony and Bartlett [4]), requaitly minor modifications to
the symmetrization argument to handle the fact that the samples need notdrenbndistributed.

With Lemma 1 in place, the conditions of Theorem 1 are easily satisfied, yieldirfgltwing

result.

Theorem 2 Let F be the set of all functions from an input s&tinto {0,1} and letd be the
VC dimension ofH{ C F. Lete be the expected 0/1 loss. L&t f = f1,fo,...,fx € F,
{5, {n;} X, andhy, be defined as above in the multi-source learning model, and assume that

ny > d/2. For anyé such thad < § < 1, with probability at least — §, for anyk € {1,..., K}

. _ kol on, 32 (d1In (2en1.x/d) + In (8K/§))
e<f’hk>§£fgﬁ{e<f’h””§<n1k>“V E .

nik
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Figure 2.1 Visual illustration of Theorem 2. See the text for details.

0 MAX DATA

In Figure 2.1 we provide a visual illustration of the behavior of Theorem®iad to a sim-
ple classification problem. In this problem there &e= 100 classifiers, each classifigf for
i = 1...100 is defined by 2 parameters represented by a point in the unit squarethstiche
expected disagreement rate between two such classifiers is propottierdal distance between
their parameter$ We chose the 100 parameter vectgraniformly at random from the unit square
(the circles in the left panel). To generate varying source sizes, we tcrease with the dis-
tance off; from a chosen “central” point 0.75,0.75) (marked “MAX DATA" in the left panel);
the resulting source sizes for each model are shown in the bar plot in thiigpagel, where the
origin (0,0) is in the near cornel,l, 1) in the far corner, and the source sizes clearly peak near
(0.75,0.75). For every functionf; we used Theorem 2 to find the best sour¢de be used to
estimate its parameters. The undirected graph on the left includes an ¢dgetg and f; if and

only if the data fromf; is used to learrf; and/or the converse.

The graph simultaneously displays the geometry implicit in Theorem 2 as wellataipsivity
to local circumstances. Near the central point, the graph is sparse aedgée quite short, corre-
sponding to the fact that for such models we have enough direct datagemted with high bars
in the right panel) that it is not advantageous to include data from distan¢lsioBar from the
central point the graph becomes dense and the edges long, as weuaired & aggregate a larger

neighborhood to learn the optimal model. In addition, decisions are affextallly by how many

2Itis easy to create simple input distributions and classifiers that geneeatiyethis geometry. For example, let the
inputx be a pairc = (p, b) wherep € [0, 1], b € {0, 1} and let the hypothesis class consist of functions defined as pairs
of thresholdsf = (¢1,t2) wheref(z) = 1 if and only if (p > t1 andb = 0) or (p > t2 andb = 1). The distribution of
x = (p, b) is a product of a uniform distribution fgrand a fair coin fom.
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models are “nearby” a given model, when there are many close fungtjdosa givenf; there is
no need to use “far” models, but when the neighborhood of a functiootipapulated with many

examples, there is a need for data from models far-away.

2.5 Bounds Using Rademacher Complexity

Given the recent interest in tighter, potentially data-dependent camweegoounds such as maxi-
mum margin bounds, PAC-Bayes, and others, it is natural to ask how dtirsource theory can
exploit them. We examine one specific case here using Rademacher comdlexityt, 87, 88];
analogs can be derived in a similar manner for other complexity measurestawéy deriving
bounds for settings in which generic Lipschitz loss functions are usetlhem discuss specific

applications to classification and to regression with squared loss.

2.5.1 Rademacher Complexity and General Lipschitz-Loss Boursl

If H is a class of functions mapping from a gétto R, theempirical Rademacher complexiby

‘H on a fixed set of observations, . . ., z, is defined as
Ba(H) =B |sup | 23 ou(a)
n =L sup |— oih(x; )
her |

where the expectation is taken with respect to independent unfféirhy-valued random variables
o1,...,0n. The Rademacher complexifpr n observations can then be definedRs(H) =

E [Z?n(H)} where the expectation is with respect to observations. . , z,,. At a high level, the
Rademacher complexity quantifies the extent to which a function in the Hass be correlated
with a sequence of noise of length and thus how much overfitting is likely to take place when
selecting models from this class.

In the standard setting.,, ..., z,, are assumed to be i.i.d. (independently and identically dis-
tributed), drawn from a single fixed distribution. In our setting, theservbsiens are still indepen-
dent, but not necessarily identically distributed. We show that the stamdéarm convergence
results still hold in this slightly modified setting.

Consider any setting in which each generalized data poisat (x,y) for somez € X and
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y € Y withy = f(z). A cost functiorfor the lossC is any functiong such thatC(h, (x,y)) =
o(y,h(x)) forallz € X,y € Y, andh € H. We consider cost functionsthat are Lipschitz in the
second parameter. Defigé(y, a) = ¢(y,a) — ¢(y,0). If ¢ is Lipschitz in the second parameter
with constantL then¢' is also Lipschitz in the second parameter with the same conktant
Lemma 3 below gives a uniform convergence bound for any loss funeitbra corresponding
Lipschitz cost function. The proof of this lemma is in Appendix A2.1. It is agaies to the proof
of Theorem 8 in Bartlett and Mendelson [10], which makes a similar claim in the sétting, and

uses the following lemma.

Lemma 2 (Bartlett and Mendelson [10]j f : R — R is Lipschitz with constant and f(0) = 0,
thenR,,(f o H) < 2LR,(H).

Lemma 3 LetL be aloss function bounded @, 1], and¢ a cost function such thal(f, (x,y)) =
o(y, f(x)) where¢ is Lipschitz in the second parameter with constantLet H be a class of
functions from¥ to Y and let{(xz;, y;) }, be sampled independently. For amyfor any0 < § <

1, with probabilityl — § over samples of length, everyh € H satisfies

B, 8) = 2L R, (H) + 1| )

2.5.2 Application to Classification Using Rademacher Complxity

Theorem 3 below follows from the application of Theorem 1 using the 1ghginequality and an

application of Lemma 3 with

1 if ya <0,
Py, a) =41 —ya if0O<ya<l,

0 if ya > 1.

The middle condition is necessary only to enforce that Lipschitz with constant 1. I is the
0/1 loss, then for alk € X,y € {—1,1}, andh € X — {—1,1}, we have thaya € {0,1} and
thusL(h, (z,y)) = ¢(y, h(z)), so Lemma 3 can be applied immediately.
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Theorem 3 Let F be a set of functions from an input s&tinto {-1,1} and letR,,., (H) be the
Rademacher complexity &f C F on the firstk sources of data. Letbe the expected 0/1 loss. Let
K, f=fi,fa...,fx € F, {e;}<,, {n;} |, and iy be defined as in the multi-source learning

model. For any such tha) < ¢ < 1, with probability at leastl — ¢, for anyk € {1,..., K}

)q+2,/2hﬁi§/‘”+4}zm:k<m.

n;
nik

k
o) < pig el ) 423

Before moving on, let us briefly examine the behavior of this bound. Similatlyet&/C-based
bound given in Theorem 2, @sincreases and more sources of data are combined, the second term
grows while the third shrinks. The behavior of the final téfm ., (7), however, is less predictable

and may grow or shrink as more sources of data are combined.

Note that for the special case of classification with 0/1 loss, it is possible tmbeer bounds

with better dependence aR,,, . by using a more careful analysis than the one in the proof of

n1:k

Lemma 3. Such bounds are given in an early version of this work [40;lve@se not to present

these alternate bounds here to simplify presentation.

2.5.3 Regression

We now turn to (noise-free) regression with squared loss. Here @ettarodelf is any function
from an input classt into some bounded subset Bt (Frequently we havet C R?, but this

is not required.) Our loss function &(h, (z,y)) = (y — h(z))?, and the expected loss is thus
e(h1, h2) = Eqgyyop,, [L(ha, (2,9)] = Egup [(h1(z) — ha(2))?].
For regression it is known that the standard 1-triangle inequality doekatdt However, a

2-triangle inequality does hold and is stated in the following lemma.

Lemma 4 Given any three functions,, hs, hs : X — R, a fixed and unknown distributioR on

the inputsY, and the expected l08$h1, ho) = Egop [(h1(z) — he())?],

e(hl, hg) <2 (e(hl, hg) + e(hg, hl)) .
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Proof: By Jensen’s inequality and the convexity:of— z2, for anyh,, ko, andhs,

e(hi,h2) = Egep [(h1(2) — ha(z))?]
1 1 2
4 <2(h1(x) — ha(w)) + 5 (hs() - hQ(:v))) ]

< Euep [2(ha(z) = ha(@))? + 2(h3(z) — ha(z))?]

= 2(e(hy,hs) +e(hs, hy)) .

- E.Z’NP

|
We can derive a uniform convergence bound for squared loss Rsidgmacher complexity as

long as the regioy is bounded. The proof is in Appendix A2.2.

Lemma5 LetH : X — [—B, B] be a class of functions, and I€(h, (z,y)) = (y — h(z))? be
the squared loss. The following functi@ris a uniform convergence bound fbfand £:

B(n,8) = 8BR,(H) + 4B> 21“22/5) .

Combining this with Lemma 4 and applying Theorem 1 yields the following.

Theorem 4 Let F be the set of functions froi into [— B, B], andH C F. Lete be the expected
squared loss. LeK, f = fi1, fo,...,fx € F, {ei}fil, {ni}{il, and h;, be defined as in the
multi-source learning model. For anyysuch thatd < § < 1, with probability at leastl — ¢, for
anyk e {1,...,K}

2In(4K/6)

)q +32BR,,,  (H) +16B* | ——~.
ni:k

k
A . n;
o) < dpig et} 63 (7
2.5.4 Remarks on the Use of Data-Dependent Complexity Meases

The following lemma, which relates the true Rademacher complexity of a fundides to its
empirical Rademacher complexity, follows directly from Theorem 11 of Béalied Mendelson

[10], the proof of which does not require samples to be identically distribute
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Lemma 6 LetH be a class of functions mapping|tel, 1]. For any integem, for any0 < ¢ < 1,
with probability1 — ¢,
- 8In(2/0
Ru(H) - Ru(r)] < /2220

n

This lemma immediately allows us to replaRg(H) with that data-dependent quantify, in
any of the bounds above for only a small penalty.

While the use of data-dependent complexity measures can be expecteld tmgie accurate
bounds and thus better decisions about the nurhberf sources to use, it is not without its costs
in comparison to the more standard data-independent approachegtidnlag in principle the
optimization of a data-dependent version of the bound given in TheoréoncBoosek™ may
actually involve running the learning algorithm on all possible prefixes okthgces, since we
cannot know the data-dependent complexity term for each prefix withwng so. In contrast, the
data-independent bounds can be computed and optimizéd feithout examining the data at all,
and the learning performed only once on the firstsources. This is especially useful when the

number of sources is very large, or when labels are not free but raymsirchased at a price.

2.6 Estimating the Disparity Matrix

A potential drawback of the theory presented here is the need to estimatisphetg matrix D
when it is unknown. However, it is often the case that this matrix can be estimétemany fewer
labeled samples than are required for learning. In this section, we disows® can be estimated
in the classification setting.

As before, consider the scenario in which each target function is g fixéthown and arbitrary
function from some input set’ to {—1, 1}, and assume that there is a fixed and unknown distribu-
tion P over X'. Suppose we are given data points labeled by a pair of functiofisand f;, and
let é(fi, f;) be the fraction of points on which the labels disagree. By Hoeffding'suakty (see

Section Al.1), with probability — ¢/,

In(2/4")

2m

Thus in order to approximats f;, f;) with an error no more than onlyIn(2/4")/(2¢*) commonly
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labeled points are needed. Applying the union bound gives us the folldeimga.

Lemma 7 Let F be a set of functions fro¥" into {—1, 1}, and suppos¢, ..., fk € F. Lete
be the expected 0/1 loss. Suppose that for eachipgic {1,---, K}, there existn; ; > mg
examples distributed according & commonly labeled by; and f;, where

~ 2In(K) +1n(2/9)
N 2¢2

mo

for any ¢ such thatd < § < 1, and leté(f;, f;) be the fraction of commonly labeled examples
on whichf; and f; disagree. Then with probability — ¢, for all 4,5 € {1,--- , K}, |é(fi, fj) —

e(fzafj)| <e

Using the lemma we set the upper bound on the mutual efifr f;) between the pair of
function f; and f; to be D; ; = é(f;, f;) + e. With probability at least — ¢ these bound holds
simultaneously for all, ;.

Note that in generalopg(K) is significantly smaller than the dimensidrof H. Thus many
fewer labeled examples are required to estimate the disparity matrix than to atgaatlyhe best
function in the class.

The assumption that there exist commonly labeled points for each pair dfdnsids natural
in many settings. Consider, for example, the problem of predicting whethataisers will enjoy
certain movies using ratings from other users. Itis often the case thagbaisers have seen many
of the same movies. These commonly rated movies can be used to determine homesiofilpair

of users are, while ratings of additional movies can be reserved to leaprehiction functions.

2.7 Synthetic Simulations

In this section, we illustrate the bounds of our main theorem through a simpleegigrsimulation.

Our hypothesis clask consists of all linear separators through the origin in 15 dimensions. The
goal is to learn thirty classifiers from this class using only limited amounts of ddiase data
points are drawn uniformly at random from inside the 15-dimensional phire. In this restricted

setting, it is easy to calculate the disparity between two functions. Represeatih functionf
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Figure 2.2 Simulation of the multiple source error bounds. See the text for details.

by a unit weight vector such thatf (z) = sign(w - x), the distance between functionsandw’

is simply#/m wheref = arccos(w - w’) is the angle betweem andw’.

In each simulation we ran, the linear classifiers were generated as folkivgs, three base
classifiers were generated by choosing weight vectors uniformly dorarfirom the surface of the
15-dimensional sphere. Each of the thirty classifiers was then gendmateshdomly choosing
one of the base classifiers, perturbing each coordinate of its weigtaryand renormalizing the
perturbed weights.

The number of training samples available for each function was generatedaf Poisson
distribution with a mean of 8. Each data instance was then sampled from insitle-thimensional
unit sphere via rejection sampling and labeled by the corresponding dasaifi 500 test samples
for each function were generated in the same manner.

To predict the optimal set of training data sources to use for each modebladated an ap-
proximation of the multiple-source VC bound for classification. It is well kndiaat the constants

in the VC-based uniform convergence bounds are not tight. Thusdgnitpose of illustrating how
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these bounds might be used in practice, we have chosen to show apgronged our bounds with

a variety of constants. In particular, we have chosen to approximate timel lvath

k
23 (m) C \/ (d1n (2en.5c/d) + In (8K/5))

ni:x ni:Kx

with § = 0.001 for different values of”'. These approximations yield curves that are closer in shape
and magnitude to the actual error than a curve generated using the poe@dg conservative

constants of Theorem 2.

The set of plots shown in Figure 2.2 illustrates the results of a single multipleessimulation.
(Results from repeated versions of this experiment and experiments vigtedifsource sizes were
similar.) Each individual plot represents a particular target function. ®n: #xis is the number
of data sources used in training. On thexis is error. The solid curves (which appear blue in the
full-color version of this document) show test error of a model trainedguksigistic regression.
The dashed curves (red in the full-cover version) show our multiplececenror bound with' set
to 1/4 in the lowest curvel /2 in the middle curve, and//2 in the highest curve. The on each

curve marks the minimum value.

These plots clearly show the trade-off that exists. When too few soareassed, there is not
enough data available to learn a 15-dimensional function. When too mamyesaare used, the
labels on the training data often do not correspond to the labels that worddkan assigned by

the target function. The optimal amount of data lies somewhere in between.

Although the VC bounds remain loose even after constants have begredrape bounds tend
to maintain the appropriate shape and thus predict the optimal set of squiteell. In general,
when( is set to small values, the predicted error values for small amounts of daté&)lend
to be quite accurate, while predicted values for larger amounts of datasbweate the true error.
As C'is set to larger values, the predictions become much larger in magnitude thanetesror
curves, but the shape of the prediction curves become more similar to therrioneln both cases,
although the bounds are loose, they can still prove useful in determinirgptimeal set of sources

to consider.
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2.8 A Few Words on Domain Adaptation

We now very briefly turn to the related problem of domain adaptation with multipleces, and
describe a few more recent results. The key distinction between this settrtheone described
above is that theinderlying distributionover data points is different for each source, while the
labeling functions are assumed to be similar. For example, suppose thatuwa like to com-
bine data from many users in order to train a personalized spam filterdbruszr. While many
users are likely to agree on whether or not a particular message sholdtdbed as spam, the
distribution over a given user’s email could be very different from tis¢ritbution over another’s.
Domain adaptation problems arise in a variety of other applications of machiminig&oo, and
are especially common in face recognition systems [99], speech andiacoadeling [92], and
natural language processing [27, 21].

As before, we are presented wihdistinct samples or sources of d&ta , - - - , Sx. Now each
sourcesS; is associated with both an unknown labeling functfgrand an unknown distributioR;
over input points. Sourcg; containsn; training instances distributed accordinglpand labeled
by f;. Our goal is to use these instances to train a model to perform welltargat domain
(Dr, fr), which may or may not be the same domain as one of the sources.

For simplicity, we limit the discussion of domain adaptation to binary classificatione&ch
sourcei, lete;(h) be the error of functiork on source;, soe;(h) = E,up, [|h(x) — fi(z)|], and
defineer similarly for the target domain. Lé}(h) be the empirical error of on source, i.e., the
fraction of points inS; for which h chooses the wrong label. We examine algorithms that minimize
convex combinations of training error over the labeled examples fromssachke domain. Given
a vectora = (a1,--- ,ak) of nonnegative domain weights Wilﬂfil a; = 1, we define the

empiricala-weighted error of functio as

K K
(673
= E Oéiez E ; E |
=1 i=1 €S;

The truea-weighted errofe,,(h) is defined analogously. Finally, &, be a mixture of thek
source distributions with mixing weights equal to the components. of
We describe and contrast two alternative bounds on the error of tlwtHegis that minimizes

the a-weighted error. The first bound considers the quality and quantity taf @aailable from
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each source individually, ignoring the relationships between souraeshécontrary, the second
bound (which also appears, with proof, in John Blitzer’'s dissertatiol) He&pends directly on the
distance between the target domain angegghted combinationf source domains. This allows
us to achieve significantly tighter bounds when there exists a mixture ofesotivat approximates
the target better than any single source.

In order to simplify the presentation of the trade-offs that arise, we stateotmed in terms of
VC dimension, but similar bounds could be obtained using alternate meastompfexity. Both

measure the distance between domains using{thé{-divergence,

duarn(D,D') = 2hshl'1£H |Pryp [M(z) # 1 (2)] = Prywps [A(z) # W (2)]] .

If the HAH-divergence is small, pairs of functions that appear similar to each oth@r also
appear similar to each other @. Additionally, this quantity can be efficiently approximated

using a finite number afinlabeledsamples of the distributior® andD’ [16].

2.8.1 A Bound Using Pairwise Divergence

The first bound we present considers the pair#is®H-divergence between each source and the
target, and illustrates the trade-off that exists between minimizing the averaggeahce of the
training data from the target and weighting all points equally to encouraerfaonvergence.
Somewhat surprisingly, the last term can be small even when there is mgfi@ Isypothesis that

works well for all heavily weighted sources. The proof of this theorem &ppendix A2.3.

Theorem 5 Suppose we are giver labeled instances from sourég fori = 1... K. For afixed
vector of weightsy, let i = argmin, ., éo(h), and leths = argmin,, er(h). Then for any

9 € (0,1), with probability at least — 9,

2

er(h) < ep(hy)+ 24 > 2% (dlog(2n1.x) +1og(1/4))

n
i=1 "

K
+ Z oy <2 g(élﬁ {eT(h) + ez(h)} + dHAH(Dia DT)> .
=1
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In the special case in which théAH-divergence between each source and the target is 0 and

all data instances are weighted equally, the bound in Theorem 5 becomes

n1:K n1:K heH

er(h) < eT(h*T)+\/ (dlog(2n1:x) + log(1/9)) QZ—mln{eT (h) + ei(h)} .

Notice that this bound is nearly identical to Theorem 2. Aside from the cotsstathe complexity
term, the only difference is that eaefterm is replaced witminy 3 {er(h) + e;(h)}, which can
be viewed as an alternate measure of label error between sgyane the target, and is equivalent

when the target function is a member7gf

2.8.2 A Bound Using Combined Divergence

In the previous bound, the divergence between sources is measunee, so it is not necessary

to have a single hypothesis that is good for every source domain. Howeigebound does not
give us the flexibility to take advantage of domain structure when calculatiapeied divergence.
The alternate bound given in Theorem 6 allows us to effectively alter theesdalistribution by
changinga. This has two consequences. First, we must now demand that there dxigtsthesis

h* which has low error on both tha-weighted convex combination of sources and the target
domain. Second, we measui\H-divergence between the target and a mixture of sources, rather

than between the target and each single source. The proof of thisriheoire Appendix A2.4.

Theorem 6 Suppose we are giver labeled instances from sourég fori = 1... K. For a fixed
vector of weightsy, let i = argmin, ., éo(h), and leths = argmin,,, er(h). Then for any

6 € (0,1), with probability at least — 9,

2
%

K
6T(il) < +2 Za

> on, (dlog(2n1.x) + log(1/4))

+2min {eT(h) + Z aiei(h)} + dyan(Dea, Dr) .



2.9 Open Questions

There are a variety of open technical problems related to this work. Fonp&aTheorems 5
and 6 provide bounds on the error of a classifier found by minimizing a wesigtmpirical error
term for a fixed weight vectar. However, we do not have a general efficient algorithm for finding
the weight vectokx that minimizes the bound. It is also not known how these bounds will change
if the VC dimension is replaced by a more sophisticated measure of complexityrhsanem 3,
though we believe it should be possible to derive analogous results.

More broadly, as mentioned above, the results described in this chaptbecdewed as a
simple theoretical foundation for rudimentary collaborative filtering. Whiledhmave been some
recent theoretical advancements in collaborative filtering (largely &stos techniques for low-
rank matrix completion), there is still a wide gap between theory and practioe.othe hardest
aspects of closing this gap is developing the right model for the problemirtidesmodels dis-
cussed in this chapter are not powerful enough to yield general mbatjorithms, but the popular
matrix-completion models tend to discard valuable feature information that mastieenely im-
portant when there is only a small amount of training data available. Théegpnatf developing
better models for collaborative filtering and some of the difficulties that anseliscussed in

Chapter 6.
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Chapter 3

Learning from Collective Behavior

Collective behavior in large populations has been a subject of endutieng$h in sociology and
economics, and has recently gained momentum in computer science. Thensesjgently now
an impressive literature on mathematical models of collective behavior folopiena as diverse
as the diffusion of fads in social networks [58, 86, 132], voting b&irgb8], housing choices
and segregation [113], herding behaviors in financial markets [13fbmation propagation on
blogs [96, 60], the transmission of infectious diseases or computer sif48£18], the prevention
of water contamination [95], the spread of new agricultural or medicatiges [110, 36], Holly-

wood trends [43], and the contagion properties of obesity [33]. Towigg popularity of the Inter-

net has greatly increased the number of both controlled experiments94804111, 112, 83] and
open-ended systems (such as Wikipedia and many other instances ofr'lpe®aproduction”)

that permit the logging and analysis of detailed collective behavioral data.nhtural to ask if

there are learning methods specifically tailored to such models and data.

In this chapter, we introduce a computational theory of learning from d¢léebehavior, in
which the goal is to accurately model and predict the future behavior afga [gopulation af-
ter observing their interactions during a training phase of polynomial leféhdefine a formal
model for efficient learning in such settings, and develop generalytheothis model, including
a polynomial-time reduction of learning from collective behavior to more traditiond. learn-
ing. We define specific classes of agent strategies, including “crdimitgfand complementary
“crowd aversion” classes, and provide provably efficient algorithonddarning from collective

behavior for these classes.
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This material is based on joint work with Michael Kearns [77].

3.1 Overview

For decades, collective behavior has been a subject of interestigioggcand economics. The
specific mathematical models found throughout the collective behavior literdiffier from one
another in terms of technical details, but generally share the significdetlyimg assumption that
each agent’s current behavior is entirely or largely determined by tleatéehavior of the other
agents. Thus the collective behavior isatialphenomenon. That is, the population evolves over
time according to its own internal dynamics. There is generally no exogéeiNaiare” being
reacted to or injecting shocks to the collective.

In this chapter, we provide a new computational theory of learning frdieative behavior.
We assume that each agennh a population of sizeV acts according to a fixed but unknown
strategyc; drawn from a known clasS. A strategy probabilistically maps the current population
state to the next state or action for that agent, and each agent’s stratedyerdéferent. As is
common in much of the literature, there may also be a network structure gay¢hneipopulation
interaction, in which case strategies may map the local neighborhood statd txtiens.

Learning algorithms in our model are given training data of the populatioaviet either as
repeated finite-length trajectories from multiple initial statesdpisodicmodel), or in a single
unbroken trajectory from a fixed start staten@resetmodel). In either case, they must effi-
ciently (polynomially) learn to accurately predict or simulate (properties effuture behavior of
the same population. Our framework may be viewed as a computational modieafoing the
dynamics of an unknown Markov process — more precisely, a dynamieBagt — in which
our primary interest is in Markov processes inspired by simple models taldoehavior. The
relationship between our results and prior work on parameter learningyiesiza networks is
discussed in Section 3.2.2.

As a simple, concrete example of the kind of system we have in mind, congid@uéation in
which each agent makes a series of choices from a fixed set over tiokegswvhat restaurant to
go to, or what political party to vote for). Like many previously studied mgdeésconsider agents

who have a desire to behave like the rest of the population (because dnéyowvisit the popular
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restaurants, or want to vote for “electable” candidates). On the otimgt, leach agent may also
have different and unknown intrinsic preferences over the chogegel (based on cuisine and
decor, or the actual policies of the candidates). We consider models ih waah agent balances
or integrates these two forces in deciding how to behave at each stegd66main question is:
Can a learning algorithm watching the collective behavior of such a popultica short period

produce an accurate model of their future choices?

The assumptions of our model fit nicely with the literature cited above, mucthichvindeed
proposes simple stochastic models for how individual agents react tottemtpopulation state.
We emphasize from the outset the difference between our interests asdtiromon in multiagent
systems and learning in games. In those fields, it is often the case that tite Hgmnselves are
acting according to complex and fairly general learning algorithms (su@zlaarning [130], no-
regret learning [54], or fictitious play [23]). In contrast, while the agetnategies we consider
are certainly “adaptive” in a reactive sense, they are much simpler thmrajgourpose learning
algorithms, and we are interested in learning algorithms iadelthe full collective behavior.
Thus our interest is not in learning by the agents themselves, but at trer keghl of an observer
of the population.

The primary contributions described in this chapter are the introduction ofrgpatational
model for learning from collective behavior, the development of somermgénheory for this
model, the definition of specific classes of agent strategies, includingitadéthe “crowd affin-
ity” strategies sketched above, and complementary “crowd aversiosedaand provably efficient

algorithms for learning from collective behavior for these same classes.

Chapter Outline: In Section 3.2, we introduce our main model for learning from collective be-
havior and discuss two natural variants. Section 3.3 introduces and tastavaumber of specific
agent strategy classes that are broadly inspired by earlier sociologichdls and provides brief
simulations of the collective behaviors they can generate. Section 3.4 gsa@vigeneral reduction
of learning from collective behavior to a generalized PAC-style moddefmning from i.i.d. data,
which is used subsequently in Section 3.5, where we give provably effi@igorithms for learn-
ing some of the strategy classes introduced in Section 3.3. Brief conclusidrspics for further

research are given in Section 3.6.
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3.2 The Model

In this section we describe a learning model in which the observed datagsaget from obser-
vations of trajectories (defined shortly) of the collective behavia¥dfteracting agents. The key
feature of the model is the fact that each agent’s next state or actionagsletermined by the re-
cent actions of the other agenggerhaps combined with some intrinsic “preferences” or behaviors
of the particular agent. As we shall see, we can view our model as ofeafoing certain kinds

of factored Markov processes that are inspired by models common inagpciand related fields.

Each agent may follow a different and possibly probabilistic strategy. ¥¥arae that the

strategy followed by each agent is constrained to lie in a known (and potasite) class, but is
otherwise unknown. The learner’s ultimate goal is not to discover eadvidodl agent strategy

per se, but rather to make accurate predictions ottiectivebehavior in novel situations.

3.2.1 Agent Strategies and Collective Trajectories

The main components of our framework are as follows:

e State SpaceAt each time step, each agenis in some state; chosen from a known, finite
setS of size K. We often think ofK” as being large, and thus want algorithms whose running
time scales polynomially i’ and other parameters. We viewas theactiontaken by agent
i in response to the recent population behavior. The joint action veeta$” describes the

current global state of the collective.

e Initial State Distribution. We assume that the initial population stafds drawn according
to a fixed but unknown distributio®® over S™V. During training, the learner is able to see
trajectories of the collective behavior in which the initial state is drawn fidgnand as in

many standard learning models, must generalize with respect to this sameitiegirib

e Agent Strategy Class.We assume that each agent’s strategy is drawn from a known class
C of (typically probabilistic) mappings from the recent collective behavior thoagent’s
next state or action i§. We mainly consider the case in whiehe C probabilistically maps
the current global stateinto agenti's next state. However, much of the theory we develop
applies equally well to more complex strategies that might incorporate a lomsjeryhof

the collective behavior on the current trajectory.
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Given these components, we can now define what is meantbleztive trajectory

Definition 3 Letc € CV be the vector of strategies for té agents,P be the initial state dis-
tribution, and7T > 1 be an integer. Al’-trajectory of ¢ with respect to P is a random vari-
able (s, --- ,s”) in which the initial states” ¢ SV is drawn according toP, and for each
t € {1,---,T}, the component! of the joint states’ is obtained by applying the strategy

tost—1.

Thus, a collective trajectory in our model is simply a Markovian sequenstt#s thatactors
according to theV agent strategies — that is, a dynamic Bayes net [57]. Our interest isds tas

which this Markov process is generated by particular models of sociavixeh

3.2.2 The Learning Model

We now formally define the learning model we study. In our model, learnirmyidhgns are given
access to an oracl®gxp(c, P,T) that returns & -trajectory(s°,--- ,s”) of ¢ with respect to
P. This is thus arepisodicor resetmodel, in which the learner has the luxury of repeatedly ob-
serving the population behavior from random initial conditions. It is moptiegble in (partially)
controlled, experimental settings [47, 49, 80, 111, 112, 83] where ‘qapulation resets” can
be implemented or imposed. In Section 3.2.3 below we define a perhaps madéytapplicable
variant of the model in which resets are not available; the algorithms wedgroan be adapted
for this model as well (see Appendix A3.8).

The goal of the learner is to findgenerative moddhat can efficiently produce trajectories
from a distribution that is arbitrarily close to that generated by the true ptpulaThus, let
M(so, T) be a (randomized) model output by a learning algorithm that takes as irgpait tate
s" and time horizo’, and outputs a randoffi-trajectory, and le© ;;, denote the distribution over
trajectories generated hy/ when the start state is distributed according”o Similarly, let Q.
denote the distribution over trajectories generate@byp (c, P, T). Then the goal of the learning
algorithm is to find a mode) making theZ, distances(Q ;, Qc) betweenQ , and Q. small,

where

£(Qy Qc) = Z Qi (8% -+ ,8T)) = Qel((s, -+ ,s™))| -

(0, sT)
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Note that we have defined the output of the learning algorithm to be a “blacktiat simply
produces trajectories from initial states. Of course, it would be naturekpect that this black
box operates by having good approximations to every agent strategyand using collective
simulations of these to produce trajectories, but we choose to define thz dfitp a more general
way since there may be other approaches. Second, we note that oimdeaiteria is both strong
(see below for a discussion of weaker alternatives) and useful, iretieeghat it:(Q ;, Qc) is
smaller thar, then we can sampl#! to obtainO(e)-good approximations to the expectation of
any (boundedjunctionof trajectories. Thus, for instance, we can lgeo answer questions like
“What is the expected number of agents playing the plurality action aftseps?” or “What is
the probability the entire population is playing the same action &fteteps?”

Our algorithmic results consider cases in which the agent strategies may Wesredecady
be rather rich, in which case the learning algorithm should be permittedroesocommensurate
with this complexity. For example, the crowd affinity models have a number @inpaters that
scales with the number of actiols. More generally, we uséim (C) to denote the complexity or
dimension of’; in all of our imagined applicationgim(-) is either the VC dimension for determin-
istic classes, or one of its generalizations to probabilistic classes (suske@dgpdimension [65],

fat-shattering dimension [74], combinatorial dimension [65], etc.).

We are now ready to define our learning model.

Definition 4 Let C be an agent strategy class over actiafis We say that is polynomially
learnable from collective behaviorif there exists an algorithmd such that for any population
sizeN > 1, anyc € CV, any time horizori", any distributionP overSY, and anye > 0 and
d > 0, given access to the oracgxp(c, P, T'), algorithm A runs in time polynomial inV, T,

dim(C), 1/¢, and1/4, and outputs a polynomial-time mod#l such that with probability at least
1- 6’ E(QM) QC) S €.

Note that if we cared only about sample complexity and not efficiency, wil@pply Das-
gupta’s results on parameter learning in Bayesian networks [42] to stabariii clasg with finite
pseudo-dimensiodim (C) is learnable from collective behavior from a number of samples polyno-

mial in N, T', dim(C), 1/¢, and1 /6. However, Dasgupta’s analysis involves directly bounding the
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pseudo-dimension of the class of Bayesian networks and therefasendbprovide any algorith-
mic insight. More recently, Abbeel et al. [1] showed that efficient patanearning in Bayesian
networks is possible when nodes have bounded in-degree. Since timaumain-degree in our
setting isN, their techniques would lead to an exponential dependence on the nuhalgends in
both the run time and sample complexity.

On the other hand, the guarantees of both Dasgupta and Abbeel e¢ aktrarger than ours
in the sense that they require low KL divergence between the true joinibdistn and the joint
distribution induced by the model while we ask for only Iy distance. For Abbeel et al., this
results in an inverse dependence in the sample complexity on the smallest caidiitmbability
in the network, which we avoid. Dasgupta gets around this problem by #@kpliestricting the
space of models to those in which all probabilities are bounded away fram ze

We now discuss two reasonable variations on the model we have presented

3.2.3 A No-Reset Variant

The model above assumes that learning algorithms are given accessdteckpndependent tra-
jectories via the oracl®gxp, which is analogous to thepisodicsetting of reinforcement learning.
As in that field, we may also wish to consider an alternative “no-reset” nmindehich the learner
has access only tosingle unbroken trajectory of states generated by the Markov process To d
so we must formulate an alternative notion of generalization, since on thhaomk the (distri-
bution of the) initial state may quickly become irrelevant as the collective li@havolves, but
on the other, the state space is exponentially large and thus it is unrealistjpsict éx model the
dynamics from amrbitrary state in polynomial time.

One natural formulation allows the learner to observe any polynomially logfixmf a trajec-
tory of states for training, and then to announce its readiness for thehtest plfs is the final state
of the training prefix, we can simply ask that the learner output a mititHat generates accurate
T-step trajectorieforward from the current state. In other words\/ should generate trajectories
from a distribution close to the distribution ovErstep trajectories that would be generated if each
agent continued choosing actions according to his strategy. The lengitle arfaining prefix is
allowed to be polynomial ifl" and the other parameters.

While aspects of the general theory described below are particular tonaimr (episodic)
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model, we note here that the algorithms we give for specific classes cantibedaadapted to

work in the no-reset model as well. Such extensions are discussed endippA3.8.

3.2.4 Weaker Criteria for Learnability

We have chosen to formulate learnability in our model using a rather straogssicriterion —
namely, the ability to (approximately) simulate the full dynamics of the unknowrk®eprocess
induced by the population strategyln order to meet this strong criterion, we have also allowed the
learner access to a rather strong oracle, which returirg@tmediatestates of sampled trajectories.
There may be natural scenarios, however, in which we are intereshgdnospecific fixed
properties of collective behavior, and thus a weaker data source ffi@g sk&or instance, suppose
we have a fixed, real-valuemlitcome functior(s) of final states (for instance, the fraction of
agents playing the plurality action at tirfig, with our goal being to simply learn a functighthat

maps initial states” and a time horizofl” to real values, and approximately minimizes
Ewp [|G(s%,T) — Egr [F(sT)]]]

wheres? is a random variable that is the final state of'd@rajectory ofc from the initial state
sU. Clearly in such a model, while it certainly would suffice, there may be no teeirectly
learn a full dynamical model. It may be feasible to satisfy this criterion witheehebserving
intermediate states, but only seeing initial state and final outcome (@éir8'(s”)), closer to a
traditional regression problem.

It is not difficult to define simple agent strategy classes for which learfiom only
(s, F(sT)) pairs is provably intractable, yet efficient learning is possible in our modeélis
idea is formalized in Theorem 7 below. The idea behind the proof is that fhalgtmn forms a
rather powerful computational device mapping initial states to final statggarticular, it can be
thought of as a circuit of depth with “gates” chosen fron¢, with the only real constraint being
that each layer of the circuit is an identical sequenc @fates which are applied to the outputs of
the previous layer. Intuitively, if only initial states and final outcomes ao®iged to the learner,
learning should be as difficult as a corresponding PAC-style problenth©nother hand, by ob-

serving intermediate state vectors we can build arbitrarily accurate modedadbragent, which
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in turn allows us to accurately simulate the full dynamical model. A sketch of thprfuof is in

Appendix A3.1.

Theorem 7 LetC be the class of 2-inplND and OR gates, and one-inpwtoT gates. Ther®
is polynomially learnable from collective behavior, but there exists a binatgame functionf’
such that learning an accurate mapping from start stateto outcomes~(s”) without observing

intermediate state data is intractable.

Conversely, it is also not difficult to concoct cases in which learning tiledfynamics in
our sense is intractable, but we can learn to approximate a specific outaast®fh from only
(s, F(sT)) pairs. Intuitively, if each agent strategy is very complex but the outcometifan
applied to final states is sufficiently simple (e.g., constant), we cannot lmgtdweed to model the
full dynamics in order to learn to approximate the outcome.

We note that there is an analogy here to the distinction betdigect andindirect approaches
to reinforcement learning [75]. In the former, one learns a policy thaigsific to a fixed reward
function without learning a model of next-state dynamics; in the latter, atlppsgeater cost, one
learns an accurate dynamical model, which can in turn be used to comput@ajames for any
reward function. For the remainder of this chapter, we focus on the nasdekt formalized it in

Definition 4, and leave for future work the investigation of such alternative

3.3 Social Strategy Classes

Before providing our general theory, including the reduction from ctile learning to i.i.d. learn-
ing, we first illustrate and motivate the definitions so far with some concretamra of social

strategy classes, some of which we analyze in detail in Section 3.5.

3.3.1 Crowd Affinity: Mixture Strategies

The first class of agent strategies we discuss are meant to model settimgjstineach individual
wishes to balance their intrinsic personal preferences with a desire ltowfthe crowd.” We
broadly refer to strategies of this type@swd affinitystrategies (in contrast to tlieowd aversion

strategies discussed shortly), and examine a couple of natural variants.
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As a motivating example, imagine that there Afe@estaurants, and each week, every member
of a population chooses one of the restaurants in which to dine. On theaaode drach agent has
personal preferences over the restaurants based on the cuisifieg, sembiance, and so on. On
the other, each agent has some desire to go to the currently “hot” regtsaurdhat is, where many
or most other agents have been recently. To model this setting,detthe set of restaurants,
and supposs € SY is the population state vector indicating where each agent dined last week.
We can summarize the population behavior by the vector or distribtitian[0, 1)%, where f,
is the fraction of agents dining in restauranin s. Similarly, we might represent the personal
preferences of a specific agent by another distributiore [0, 1]% in which w, represents the
probability this agent would attend restaurarih the absence of any information about what the
population is doing. One natural way for the agent to balance their prafes with the population
behavior would be to choose a restaurant according to the mixture distrilfutio o)f + aw
for some agent-dependent mixture coefficientSuch models have been studied in the sociology

literature [66] in the context of belief formation.

We are interested in collective systems in which every agbat some unknown preferences
w; and mixture coefficient;, and in each week chooses its next restaurant according to-
a;)ft + a;w;, which thus probabilistically yields the next population distributféh!. How do
such systems behave? And how can we learn to model their macroscopéartjge from only

observed behavior, especially when the number of chdiceslarge?

An illustration of the rich collective behavior that can already be genefabed such simple
strategies is shown in Figure 3.1(a). Here we show a single but typic@tdtep simulation of
collective behavior under this model, in whiéh = 100 and each agent's individual preference
vectorw puts all of its weight on just one of 10 possible actions (representedfasedif shades
of gray, or colors in the full-color version); this action was selected iaddpntly at random for
each agent. All agents have anvalue of just 0.01, and thus are selecting from the population
distribution 99% of the time. Each row shows the population state at a givensiigptime

increasing down the horizontal axis of the image. The initial state was cliogenmly at random.

It is interesting to note the dramatic difference betwaes 0 (in which rapid convergence to
a common color is certain) and this small value dgrdespite the fact that almost all agents play

the population distribution at every step, revolving horizontal waves @f-oensensus to different
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Figure 3.1 Sample simulations of a) the crowd affinity mixture model, b) the crowd affinity multi-
plicative model, and c) the agent affinity model. See the text for details.
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choices are present, with no final convergence in sight. The slighédpatization” of population-
only behavior is enough to dramatically change the collective behavioadBrepeaking, itis such

properties we would like a learning algorithm to model and predict fromcseifi observations.

3.3.2 Crowd Affinity: Multiplicative Strategies

One possible objection to the crowd affinity mixture strategies describeaabdivat each agent
can be viewed amandomlychoosing whether tentirely follow the population distribution (with

probability1 — «) or to entirelyfollow their personal preferences (with probability at each time

step. A more realistic model might have each agent tcoljnbinethe population behavior with
their preferences at every step.

Consider, for instance, how an American citizen might alter their anticipagsijemtial voting
decision over time in response to recent primary or polling news. If thefrclirsice of candidate
— say, an Independent or Libertarian candidate — appears over time“tmélectable” in the
general election due to their inability to sway large numbers of Democratic epdtfican voters,
a natural and typical response is for the citizen to shift their intended vethitthever of the front-
runners they most prefer or least dislike. In other words, the low pdpulaf their first choice

causes that choice to be dampened or eradicated; unlike the mixture mode] abere weighd
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is always given to personal preferences, here there may remaairight on this candidate.

One natural way of defining a general such class of strategies is awdollAs above, let
f € [0,1]%, wheref, is the fraction of agents dining in restaurarit the current state. Similar
to the mixture strategies above, et < [0, 1] be a vector ofveightsrepresenting the intrinsic
preferences of agentover actions. Then define the probability that ageplays actiona to be
Ja - wia/Z(f, w;), where the normalizing factor B(f, w;) = >, s fo - w;p. Thus, in suchmul-
tiplicative crowd affinity models, the probability the agent takes an action is alwaympional
to the product of their preference for it and its current popularity.

Despite their similar motivation, the mixture and multiplicative crowd affinity stratecges
lead to dramatically different collective behavior. Perhaps the most abdifierence is that in
the mixture case, if agerithas a strong preference for actierthere isalwayssome minimum
probability (;w; ) they take this action, whereas in the multiplicative case even a strong-prefer
ence can be eradicated from expression by small or zero values foopioéarity f, .

In Figure 3.1(b), we again show a single but typical 1000-skép= 100 simulation for the
multiplicative model in which agent’s individual preference distributienare chosen to be ran-
dom normalized vectors over 10 actions. The dynamics are now quitetiffiman for the additive
crowd affinity model. In particular, now there is never near-consebgtua gradual dwindling of
the shades or colors represented in the population — from the initial fdtglty down to 3 col-
ors remaining at approximatety= 100, until by ¢ = 200 there is a stand-off in the population
between red and light green. Unlike the additive models, colors die out ipajelation perma-
nently. There is also clear vertical structure corresponding to stramgjtamal preferences of the

agents once the stand-off emerges.

3.3.3 Crowd Aversion and Other Variants

It is easy to transform the mixture or multiplicative crowd affinity strategies anbovd aversion
strategies — that is, in which agents wish to balance or combine their pefmefalences with
a desire to actlifferentlythan the population at large. This can be accomplished in a variety of
simple ways. For instance, ffis the current distributions over actions in the population, we can
simply define a kind of “inverse” to the distribution by letting = (1 — f,)/(K — 1), where
K —1=3",.5(1— fp) is the normalizing factor, and applying the strategies aboye rather
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thanf. Now each agent exhibits a tendency to “avoid the crowd”, moderatedfascbby their
own preferences.

Of course, there is no reason to assume that the entire population is seakihg, or crowd-
avoiding; more generally we would allow there to be both types of individuasegmt. Further-
more, we might entertain other transforms of the population distribution thamg,jlsove. For
instance, we might wish to still consider crowd affinity, but to first “shafgle distribution by
replacing eaclf, with f? and normalizing, then applying the models discussed above to the result-
ing vector. This has the effect of magnifying the attraction to the most popateims. In general

our algorithmic results are robust to a wide range of such variations.

3.3.4 Agent Affinity and Aversion Strategies

In the two versions of crowd affinity strategies discussed above, ar bgepersonal preferences
over actions, and also reacts to the current population behavior, lyiincen aggregate fashion.
An alternative class of strategies that we egiént affinitystrategies instead allows agents to prefer
to agree (or disagree) in their choice with specific other agents.

For a fixed agent, such a strategy can be modeled by a weight wectorf0, 1]V, with one
weight for eachagentin the population rather than each action. We define the probability that this

agent takes actioa if the current global state is € SV to be proportional to w;. In this

i:8;=a
class of strategies, the strength of the agent’s desire to take the same actigen& is deter-
mined by how large the weight; is. The overall behavior of this agent is then probabilistically
determined by summing over all agents in the fashion above.

In Figure 3.1(c), we show a single but typical simulation, again Wth= 100 but now with
a much shorter time horizon of 200 steps and a much larger set of 100 actibragents have
random distributions as their preferences over other agents; this modsiilisr 4o traditional
diffusion dynamics in a dense, random (weighted) network, and quidkdyerges to global con-
sensus.

We leave the analysis of this strategy class to future work, but remark ttfae¢ isimple case
in which K = 2, learning this class is closely related to the problem of learning perceptrons

under certain noise models in which the intensity of the noise increases wiimitsoto the

separator [35, 24] and seems at least as difficult.
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3.3.5 Incorporating Network Structure

Many of the social models inspiring this work involve a network structureditaates or restricts
the interactions between agents [86]. It is natural to ask if the strategseslaéscussed here can
be extended to the scenario in which each agent is influenced only byigtsoes in a given
network. Indeed, it is straightforward to extend each of the strateggedastroduced in this
section to a network setting. For example, to adapt the crowd affinity amsi@nestrategy classes,

it suffices to redefing, for each agent to be the fraction of agents in the local neighborhood of
agent; choosing actiom. To adapt the agent affinity and aversion classes, it is necessaryoonly
require thatw; = 0 for every ageny outside the local neighborhood of agénBy making these
simple modifications, the learning algorithms discussed in Section 3.5 can immed&atgpled

to settings in which a network structure is given.

3.4 A Reductionto I.I.D. Learning

Since algorithms in our framework are attempting to learn to model the dynamic$aofased
Markov process in which each component is known to lie in the da#ids natural to investigate
the relationship between learning just a single strategy amd the entire Markovian dynamics.
One main concern might be effects of dynamic instability — that is, that even smahs in
models for each of th&/ components could be amplified exponentially in the overall population
model. In this section we show that this can be avoided. More preciselyrove phat if the
component errors are all small compared fONT)?, the population model also has small error.
Thus fast rates of learning for individual components are polynomiafiggnved in the resulting

population model.

To show this, we give a reduction showing that if a clésd (possibly probabilistic) strategies
is polynomially learnable (in a sense that we describe shortly) from i.i.d. theia¢ is also poly-
nomially learnable from collective behavior. The key step in the reductioreignthoduction of
the experimental distribution, defined below. Intuitively, the experimentéiildigion is meant to
capture the distribution over states that are encountered in the colledting s&er repeated trials.

Polynomial i.i.d. learning on this distribution leads to polynomial learning from thlective.
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3.4.1 A Reduction for Deterministic Strategies

In order to illustrate some of the key ideas we use in the more general reguatiobegin by
examining the simple case in which the number of actiins- 2 and and each strategyc C is
deterministic. We show that & is polynomially learnable in the (distribution-free) PAC model,
thenC is polynomially learnable from collective behavior.

In order to exploit the fact thaf is PAC learnable, it is first necessary to define a single

distribution over states on which we would like to learn.

Definition 5 For any initial state distributionP, strategy vectok, and sequence length, the
experimental distribution Dp. 7 is the distribution over state vectossobtained by querying
Ogxp(c, P,T) to obtain(s®, - -- | sT), choosing uniformly at random fron{0, --- ,7 — 1}, and

settings = s.

We denote this distribution simply &3 when P, ¢, andT are clear from context. Given access
to the oracleDgxp, we can sample pairs, ¢;(s)) wheres is distributed according t® using the

following procedure:
1. QueryOgxp(c, P,T) to obtain(s’, - - - ,sT).
2. Choose € {0,--- ,T — 1} uniformly at random.

3. Return(s’, s{™1).

If C is polynomially learnable in the PAC model, then by definition, with access to tloteora

Ogxp, for anyd, e > 0, it is possible to learn a modé] such that with probability — (§/N),
Pro~p [¢i(8) # ci(s)] <

in time polynomial inN, T', 1/¢, 1/§, and the VC dimension af using the sampling procedure
above; the dependence @n andT come from the fact that we are requesting a confidence of
1 — (6/N) and an accuracy of/(T'N). We can learn a set of such strategiefor all agentsi at
the cost of an additional factor o¥.

Consider a new sequen¢€, - - - ,s”) returned by the oracl®gxp. By the union bound, with

probability 1 — d, the probability that there exists any agérind anyt € {0,--- ,7 — 1}, such
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thate;(s?) # ci(s?) is less thare. If this is not the case (i.e., if;(s’) = ¢;(s?) for all < andt)
then the same sequence of states would have been reached if we hatistestieal at state” and
generated each additional statéy lettingst = ¢;(s'~!). This implies that with probability — 4,

£(Qyp Qc) < €, andC is polynomially learnable from collective behavior.

3.4.2 A General Reduction

Multiple analogs of the definition of learnability in the PAC model have beenqseg for distri-
bution learning settings. The probabilistic concept model [74] presengsimittbn for learning
conditional distributions over binary outcomes, while later work [78] pegsoa definition for
learning unconditional distributions over larger outcome spaces. We cerii@riwo into a single
PAC-style model for learning conditional distributions over large outcoraeespfrom i.i.d. data

as follows.

Definition 6 LetC be a class of probabilistic mappings from an input X’ to an outputy € Y
where)) is a finite set. We say that is polynomially learnable if there exists an algorithni
such that for any: € C and any distributionD over X, if A is given access to an oracle producing
pairs (x, ¢(x)) with z distributed according td, then for anye, 6 > 0, algorithm A runs in time

polynomial inl/e, 1/6, and dim(C) and outputs a functiot such that with probabilityl. — o,

Exep |3 [Prle(x) = y] - Pré(x) =yl | <e.
yey
We could have chosen instead to require that the expected KL divergpetweere andé be
bounded. Using Jensen’s inequality and Lemma 12.6.1 of Cover and Tha88ast [is simple
to show that if the expected KL divergence between two distributions isdmmlibye, then the
expectedZ; distance is bounded by/21n(2)e. Thus any class that is polynomially learnable

under this alternate definition is also polynomially learnable under ours.

Theorem 8 For any clas<C, if C is polynomially learnable according to Definition 6, théns

polynomially learnable from collective behavior.

Proof: This proof is very similar in spirit to the proof of the reduction for the deterministise.

However, several tricks are needed to deal with the fact that trajextmgenow random variables,
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even given a fixed start state. In particular, it is no longer the case thaawargue that starting
at a given start state and executing a set of strategies that are “clogestoie strategy vector
usually yieldsthe samefull trajectory we would have obtained by executing the true strategies
of each agent. Instead, due to the inherent randomness in the strategiesist argue that the
distribution over trajectories is similar when the estimated strategies are sufficiently close to th

true strategies.

To make this argument, we begin by introducing the idea of sampling from a disbrikP;
using a “filtered” version of a second distributiét as follows. First, draw an outcome € €2
according taP,. If P;(w) > P»(w), outputw. Otherwise, outpub with probability P; (w)/Pa(w),
and with probabilityl — P;(w)/P2(w), output an alternate action drawn according to a third dis-

tribution P;, where
Pi(w) — P(w)

Dot Pa(w)< Py (o) PLW) = Pa(w')

if Pj(w)> P»(w), andP3(w) = 0 otherwise.

P3(w) =

It is easy to verify that the output of this filtering algorithm is indeed distribatecbrding to
P,. Additionally, notice that the probability that the output is “filtered” is

Y. P <1—2Ez;> :%HPQ_P1||1~ (3.1)

w:Pa(w)>P1(w)

As in the deterministic case, we make use of the experimental distribiitias defined in
Definition 5. If C is polynomially learnable as in Definition 6, then with access to the oracle

Ogxp, for anyd, e > 0, it is possible to learn a modéJ such that with probability — (§/N),

€ \2

. —q] — e — < [——

Es~D Z\Pr [ci(s)=s] — Pr[é(s) S]i < (NT) (3.2)
seS

in time polynomial inN, T', 1/¢, 1/6, anddim(C) using the three-step sampling procedure de-

scribed in the deterministic case; as before, the dependen¥eamT” stem from the fact that we

are requesting a confidencelof- (6/N) and an accuracy that is polynomial in bathandT". It

is possible learn a set of such strategdigfor all agents at the cost of an additional factor &f.
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If Equation 3.2 is satisfied for ageftthen for anyr > 1, the probability of drawing a state

from D such that

€ \2
. — _ AL — > - .
> [Prle(s) = s = Prlas) = 5] | > 7 (57 (3.3)
sES
is no more thar /.
Consider a new sequen¢e, - - - ,s”) returned by the oracl®gxp. For eachs’, consider the

action s;?“ chosen by agent This action was chosen according to the distributipnSuppose
instead we would like to choose this action according to the distribatiosing a filtered version of
¢; as described above. By Equation 3.1, the probability that the action cHaicesdfiltered” (and
thus not equal ta'*) is half the£; distance betweeq;(s*) andé;(s*). From Equation 3.3, we
know that for any- > 1, with probability at least — 1 /7, this probability is less than(e/(NT))?,
so the probability of the new action being different frefii! is less than-(e/(NT))? +1/7. This
is minimized whenr = 2NT /¢, giving us a bound of /(NT).

By the union bound, with probability — §, the probability that there exists any agersnd
anyt € {1,---,T}, such thafs;?“ is not equal to the action we get by samplif¢s’) using the
filtered version of; must then be less than As in the deterministic version, if this it the case,
then the same sequence of states would have been reached if we hatistestieal at state” and
generated each additional stateoy letting st = ¢;(s'~!) filtered usinge;. This implies that with

probabilityl — 6, £(Q;, Qc) < €, andC is polynomially learnable from collective behavior. m

3.5 Learning Social Strategy Classes

We now turn our attention to efficient algorithms for learning some of the spestfiial strategy
classes introduced in Section 3.3. We focus on the two crowd affinity méaedes. Recall
that these classes are designed to model the scenario in which eaclhageant intrinsic set of
preferences over actions, but simultaneously would prefer to choessathe actions chosen by
other agents. Similar techniques can be applied to learn the crowd avdrsimgies.

Formally, letf be a vector representing the distribution over current states of the aifjenits
the current state, then for each actianf, = |[{i : s; = a}|/N is the fraction of the population
currently choosing action. (Alternately, if there is a network structure governing interaction

among agents,, can be defined as the fraction of nodes in an agent’s local neighttbdhoosing
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actiona.) We denote byD7 the distribution over vectosinduced by the experimental distribution
D over state vectors. In other words, the probability of a vectbrunderD/ is the sum over all

state vectors mapping tof of the probability ofs underD.

We focus on the problem of learning the parameters of the strategy ofla agenti in each
of the models. We assume that we are presented with a set of savipledere each instance
I, € M consists of a paitf,,, a,,). Heref,, is the distribution over states of the agents apd
is the next action chosen by agéntWe assume that the state distributidjpsof these samples are
distributed according t@/. Given access to the oraaf@;xp, such samples could be collected,
for example, using a three-step procedure like the one in Section 3.4.1hdletlsat each class
is polynomially learnable with respect to the distributibd induced byany distribution D over

states, and so by Theorem 8, also polynomially learnable from collecties/ime.

While it may seem wasteful to gather only one data instance for each agem eachT-
trajectory, we remark that only small, isolated pieces of the analysis prdsartés section rely
on the assumption that the state distributions of the samples are distributediagdorD?. In
practice, the entire trajectories could be used for learning with no impacteostiircture of the
algorithms. Additionally, while the analysis here is geared towards learniher the experimental
distribution, the algorithms we present can be applied without modification incireset variant

of the model; see Appendix A3.8.

3.5.1 Learning Crowd Affinity Mixture Models

In Section 3.3.1, we introduced the class of crowd affinity mixture model stegte§uch strategies
are parameterized by a (normalized) weight vestoand parameter € [0,1]. The probability
that agent chooses action given that the current state distributiorfis thena f, + (1 — a)w,. In
this section, we show that this class of strategies is polynomially learnablectiibeative behavior

and sketch an algorithm for learning estimates of the parametansiw.

LetI(x) be the indicator function that is 1 if is true and O otherwise. From the definition of
the model it is easy to see that for amysuch that,,, € M, for any actioru € S, E [I(a,, = a)] =

af.+ (1—a)w,, where the expectation is over the randomness in the agent’s strategye8ytiin
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of expectation,

E [ Zl(am = a)]:a Z fma+ (1 —a)wg| M| . (3.4)

m: Ty EM m:Lm EM

Standard results from uniform convergence theory say that we qanxamate the left-hand
side of this equation arbitrarily well given a sufficiently large data\setReplacing the expectation
with this approximation in Equation 3.4 yields a single equation with two unknowiablas,«
andw,. To solve for these variables, we must construpiaa of equations with two unknown
variables. We do so by splitting the data into instances wiigrgis “high” and instances where
itis “low.”

Specifically, letM = | M|. For convenience of notation, assume without loss of generality
that M is even; if M is odd, simply discard an instance at random. Deﬂrl@jw to be the set
containing thel /2 instances in\ with the lowest values of;,, .. Similarly, defineM”9" to be
the set containing tha//2 instances with the highest values ff ,. ReplacingM with Mlow
and M i9h respectively in Equation 3.4 gives us two linear equations with two unknofsong

as these two equations are linearly independent, we can solve the systgunatibns fory, giving

us
E Zm:zmeMZn’ghI(am = a,) — EmCImEMZOU’I(am e a)

o=
ZmZImEMZigh fm’a - Zm:Im,EMéow fmva

We can approximate from data in the natural way, using

thmeMZighI(am: a)_zm:ImEMf{’w I(am: a)

Zm;ImGMZWh fm,a - Zm:ImEMf{’“’ fm,a

(3.5)

a=

By Hoeffding’s inequality and the union bound, for ahy- 0, with probability1 — §,

In(4/5) M
S oz ot Ja — Sz fru

(1/Z4)\/In(4/9)/M , (3.6)

la—a| <

where

1 1
Za:m Z fm,a_]\47/2 Z fm,a-

m:ImeMiI" MLy €M

The quantityZ, measures the difference between the mean valyig gfamong instances with
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“high” values of f,,, , and the mean value ¢f,, , among instances with “low” values. While this
guantity is data-dependent, standard uniform convergence theorygdhaiut is stable once the
data set is large. From Equation 3.6, we know that if there is an agtionwhich this difference
is sufficiently high, then it is possible to obtain an accurate estimategi¥en enough data. If,
on the other hand, no suchexists, it follows that there is very little variance in the population
distribution over the sample. We argue below that it is not necessary todeararder to mimic
the behavior of an agenif this is the case.

For now, assume th&, is sufficiently large for at least one value @fand call this value*.
We can use the estimate @fo obtain estimates of the weights for each action. From Equation 3.4,

it is clear that for any,

W — E [stzme/v( Lanm = a)] -« Zm;ImeM fm.a
‘o (1—a)M '

We estimate this weight using

Zm'Z eM I(am = a) —a Zm'Z eM fm a
by = =n In e 3.7
v 1—a)M 3.7)

The following lemma shows that given sufficient data, the error in these dssnsmsmall

whenZ,- is large.

Lemma 8 Leta* = argmax,cs Z,, and leta be calculated as in Equation 3.5 with= a*. For
eacha € S, letw, be calculated as in Equation 3.7. For sufficiently latgg for anyé > 0, with

probability 1 — §,

o — &| < (1/Z4)/In((4 + 2K)/6) /M

and for all actionsa,

g — oy < — (1= 0 Za/V2+2)/In((d +2K)/0)
@S A — &)V — (1 — a) /(A 2K)0)

The proof of this lemma appears in Appendix A3.2. It relies heavily on theviiig technical

lemma for bounding the error of estimated ratios, which is proved in Appendi8 And used
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frequently throughout the remainder of this chapter.

Lemma 9 For any positiveu, 4, v, 9, k, ande such thatk < v, if ju — 4] < eand|v — 0] < ke,

then
(v + uk)
v(v—ek)

v

u U
=1 <
D

Now that we have bounds on the error of the estimated parameters, wewahthe expected

L1 distance between the estimated model and the real model.

Lemma 10 For sufficiently largeM,

Eeops | Y l(afa+ (1= a)we) = (Gfa + (1 - @)wa)\]

a€eS

- In((4 + 2K)/0) + min K(Zg~ /\/>+2) In((4 + 2K)/9) 2(1— &)
= ZoN/M Zor (1= QVM - /(4 +2K)/3) |

In this proof of this lemma, which appears in Appendix A3.4, the quantity

> l(afa+ (1= @)wa) — (afa + (1 — &)iby)]
aes
is boundeduniformly for all f using the error bounds. The bound on the expectation follows
immediately.
It remains to show that we can still bound the error wlignis zero or very close to zero. We
present a light sketch of the argument here; more details appear in digFEh 5.
Letn, andu, be the true median and mean of the distribution from which the random variables

high he the mean value of the distribution ovér ., conditioned onf,, , >

. Let f"9" be the empirical average df, , conditioned onf,, . > n.. Finally, let f*9" =

fm,a are drawn. Letf,

(2/M) Yot e mhioh fma be the empirical average df,, , conditioned onf,, , being greater

than theempiricalmedian. We can calcula™?" from data.

high :

We can apply standard arguments from uniform convergence thedmpwothatf, " is close

shigh

to £9" and in turn thaf?*9" is close tof*'9" . Similar statements can be made for the analogous

quantitiesflo, flow andflow. By noting thatZ, = fo'9" — flow this implies that ifZ, is small,
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then the probability that a random valuef , is far from the mean, is small. When this is the

case, it is not necessary to estimatdirectly. Instead, we seét = 0 and

m:Im M

Applying Hoeffding’s inequality again, it is easy to show that for eachy, is very close to
ape + (1 —a)w,, and from here it can be argued that thedistance between the estimated model
and the real model is small.

Thus for any distributiorD over state vectors, regardless of the corresponding valdg-qft
is possible to build an accurate model for the strategy of agamtolynomial time. By Theorem 8,

this implies that the class is polynomially learnable from collective behavior.

Theorem 9 The class of crowd affinity mixture model strategies is polynomially ledenatm

collective behavior.

3.5.2 Learning Crowd Affinity Multiplicative Models

In Section 3.3.2, we introduced the crowd affinity multiplicative model. In this matedtegies
are parameterized only by a weight vecter The probability that agent chooses action is
simply fowa /Y pes fows.

Although the motivation for this model is similar to that for the mixture model, the dyremic
of the system are quite different (see the simulations and discussion inr88@ip and a very
different algorithm is necessary to learn individual strategies. In thisge we show that this
class is polynomially learnable from collective behavior, and sketch thesjonding learning
algorithm. The algorithm we present is based on a simple but powerfuh@tgs. In particular,

consider the following random variable:

. 1/ fma if fma>0anda, =a,
Xa =
0 otherwise.

Suppose that for al such thatZ,, € M, itis the case thaf,, , > 0. Then by the definition of
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the strategy class and linearity of expectation,

E

£ - Bl

m:Lym M s€S fm’sws
1

)

v S T

where the expectation is over the randomness in the agent's strategy. thati¢ckis expression
is the product of two terms. The firsty,, is precisely the value we would like to calculate. The
second term is something that depends on the set of instavicdmit does notdepend on action
a. This leads to the key observation at the core of our algorithm. Specififallg,have a second

actionb such thatf,,, ;, > 0 for all m such thatZ,,, € M, then

% E [Zm:ImEM Xgl]

W E [Em:ImEM XZVL] .

Although we do not know the values of these expectations, we can ap@t@them arbitrarily
well given enough data. Since we have assumed (so far)fthat> 0 for all m € M, and we
know thatf,, , represents a fraction of the population, it must be the casefthat> 1/N and
X" € [0, N] for all m. By a standard application of Hoeffding’s inequality and the union bound,
we see that for any > 0, with probability1 — ¢,

N1n(2/6)

<\ o (3.8)

> xi'-E

m:Lm eM

> XT]

m:Lm eM

This leads almost immediately to the following lemma. The rol@ @f this lemma may appear
somewhat mysterious. It comes the fact that we are bounding the ereoradio of two terms.
An application of Lemma 9 using the bound in Equation 3.8 gives us a factgy, pf+ x; , in
the numerator and a factor af, , in the denominator. This is problematic only whgp,; is

significantly larger tharn q.

Lemma 11 Suppose thaf,, , > 0 andf,, ; > 0 for all m such thatZ,,, € M. Then forany > 0,
with probability1 — ¢, for any 5 > 0, if xq < Bxpe andxsq > 1, thenif| M| > N 1n(2/6)/2,
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then
Wq Zm:ImEM Xgl < (1 + ﬁ) Nln(2/5)

Wy Yz em Xot | T V/2IM| = /Nn(2/5)

If we are fortunate enough to have a sufficient number of data instdmcesdich f,, , > 0

for all « € S, then this lemma supplies us with a way of approximating the ratios between all pairs
of weights and subsequently approximating the weights themselves. Iragdrvever, this may

not be the case. Luckily, it is possible to estimate the ratio of the weights ofpedichf actions:

andb that are used together frequently by the population using only those detadas in which

at least one agent is choosing each. Formally, define

Map ={Zm € Mt fra >0, frnp >0} .

Lemma 11 tells us that iM,, ;, is sufficiently large, and there is at least one instahges M, ;
for which a,,, = b, then we can approximate the ratio betwegrandw; well.

What if one of these assumptions does not hold? If we are not able totcalféiciently many
instances in whiclf,, , > 0 andf,, ; > 0, then standard uniform convergence results can be used
to show that it is very unlikely that we see a new instance for wlfick- 0 and f;, > 0. This idea

is formalized in the following lemma, the proof of which is in Appendix A3.6.

Lemma 12 Forany M < |M

, foranyé € (0, 1), with probability1 — 4,

K2 [ M In(K2/(26))
Pre pslda,beS: fo >0, f, >0, Mgp| < M] < — + .
f Df[ fa fb | a,b| ]— 9 (M’ 2’./\/”
Similarly, if xo» = x5« = 0, then a standard uniform convergence argument can be used to
show that it is unlikely that ageritwould ever select actiom or b when f,,, , > 0 and f,,, , > 0.
We will see that in this case, it is not important to learn the ratio between thesedigbts.
Using these observations, we can accurately model the behavior dfiagée model consists

of two phases. First, as a preprocessing step, we calculate a quantity

Xa,b = Z X:Ln

m:Im€Map
for each paira,b € S. Then, each time we are presented with a sfatee calculate a set of
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weights for all actions with f, > 0 on the fly.

For a fixedf, let S’ be the set of actions € S such thatf, > 0. By Lemma 12, if the data
set is sufficiently large, then we know that with high probability, it is the caaefdn alla, b € S’,
|Mgp| > M for some threshold/.

Now, leta* = argmax,cs/ [{b: b € S, xap > Xb.a}|- Intuitively, if there is sufficient datay*
should be the action i§’ with the highest weight, or have a weight arbitrarily close to the highest.
Thus for anya € S’, Lemma 11 can be used to bound our estimate gfw,- with a value of3

arbitrarily close to 1. Noting that

Wq wa/wa*

ZSGS’ Wg N ZSGSI 'LUS/'LUa* ’

we approximate theelative weight of actiona € S’ with respect to the other actionsdti using

N Xa,a* /Xa*,a
¢ ZSES’ Xs,a*/Xa*,s ’

and simply letw, = 0 for anya ¢ S’. Applying Lemma 9, we find that for all € S’, with high

probability,
(14+ B)K+/NIn(2K2/6)

‘Zsesfws V2M — (1 + B)K+\/NIn(2K2/6)’

whereM is the lower bound oM, ;| for all a,b € S’, andg is close to 1. With this bound in

*wa S

place, it is straightforward to show that we can apply Lemma 9 once more taltiba expected

Ly, ]

and that the bound goes to 0 at a rateddfi /\/ M) as the threshold/ grows. More details are

wafa wafa

ZSES ws fs ZSES Ws fs

Etps [Z

a€eS

given in Appendix A3.7.
Since it is possible to build an accurate model of the strategy of agernpolynomial time
under any distributiorD over state vectors, we can again apply Theorem 8 to see that this class is

polynomially learnable from collective behavior.

Theorem 10 The class of crowd affinity multiplicative model strategies is polynomially k@

from collective behavior.
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3.6 Open Questions

We have introduced a computational model for learning from collectivadeh and populated it
with some initial general theory and algorithmic results for crowd affinity modelsddition to
positive or negative results for further agent strategy classes, dher@ number of other general
directions of interest for future research. These include extensfomsranodel to agnostic [79]
settings, in which we relax the assumption that every agent strategy fallsriovenkclass, and
to reinforcement learning [121] or multiagent learning [70, 115] settimgsyhich the learning
algorithm may itself be a member of the population being modeled and wishes tafeaptimal
policy with respect to some reward function.

It would also be enlightening to study what collective information can or aba learned in
a setting in which the learner cannot sekich agents choose each action at each time step, but
only how manyagents choose each. This would more accurately capture voting scanasioich

only anonymized polling data is available.
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Chapter 4

The Trade-Offs of Learning

from Expert Advice

Suppose that each day, we are interested in predicting whether agesak@rices are more likely
to rise or fall. We may choose to base our predictions on advice from &jdachily, and cowork-
ers, in addition to journalists, bloggers, or financial analysts. The exéeasd still-growing liter-
ature on “no-regret” learning has established that on any sequetra@®in which the predictions
of a set of individuals, referred to agperts are observed, it is possible to maintain a dynamically
weighted prediction whose average performance asymptotically apgo#eit of the best single
expertin hindsightas the number of time steps grows. Surprisingly, such guarantees haltheve

a fully adversarial setting, with no distributional assumptions on the expmt&rmance [25].

Despite the impressiveness of such guarantees, competing with the lgstesipert is not
always good enough. This style of guarantee has teeth only when wetheskeplicit assumption
that there exist a small number of individuals in the population who dramaticalpedorm the
rest. The goal of the algorithm then boils down to the “needle in a haystaek’adl finding and
tracking these superior experts. This goal is simply too weak if all expedspiopulation have
similar performance. When this is the case, the aggressive style of upelgi®d to make strong
general guarantees can resultin the algorithm performing poorly cehpaeven the worst expert

in the population!

This chapter contains a study of no-regret learning in a bicriteria setting.eX&mine not
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only the standard notion of regret to the best expert (formally define@daticd 4.2 below), but
also the regret to the average of all experts, the regret to any fixed miafuxperts, and the
regret to the worst expert. This study leads to a new understanding binitetions of existing
no-regret algorithms, as well as new algorithms with novel performanasgtees. Specifically,
we show thainy algorithm that achieves oni@(+/T) cumulative regret to the best expert on a
sequence of trials must, in the worst case, suffer regfity/7) to the average, and that for a
wide class of update rules that includes many existing no-regret algoriguok s Exponential
Weights [98, 55] and Follow the Perturbed Leader [72]), the produtiteoregret to the best and
the regret to the average is, in the worst ca3g,’). We then describe and analyze two alternate
new algorithms that both achieve cumulative regret @ly/7 log T) to the best expert and have
only constantregret to any given fixed distribution over experts (that is, with no dépece on
eitherT or the number of expertd’). The key to the first algorithm is the gradual increase in
the “aggressiveness” of updates in response to observed dieega expert performances. The
second algorithm is a simple twist on standard exponential-update algorithms.

The material in this chapter is based on joint work with Eyal Even-Dar, MitKaarns, and
Yishay Mansour [52]. Th®-Prod algorithm in Section 4.4.3 grew out of a series of discussions

with Tong Zhang.

4.1 Overview

Beginning at least as early as the 1950s, the literature on no-regrahigaes established the fol-
lowing type of result. Consider any sequencd dfials in which the predictions a¥ individuals
or expertsare observed. Suppose that on each trial, each expert receisesua rorgain based
on the quality of his prediction. For example, an expert might receive agfdirior each correct
prediction he makes and a gain of O for each incorrect prediction. Garesichlgorithm that main-
tains a dynamic set of weights over the experts, and define the gain of tngtalyon a given time
step to be the weighted average of the expert's gains; this can be intdrpgetiee expected gain
the algorithm would receive if it chose a single expert to follow on each tingeasteording to its
current distribution. There exist such algorithms whose cumulativetregtiee best single expert

in hindsight(that is, the difference between the cumulative gains of the best periprenipert
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after the full sequence has been reveadad the cumulative gains of the algorithm) is guaranteed

to beO(/T'log N), with absolutely no statistical assumptions on the sequence. Such results are
especially interesting in light of the fact that even in knastochastionodels, there is a matching
lower bound of2(/T'Tog N). The term “no-regret” derives from the fact that the per-step tegre

is only O(y/(log N)/T'), which approaches zero @sbecomes large.

In this chapter, we revisit no-regret learning, but with a bicriteria perémce measure that is of
both practical and philosophical interest. More specifically, in addition tkitapat the cumulative
regret to thebestexpert in hindsight, we simultaneously analyze the regret tatleeagegain of
all experts (or more generally, any fixed weighting of the experts). &imparisons to the average,
the gold standard will be onlgonstantregret (independent &f and N). This is a sensible goal
since if we were to consider regret to the average in isolatiergregret would easily achieved by

simply leaving the weights uniform at all times.

Our results establish strict trade-offs between regret to the besttexpiithe regret to the
average in this setting, demonstrate that most known algorithms manage thisffraderly, and
provide new algorithms with near optimal bicriteria performance. On the pahdiide, our new
algorithms augment traditional no-regret results with a “safety net”. whilerstithaging to track
the best expert near-optimally, they are guaranteed to never unibenpéne average (or any other
given fixed weighting of experts) by more than just constant regret. ®phHosophical side, the
bicriteria analyses and lower bounds shed new light on prior no-ralgretithms, showing that the
unchecked aggressiveness of their updates can indeed cause thadiytonderperform simple

benchmarks like the average.

Viewed at a suitably high level, many existing no-regret algorithms have a siifaidar. These
algorithms maintain a distribution over the experts that is adjusted accordingdopance. Since
we would like to compete with the best expert, a “greedy” or “momentum” algorittahrapidly
adds weight to an outperforming expert (or set of experts) is natum@gt khown algorithms shift
weight between competing experts at a rate proportions/ 4T, in order to balance the tracking
of the current best expert with the possibility of this expert’'s perforraaswddenly dropping.
Updates on the scale of /T can be viewed as “aggressive”, at least in comparison to the minimal
average update df/ 7" required for any interesting learning effects. (If updatesaigT’), the

algorithm cannot make even a constant change to any given weighsteps.)
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Algorithm: If Regretto BestIs: Then Regret to Average Is:

Any Algorithm O(VT) QWT)
Any Algorithm < TlogT/10 Q(T*)
Any Difference Algorithm  O(T>+) Q(T3~)

Table 4.1: Summary of the lower bounds presented in this chapter.

How poorly can existing regret minimization algorithms perform with respecta@terage?
Consider a sequence of gains for two experts where the gains fatéxge1,0,1,0, - - -, while
the gains for exper2 are0, 1,0, 1, - - - . Typical regret minimization algorithms (such as Exponen-
tial Weights [98, 55], Follow the Perturbed Leader [72], and the Prodrdign [26]) will yield a
gain of /2 — ©(\/T), meeting their guarantee 6f(/T’) regret with respect to the best expert.
However, this performance leaves something to be desired. Note that irxaémigpke the perfor-
mance of the best expert, worst expert, and average of the experesiialy 7'/2. Thus all of
the algorithms mentioned above actually suffer a regret to the averageo(dimel worst expert)
of Q(v/T). The problem stems from the fact that in all even time steps the probabilitypefrex
1 is exactlyl/2. After expertl observes a gain df we increase its probability by//T', where
the precise value af depends on the specific algorithm. Therefore in odd steps the probability of
expert2 is only (1/2 — ¢/+/T). Note that adding a third expert, which is defined as the average of
the original two, would not change this.

This work establishes a sequence of results that demonstrate the irtbasto between regret
to the best expert and the average, illuminates the problems of existing ailgoiittmanaging this
tension, and provides new algorithms that enjoy optimal bicriteria perforenginarantees.

On the negative side, we show ttaaty algorithm that has a regret 6f(v/T) to the best expert
must suffer a regret of2(/T) to the average in the worst case. We also show that any regret
minimization algorithm that achieves at magt log T'/10 regret to the best expert, must, in the
worst case, suffer regrél(7) to the average, for some constant 0.02. These lower bounds
are established even whé@h= 2. A summary of these bounds is presented in Table 4.1.

On the positive side, we describe a new algoritPhasedAggressigthat almost matches the

The third expert would clearly have a gainlgR at every time step. At odd time steps, the weight of the first expert
would bel/3 + ¢/+/T, while that of the second expert would bg3 — ¢/+/T, resulting in a regret of2(v/T') to the
average.
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Algorithm: Regret to Best: Regret to Average:  Regret to Wors

PhasedAggression O(y/T log N (logT+oglogN)) 0O(1) 0O(1)
D-Prod O(Tlog N + /T/log NlogT) O(1) o(1)
BestWorst O(N/TlogN) O(V/TlogN) 0

EW O(Tz+log N) O(T2~) O(Tz~)

Table 4.2: Summary of the algorithmic results presented in this chapter.

lower bounds above. Given any algorithm whose cumulative regret toethisexpert is at mogt
(which may be a function of’ and N but not of any data-dependent measures), we can use it to
derive an algorithm whose regret to the best expefi(i& log R) with only constant regret to the
average (or any given fixed distribution over the experts). Usin@ (@7 log N) regret algorithm,

this gives regret to the best 6f(/T log N (log T + loglog N)). In addition, we show how to use

an R-regret algorithm to derive an algorithm with regé2t/V R) to the best expert arzkroregret

to the worst expert. These algorithms treat the giReregret algorithm as a black box.

PhasedAggressiois somewhat different from many of the traditional regret minimization al-
gorithms, especially in its use ofstartsthat are driven by observed differences in expert perfor-
mance. (Restarts have been used previously in the literature, but fopotipeses [25].) We show
that this difference is no coincidence. For a wide class of update rulesmthades many existing
algorithms (such as Weighted Majority/Exponential Weights, Follow the Perukleader, and
Prod), we show that the product of the regret to the best and the teghe average i€(7"). This
establishes a frontier from which such algorithms inherently cannot es€apthermore, any point
on this frontier can in fact be achieved by such an algorithm (i.e., a s@nalatiplicative update
rule with an appropriately tuned learning rate). However, we show it isiplesto circumvent the
lower bound by using an algorithm “similar to” Prod to achieve guarantess ¢tothose achieved
by PhasedAggressiomithout the use of restarts. This algorithBrProd, escapes the lower bound
by using a modified update rule that directly depends on the average offee< instantaneous

gains at each time step. Our algorithmic results are summarized in Table 4.2.

It is worth noting that it is not possible in general to guarantegT’) regret to any arbitrary
pair of distributions,D; andD5. Consider a setting in which there are only two experts. Suppose

distributionD; places all weight on one expert, while distributiba places all weight on a second.
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Competing simultaneously with both distributions is then equivalent to competing veithest
expert, so we cannot expect to do better than known lower bourfdé\dT").

Previous work by Auer et al. [5] considered adapting the learning faéxpert algorithms
gradually. However, the goal of their work was to get an any-time rdgpehd without using the
standard doubling technique and thus it is not surprising that their algop#énformance under the
bicriteria setting is similar to the other existing algorithms. Vovk [128] also consitizade-offs
in best expert algorithms. His work examined for which values aind b it is possible for an

algorithm’s gain to be bounded by 7 + blog N, whereG.. 7 is the gain of the best expert.

Chapter Outline: In Section 4.2, we review the standard framework for learning with experts
In Section 4.3, we provide an analysis of the trade-off between regtkétbest and average for
the broad class of difference algorithms, showing that the product batthe two regrets for this
class isO(T). In Section 4.4, we go on to show how this frontier can be broken by ifterehce
algorithms that gradually increase the aggressiveness of their upiegefirst show how a very
simple algorithm can enjoy standard regret bounds compared to the Ipest axterms ofl’
(though worse in terms aWV), while havingzerocumulative regret to the worst, and then present
two alternative algorithms that compete well with both the best expert and #nage/with only
logarithmic dependence aN. A general lower bound that holds fany algorithm is given in

Section 4.5, and we conclude with some open questions in Section 4.6.

4.2 The Experts Framework

We consider the classic experts framework, in which each experf1,--- , N} receives a gain
git € [0, 1] at each time step? The cumulative gain of expeitup to timet is G; ; = Zi,zl Git!-
We denote the average cumulative gain of the experts by#tmsér ., = (1/N) Zf\il G, and
the gain of the best and worst expertag,; ; = max; G; ; andGorst,+ = min; G; ;. For any fixed
distributionD over the experts, we define the gain of this distribution t6'pg, = > | D(i)G .
At each timet, an algorithm.A assigns a weightv; ; to each expert. These weights are

normalized to probabilities; ; = w; /W whereW, = . w; ;. Algorithm A then receives a gain

2All results presented in this chapter can be generalized to hold for inseamisigains in any bounded region.
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JAL = Z,fil pitgi+- The cumulative gain of algorithid up to timet is G 4, = 25:1 gAy =
DR SRS I

The standard goal of an algorithm in this setting is to minimize the regret to thexXyeestt at
a fixed timeT". In particular, we would like to minimize the regr&.. 47 = max{Gest, 7 —
Gar,1}. 3 In this work, we are simultaneously concerned with minimizing both this regret and
the regret to the average and worst expBrt,, 417 = max{Gavg,r — G A1, 1} aNdRyorst A1 =
max{Guorst, — G 4,1, 1} respectively, in addition to the regr&p 4 7 to a given distributiorD,
which is defined similarly.

While in general the bounds on the regret of the algorithms can be defsnaglthe time (for
example, a regret aP (/7)) and these bounds are tight, this is considered a crude estimate and
better measures are at hand. We present our positive results in terragwditimal absolute gains

Gma:p = Imax; Gi,T-

4.3 TheO(T) Frontier for Difference Algorithms

We begin our results with an analysis of the trade-off between regret tueteand average for a
wide class of existing algorithms, showing that the product between the twetseor this class

is ©(T"). A more general lower bound that holds foryalgorithm is provided in Section 4.5.

Definition 7 (Difference Algorithm) We call an algorithmA a difference algorithnif, whenN =
2 and instantaneous gains are restricted{tp 1}, the normalized weightd places on each of the
two experts depend only on the difference between the experts’ cumglaitige In other words,
A is a difference algorithm if there exists a functigrsuch that wherdV = 2 andg; ; € {0, 1} for

all i andt, p1 = f(d¢) andpa; = 1 — f(d;) whered; = G14 — Gay.

This simple definition is sufficient for the purposes of stating our lower dduelow. Ex-
ponential Weights [98, 55], Follow the Perturbed Leader [72], and tbd Blgorithm [26] are all
examples of difference algorithms. (For Prod, this follows from the remnon the instantaneous

gains to{0, 1}.)

3This minimal value ofl makes the presentation of the trade-off “nicer” (for example in the seewf Theo-
rem 11), but has no real significance otherwise.
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4.3.1 The Difference Frontier Lower Bound

Theorem 11 Let .4 be any difference algorithm. Then there exists a sequence of exjestaa

IengthT such thatRbest,A,T ’ Ravg,A,T > Rbest,A,T : Rworst,A,T = Q(T)

Proof: For simplicity, assume thaf is an even integer. We will consider the behavior of the dif-
ference algorithmd on two sequences of expert payoffs. Both sequences involve onlgxperts
with instantaneous gains 0, 1}. (Since the theorem provides a lower bound, it is sufficient to
consider an example in this restricted setting.) Assume without loss of genehaitynitially
P <1/2.

In the first sequencey;, Expertl has a gain ofl at every time step while Expet always
has a gairD. Let p be the first timet at which.A hasp;; > 2/3. If such ap does not exist,
then Ryest 47 = Q(T') and we are done. Assuming suclp aloes exist,A must have regret
Ryest a7 > p/3 since it loses at leadt/3 to the best expert on each of the fitstime steps and
cannot compensate for this later.

Since the probability of Expett increases fromp; ; < 1/2 to at leas2/3 in p time steps in
S1, there must be one time stepe [2, p| in which the probability of Expert increased by at least
1/(6p), i.e.,p1 —p1-—1 > 1/(6p). The second sequendg we consider is as follows. For the
first 7 time steps, Expert will have a gain ofl (as inS;). For the lastr time steps, Expert will
have a gain 06. For the remaining” — 27 time steps (in the rande, 7' — 7]), the gain of Expert
1 will alternate0, 1,0, 1, - --. Throughout the sequence, Exp2vill have a gain ofl whenever
Expertl has a gain 06 and a gain of) every time Experl has a gain of. This implies that each
expert has a gain of exactly/2 (and henc&vest, 7 = Gavg, 1 = Guorst,r = T'/2).

During the periodj,T' — 7], consider a pair of consecutive times such that = 0 and
git+1 = 1. SinceA is a difference algorithm we have thai; = pi, andpi 1 = p1—1.
The gain of algorithmA in time steps and¢ + 1is (1 — p1+) + p1-—1 < 1 —1/(6p), since
P1,r — P1,-—1 > 1/(6p). In every pair of time stepsand?’ — ¢, for ¢t < 7, the gain ofA4 in those
times steps is exactly, since the difference between the experts is identical at tiraeslT” — ¢,

and hence the probabilities are identical. This implies that the total gain of thetligo4 is at

T—271 1 T T-271
T+ 1—— ) <= — .
2 6p 2 12p

most
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On sequencé’, the regret of algorithrod with respect to the best expertigp). Therefore, if
p > T'/4 we are done. Otherwise, on sequegethe regret with respect to the average and worst

isQ(T/p). The theorem follows. |

4.3.2 A Difference Algorithm Achieving the Frontier

We now show that the standard Exponential Weights (EW) algorithm with proppate choice

of the learning rate paramete55] is a difference algorithm achieving the trade-off described in
Section 4.3.1, thus rendering it tight for this class. Recall that for allspeEW assigns initial
weightsw; ; = 1, and at each subsequent timepdates weights witty; ;1 = eNGit = w; €9,
The probability with which expert is chosen at time is then given byp;; = w; /W; where

Theorem 12 Let G* < T be an upper bound ofy¥,,.,. For any « such thatd < a < 1/2,
let EW = EW(n) with n = (G*)~(1/2+2) Then Ry pwr < (G*)/?7*(1 4+ In N) and

Ravg,EW,T < (G*)l/z_a-

Proof: These bounds can be derived using a series of bounds on the qua(iity, ; /7). First
we bound this quantity in terms of the gain of the best expert and the gain of Eé\piece of the
analysis is standard (see, for example, Theorem 2.4 in [25]). Thei@se of the bound follows

from the fact that?; = N and thatwpest 141 < Wiga.

Wri1
Gpestt —InN <In| —— | .
NGpest,7 — 1N H( W1>

The second pieces follows from a simple application of Taylor approximation.

14%
In (;{1) < (n+n*)Gewr . (4.1)

Therefore, we derive thty.s, 7 — GEw,r < nGewr +InN/n.

Next we bound the same quantity in terms of the average cumulative gaintlusifagt that the

arithmetic mean of a set of nhonnegative numbers is always greater thgoairte the geometric
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mean.

Zl=

() = () ((ffee) ) e

1Y 1 &
= N E In Wi T4+1 = N g 77Gi,T = nG(wg,T :
i=1 i=1

Combined with the upper bound in Equation 4.1, this give&us, r — Gew,r < nGEw,T-

Note that ifGyesr, 7 < GEw T, both the regret to the best expert and the regret to the average
will be minimal, so we can assume this is not the case and replace th&tgpn on the right
hand side of these bounds wih,..;  which is in turn bounded bys*. This yields the pair of

bOUﬂdﬂbest’T —Gepwr <nG* +1In N/n andGaUQ,T - Gewr < nG*.

By changing the value of, we can construct different trade-offs between the two bounds.

Settingn = (G*)~(1/2+®) yields the desired result. n

This trade-off can be generalized to hold when we would like to compete witirlatrary
distribution D by initializing w; ; = D(¢) and substituting an alternate inequality into (4.2). The
In(N) term in the regret to the best expert will be replacedibyr;c v In(1/D(7)), making this
practical only for distributions that lie inside the probability simplex and not toseclo the bound-

aries.

4.4 Breaking the Difference Frontier

The results so far have establishe@@") frontier on the product of regrets to the best and average
experts for difference algorithms. In this section, we will show how thistfes can be broken by
non-difference algorithms that gradually increase the aggressaeht®ir updates via a series of
restarts invoked by observed differences in performance so fa.wsm-up, we first show how a
very simple algorithm that is not a difference algorithm can enjoy staneégrdtrbounds compared

to the best expert in terms @f (though worse in terms a¥), while havingzerocumulative regret

to the worst. In Sections 4.4.2 and 4.4.3, we present two alternative algothimsompete well

with both the best expert and the average with only logarithmic dependange o
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4.4.1 Regretto the Best and Worst Experts

Using a standard regret-minimization algorithm as a black box, we can prawery simple
algorithm, BestWorstthat achieves a clear trade-off between regret to the best exgkregret

to the worst expert. Letl be a regret minimization algorithm such thag.,; 4+ < R for some

R which may be a function of” and N but not of any data dependent measures. We define
the modified algorithnBestWorstd,R) as follows. While the difference between the cumulative
gains of the best and worst experts is smaller thaR, BestWorstd,R) places equal weight on
each expert, playing the average. After the first tirra which this condition is violated, it begins
running a fresh instance of algorithrhand continues to usd until the end of the sequence. See

Figure 4.1 below.

Figure 4.1 The BestWorsalgorithm forV experts.
/1 Input: An algorithm .4 and value R such that we are
/'l guaranteed Rpesar <R

while (Gbest,t - Gworst,t < NR) do
Use probabilitiep; ; = 1/N for all ¢
end while
Reset and run algorithid for all remaining time steps.

Until time 7, this algorithm must be performing at least as well as the worst expeg ginc
is playing the average. At time, the algorithm’s gain must b& more than that of the worst
expert since the gain of the best experM# above the gain of the worst. Now since from time
algorithm A4 is run, we know that the gain &estWorstd,R) in the finalT — 7 time steps will be
no more thank less than the gain of any other expert. Theref@&estWorstd,R) will maintain
a lead over the expert that was worst in the first phase (and thus alemtseexpert overall). In
addition, the regret of the algorithm to the best expert will be boundety By since up to time
7 it will have a regret of at mostV — 1) R with respect to the best expert. This establishes the

following theorem.

Theorem 13 Let A be a regret minimization algorithm with regret at madstto the best expert

and letBW beBestWorst@,R). Then

Rypest,Bwr < NR
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and

GVBW,T > Gworst,T .

It follows immediately that using a standard regret minimization algorithm with=
O(v/Tlog N) as the black box, we can achieve a regreOgfV/T"log V) to the best expert

while maintaining a lead over the worst.

4.4.2 PhasedAggression

Again using any standard regret-minimization algorithm as a black box, wermaluce an al-
gorithm, PhasedAggressionhat achieves a trade-off between regret to the best expert ared reg
to the average without sacrificing too much in terms of the dependenéé drigure 4.2 shows
PhasedAggressionThis algorithm can achieve a constant regreany specified distributiorD,

not only the average, with no change to the bounds. The name of the aigoetérs to the fact
that it operates in distinct phases separated by restarts, with eachrpbigsaggressive than the

last.

Figure 4.2 ThePhasedAggressiaagorithm for N experts.
/1 Input: An algorithm .4 and value R such that we are
/'l guaranteed Ry a7 <R, and a distribution D with
/1 which we would Iike to conpete

for k = 1to |log(R)| do
Letn =2¢"1/R
Reset and run a new instance 4f
Whlle (Ggest,t - G%,t < 2R) dO
FeedA the previous gaing;_; and letg; be its distribution
Usep; = ng: + (1 —n)D
end while
end for

Reset and run a new instance4funtil time T

The idea behind the algorithm is rather simple. We take a regret minimization afgo#ith
and mix betweend and the target distributio®. As the gain of the best expert exceeds the
gain of D by larger amounts, we put more and more weight on the regret minimizatioritatgor
A, “resetting” A to its initial state at the start of each phase. Once the weightl dvas been

increased, it is never decreased again. In other words, in eacbssia phase of this algorithm
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(or reduction), weight is moved from something that is not learning at alf{ded distributionD)
to an algorithm that is implicitly learning aggressively (the given algorithin New phases are
invoked only in response to greater and greater outperformance byrtieathbest expert, allowing

the amount of aggression to increase only as needed.

Theorem 14 Let .4 be any algorithm with regrek to the best expert)) be any distribution, and
PA be an instantiation ofPhasedAggressiQAd, R, D). ThenRyest par < 2R(log R + 1) and

Rp par < 1.

Proof: We will again analyze the performance of the algorithm compared to the Xgsttend
the distributionD both during and at the end of any phaséd-irst consider any timeduring phase
k. The regret of the algorithm is split between the regret of the fixed mixnudelze regret of the
no-regret algorithm according to their weights. Siotés an R-regret algorithm its regret to both
the best expert and to the distributiéhis bounded byR, and thus the regret of the algorithm due
to the weight onA is 2¥~1 /R times R. With the remainingl — (2~!/R) weight, the regret to
the best expert is bounded By sinceGy,,, , — G, , < 2R during the phase, and its regret to

distributionD is 0. Thus at any timé during phasé: we have

k—1 k—1
Gt . —GE <R(2>+2R<1—2><2R
best,t PAt — R R .

and

Now consider what happens when the algorithm exits pkagephase is only exited at some

time ¢ such thatG?

bestt — Gy = 2R. SinceA is R-regret, its gain (in the current phase) will

be within R of the gain of the best expert, resulting in the algoritfid gaining alead over

distribution D for the phaseG', , , — G, , > R(2¥7!/R) = 2+~

Combining these inequalities, it is clear that if the algorithm ends in phasémeT’, then

Gbest,T - GPA,T < 2Rk < QR(IOgR + 1)

75



and
k—1

Gpr—Gpar <2"'— ZQj_l =kl _ (2l _1)=1.
j=1

These inequalities hold even when the algorithm reaches the final ptiisasall of its weight

on A, thus proving the theorem. |

4.4.3 D-Prod

While Exponential Weights and Prod are both difference algorithms anabtawoid theQ2(T")
frontier lower bound, it is possible to create an algorithm with exponent@aigs that can achieve
guarantees similar to those BhasedAggressionithout requiring the use of restarts. This can be
accomplished via a simple algorithm that we refer t®aBrod since its update rules and analysis
are inspired by those of Prod.

D-Prod differs from Prod in two important ways that together allow it to compete well with
the best expert while simultaneously guaranteeing only constant regrgivten fixed distribution
D. First, an additional expert (denoted exp@rtrepresenting the distributio is added with
a large prior weight. Second, the update rule is modified to take into accaadiffdwrencein
performance between each expert and the distribulieather than the gains of each expert alone.
Because of this second modificatidProd is not a difference algorithm and is able to avoid the
Q(T) frontier.

Formally, letg; ; € [0, 1] be the gain of expert at timet as before fori € {1,..., N}, and
let go,, be the instantaneous gain of the distributibn(or the special expert 0). Each expeért

starts with an initial or prior weighty; 1 = p;. At each time step, weights are updated using
wit+1 = wi (1 +1(git — got))-
Lemma 13 For any expert (including the special expert 0), for amy< 1/2,

T

In(p;
Gp—proar = GiT + (77 I nZ(gi,t — got)?
=1

The proof is nearly identical to the proof of Lemma 2 of Cesa-Bianchi ¢2@]. Notice that

wheni = 0 (the special expert), the last term in the bound is 0. The following theohemshow
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to set the parametefsand . to achieve a constant error rate to the distributiomvithout losing

much with respect to the best expert.

Theorem 15 Letn = \/In N/T, up =1 —n,andu; = n/N fori € {1,...,N}. Then

T
Ryest,p—pProd,r = O (\/TlnN + 4/ LN In T)

andRp p—proa,r = O(1).

4.5 Sketch of A General Lower Bound

So far we have seen that a wide class of existing algorithms (namely alledifferalgorithms) is
burdened with a stark best/average regret trade-off, but that tlmsdra@an be avoided by simple
algorithms that tune how aggressively they update, in phases modulated blggbrved payoffs
so far. What is the limit of what can be achieved in our bicriteria regret géttin

In this section we give a pair of general lower bounds that holéHcalgorithms. The bounds
are stated for the average but once again hold for any fixed distribiitiomhese lower bounds
come close to the upper bound achieved by the algorithms described in #@upreection. An

outline of the proof is sketched below.

Theorem 16 Any algorithm with regre©(1/T) to the best expert must have regfity/'T) to the
average in the worst case. Furthermore, any algorithm with regret @trRy7 log 7'/10 to the
best expert must have reg@{7) to the average in the worst case for some positive constant

€ > 0.02.

More specifically, we show that for any constant- 0, there exists a constafit> 0 such that
for sufficiently large values df’ (i.e. T > (150a)?), for any algorithmA, there exists a sequence
of gainsg of lengthT" such that ifRyes 47 < aV/T then Ry, a7 > BVT even whenV = 2.
Additionally, for any constand’ < 1/10 there exist constants’ > 0 ande > 0 such that for
sufficiently large values df (i.e., T > 2(10a')2), for any algorithmA, there exists a sequence of
gains of lengthl” such that ifRyest 47 < o//Tlog T thenRyyg a7 > BT

The proof of this theorem begins by defining a procedure for creatitipd’ sequence of

gainsg, specifically designed to fool the algorithih Whenever the algorithm updates its weights
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aggressively, the procedure assigns positive gains to the secaredepigert, inducing mean rever-
sion. On the contrary, when the algorithm updates its weights conselyatieprocedure assigns
positive gains to the best expert, causing added momentum. The segaerbertbe divided into
a number of (possibly noncontiguous) segments based on the algorithigiesvat each time. By
first analyzing the maximum amount that the algorithm can gain over the aanaghe minimum
amount it can lose to the average in each segment, and then bounding thenabalr of segments
possible under the assumption that an algorithm is no-regret, we can sitatigmot possible for
an algorithm to have(v/T') regret to the best expert without havifig\/T') regret to the average.

More details of the proof are given in Appendix A4.1.

4.6 Open Questions

The results in this chapter depend heavily on the fact that the gain of thétlafgat each time step
is the weighted average of the gains of the experts. This can be interpetad expected gain
that the algorithm would receive if it chose a single expert to follow on ¢ach step according
to its current distribution and subsequently received the gain of this exjgée might instead
consider a scenario in which the algorithm is able to combine the advice of fleetexn more
sophisticated ways and receive a gain based on this combination, forlexaaspd on the squared
loss of the combined prediction. It is not clear if similar results could be groveuch a setting. It
would also be interesting to determine whether or not similar trade-offs exist related portfolio
setting [37, 68].

We currently do not know whether or not it is possible to strengthen Emedb to say that any
algorithm with regrelO(\/T'log T') to the best expert must have regfit7) to the average for
some constart > 0. Such a result would further close the gap between our positive aradivesg

results, but would potentially require a different style of proof.
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Chapter 5

Aggregating Opinions Via Prediction

Markets and Machine Learning

Suppose we are interested in obtaining an estimate of the probability that tagegtobal tem-
perature will rise over the next five years. One way of forming an estimdteifwvite people to
bet on it. Prediction markets are financial markets designed to aggregeiduadibeliefs about
the outcome of an event into a single prediction. In practice, these predicirenoften highly

accurate, frequently outperforming forecasts made by domain experts.

Prediction markets generally operate in isolation, and over relatively smeabiime spaces. For
example, a typical horse race market might allow bettors to choose andéafses to win, even
though the true outcome space of the event is much larger. (There possible permutations
of horses in the race.) This is due in large part to the intensive amounngwtation required
to store and update an exponential number of linked prices. Chen eBakHaw that when
the market is operated by a central auctioneer who simply performs riskidss matching, the
auctioneer’s matching problem can be made tractable by enforcing ajgpeogstrictions on the
betting language used (in particular, by allowing only bets of the form “etibese A or horse C
will finish in third place”), even though the outcome space is exponentially lafdpwever, such
markets suffer from low liquidity. It may be the case that no matches are nvedewehen there

are parties willing to bet.
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In this chapter, we investigate the computational complexity of market makengpiadgo-
rithms for combinatorial prediction markets. We focus on Hanson'’s popadgrithmic market
scoring rule market maker (LMSR) [62, 63], whichdlvayswilling to accept bets omny out-
come at some price. Our goal is to implicitly maintain correct LMSR prices aeogxponen-
tially large outcome space. We examine both permutation combinatorics, whtemmas are
permutations of objects, and Boolean combinatorics, where outcomesmabinetions of binary
events. We look at three restrictive languages that limit what tradersstambEven with severely
limited languages, we find that LMSR pricing#sP-hard, even when the same language admits
polynomial-time matching without the market maker.

On the positive side, we point out and explore the previously unnoticedemion between
LMSR prices and the weights used in online learning with experts. Using thisection, we
propose an approximation technique for pricing permutation markets based algorithm for
online permutation learning.

The contents of this chapter are based on joint work with Yiling Chen, Leod®aow, Nicolas

Lambert, and David Pennock [31], with helpful suggestions from Sanifeatiman.

5.1 Overview

One way to elicit information is to ask people to bet on itprediction markets a common forum
where people bet with each other or with a market maker [105]. Theyasmenonly known by a
variety of names, including information markets, securities markets, eveketaaevent futures,
and idea futures [105]. A typical binary prediction market allows betsgatmre dimension, for
example, either for or against Barack Obama to win a second term as Qiidhitein 2012. In
this case, bettors would trade shares of securities that p&y d@fand only if Obama wins. If the
current market price of a sharedg, then a rational, risk-neutral bettor should be willing to buy
shares if he believes the true probability of Obama winning is greateptiaonversely, he should
be willing to sell shares at this price if he believes that the true probability ah@bwinning is

lower.

The current price per share thus provides an estimate of the populatitiestive belief about

how likely it is that Obama will win a second term. In fact, under certain assungfio particular,
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the assumption that all bettors are risk-neutral Bayesians with a commol, frisrpossible to
prove that the trading price converges to what is knownrasianal expectations equilibriurthat
reflects the probability estimate that one would obtain by combining the privatédamation of
each member of the population [103, 59]. Indeed, in practice foredasstimed through prediction
markets are frequently more accurate than forecasts provided by®xpaibroad spectrum of set-
tings. The price of orange juice futures is a better predictor of weatherttieaNational Weather
Service forecasts [109], Oscar markets are more accurate at prgdiatiners than expert colum-
nists [106], and election markets are more accurate than national polisg§e/Pennock and Sami

[105] or Ledyard et al. [91] for a range of other examples.

Thousands of one- or small-dimensional markets exist today, eacttiogeraependently. At
the racetrack, betting on a horse to win does not directly impact the oddsafiohorse to finish
among the top two, as logically it should, because the two bet types are tiasgtlarately. On
the contrary, aombinatorial prediction markes a central clearinghouse for handling logically-
related bets defined on a combinatorial space. For example, the outcooeensight be alin!
possible permutations of horses in a horse race, while bets are properties of permutations such
as “horse A finishes third” or “horse A beats horse B.” Alternately, thic@me space might be
all 250 possible state-by-state results for the 2012 US Presidential election, wstslarte Boolean

statements such as “the Republican candidate wins in Florida but not inyRexmia or Ohio.”

Chen et al. [29] show that when the market is operated by a central aeetiperforming risk-
less order matching, the matching problem can be solved efficiently in sorolspases, even
when the outcome space is exponentially large. However, low liquidity margisaiie value
of these prediction markets, and combinatorics only exacerbates themrbpldividing traders’
attention among an exponential number of outcomes. A combinatorial matchikgtrmahe com-
binatorial generalization of a standard double auction—may simply fail to fipdrades [53, 29].
In contrast, arautomated market makes always willing to trade oreverybet at some price.
A combinatorial market maker implicitly or explicitly maintains prices across all ¢eeptially
many) outcomes, thus allowing any trader at any time to place any bet, if ttadssiche market

maker’s quoted price.

Hanson’s logarithmic market scoring rule market maker (LMSR) [62, WB]¢ch is described

in Section 5.2, is becoming the de facto standard market maker for predictidketsdargely
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because it has a number of desirable properties, including boundetidbgsows logarithmically
in the number of outcomes, infinite liquidity, and modularity that respects somgendence
relationships. LMSR is used by a number of companies, including Micraskfingmarkets.com,

thewsx.com, and yoonew.com, and is the subject of a number of reseaddsg30, 91, 28].

In this chapter, we analyze the computational complexity of LMSR in severabmatorial
betting scenarios. We examine both permutation combinatorics and Booleamatonbs. We
show that both computing instantaneous prices and computing paymentssafctians are#P-
hard in all cases we examine, even when we restrict participants to verlissimand limited
types of bets. For example, in the horse race analogy, if participantslaes lpets only of the
form “horse A finishes in position N”, then pricing these bets properlpeting to LMSR is#P-
hard, even though matching up bets of the exact same form (with no market)raan be done in
polynomial time [29].

On a more positive note, we examine an approximation algorithm for LMSR pricipermu-
tation markets that makes use of powerful techniques from the literaturelm® dearning with
expert advice [25, 98, 56]. We point out and examine the striking pégdliat exist between the
specific form of standard LMSR prices and the expert weights employ#tebNeighted Majority
algorithm [98]. We then show how a recent extension of Weighted Majoripetmutation learn-
ing [67] can be transformed into an approximation algorithm for pricing impgation markets in

which the market maker is guaranteed to have bounded loss.

Fortnow et al. [53] study the computational complexity of finding acceptabties among a
set of bids in a Boolean combinatorial market. In their setting, the center asieioneerwho
takes no risk, only matching together willing traders. They study a call mastéhg in which
bids are collected together and processed once en masse, and shthe tnattioneer matching
problem is co-NP-complete when orders are divisible Bfecomplete when orders are indivisi-
ble, but identify some tractable special cases. As mentioned above, €Chkf28] analyze the
the auctioneer matching problem for betting on permutations, examining swgttieg and pair
betting. They give a polynomial-time algorithm for matching divisible subset batsshow that

matching pair bets is NP-hard.

The work closest to our own is that of Chen et al. [32], who study aiapease of Boolean

combinatorics in which participants bet on how far a team will advance in deselgnination
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tournament, for example a sports playoff like the NCAA college basketbalhémonent. They
provide a polynomial-time algorithm for LMSR pricing in this setting based on &Biay network
representation of prices. They also show that LMSR pricing is NP-luard ¥ery general bidding

language.

Chapter Outline: In the next section, we describe Hanson’s logarithmic market scoring rule
market maker in detail, including the calculation of prices. Section 5.3 contaijuséck review

of some known results from complexity theory that are referred to thrmuigthe remainder of
the chapter. Section 5.4 and 5.5 contain our hardness results for permbkettiog and Boolean
betting respectively. Finally, in Section 5.6, we discuss the connection éetgadculating LMSR
prices and calculating expert weights in online learning, and show howettmeER_earn algorithm

of Helmbold and Warmuth [67] can be used to efficiently approximate pricesutuset betting in

permutation markets. We briefly discuss some open directions of rese&elbtion 5.7.

5.2 Logarithmic Market Scoring Rules

Proposed by Hanson [62, 63], a logarithmic market scoring rule is ammatéal market maker
mechanism that always maintains a consistent probability distribution oveutaore spacé)
reflecting the market's estimate of the likelihood of each outcome. A genericR_bfgrs a
security corresponding to each possible outcamerhe security associated to outcomepays

off $1 if the outcomew happens, and $0 otherwise. Legt= (q,)wecqn indicate the number of
outstanding shares for all securities. The LMSR market maker starts thetwath some initial
shares of securitieg;®, which may be0. The market keeps track of the outstanding shares of

securitiegy at all times, and maintains a cost function

C(q) =blog Y e®/b, (5.1)
weN

and an instantaneous price function for each security

eQw/b

Pw(q) = m7 (5.2)
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whereb is a positive parameter related to the depth of the market. The cost functimesahe
total money wagered in the market, afidq®) reflects the market maker's maximum subsidy to
the market. The instantaneous price functigiiq) gives the current cost per share of an infinitely
small quantity of the security for outcome and is the partial derivative of the cost function, i.e.
pw(q) = 0C(q)/0q.. We usep = (p.(q))wecn to denote the price vector. Traders buy and sell
securities through the market maker. If a trader wishes to change the nahtgstanding shares
from q to q, the cost of the transaction that the trader pay§'i§) — C(q), which equals the

integral of the price functions following any path fragto q.

When the outcome space is large, it is often natural to offer only compaoutises on sets
of outcomes. A compound securifypays $1 if one of the outcomes in the $etc 2 occurs and
$0 otherwise. Such a security is the combination of all secutitiesS. Buying or sellingg shares
of the compound security is equivalent to buying or selling shares of each security € S.
Let © denote the set of all allowable compound securities. Denote the outstamdires of all

compound securities & = (qs)sco. The cost function can be written as
C(Q) =blog ¥ eXscowests/P =plogy [ e»/". (5.3)
weN we SeBwes

The instantaneous price of a compound secufitig computed as the sum of the instantaneous

prices of the securities that compose the compound secirity

qw b ‘w qgr b q b

_ Dwes® / D wes e2s'cowes! ds'/ ~ Yweslscowes @ s'/

= b = ] b b’
ZTEQ etr/ ZTGQ eZS/EG'TES/ as'/ ZTEQ HS’E@:TGS’ ets'/

ps(Q) (5.4)

Logarithmic market scoring rules are so named because they are basgawimmic scoring

rules A logarithmic scoring rule is a set of reward functions

{50(r) = ay, + blog(r,) : w € Q},

wherer = (r,).eq IS a probability distribution ovef2, anda, is a free parameter. An agent who
reportsr is rewardeds,, (r) if outcomew happens. Logarithmic scoring rules gm@perin the
sense that when facing them a risk-neutral agent will truthfully repisrstbjective probability

distribution to maximize his expected reward. A LMSR market can be viewedsasj@ential
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version of logarithmic scoring rule, because by changing market prioasg to p a trader’s net
profit is s, (p) — s (p) when outcomev happens. At any time, a trader in a LMSR market is
essentially facing a logarithmic scoring rule.

LMSR markets have many desirable properties. They offer consistimgifor combina-
torial events. As market maker mechanisms, they provide infinite liquidity by mitptvades at
any time. Although the market maker subsidizes the market, he is guaranteesdtacase loss no
greater thar€'(q°), which isb log n if |2] = n and the market starts with O share of every security.
In addition, it is a dominant strategy for a myopic risk-neutral trader toaldvis probability dis-
tribution truthfully since he faces a proper scoring rule. Even for fodwaoking traders, truthful
reporting is an equilibrium strategy when traders’ private information ispaeddent conditional

on the true outcome [30].

5.3 Complexity of Counting

We now briefly review some standard ideas and results from complexityythieat are used
throughout the remainder of the chapter.

The well-known clas$lP contains questions that ask whether a search problem has a solution,
such as whether a graph is 3-colorable. The cfaBsconsists of functions thatountthe number
of solutions ofNP search questions, such as the number of 3-colorings of a graph.

A function g is #P-hard if, for every functionf in #P, it is possible to computé in polyno-
mial time given an oracle fog. Clearly oracle access to such a functipoould additionally be
used to solve anlP problem, but in fact one can solve much harder problems too. Toda [122]
showed that every language in the polynomial-time hierarchy can be sdfi@erdly with access
to a#P-hard function.

To show a functiony is a#P-hard function, it is sufficient to show that a functigrreduces
to g where f was previously known to bg-P-hard. In this work, we use the followingP-hard

functions to reduce from:

e Permanent The permanent of an-by-n matrix A = (a; ;) is defined as

perm(A) = Z Hai,a(i) ) (55)

o€ i=1
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where2 is the set of all permutations ovéi,2,...,n}. Computing the permanent of a

matrix A containing only0-1 entries is#P-hard [123].

e #2-SAT: Counting the number of satisfying assignments of a formula given in catiyenc

normal form with each clause having two literals#®-hard [124].

e Counting Linear Extensions Counting the number of total orders that extend a partial

order given by a directed graph+#&P-hard [22].

#P-hardness is the best we can achieve since all the functions in this cbhaptéremselves be

reduced to some othétP function.

5.4 LMSR for Permutation Betting

In this section we consider a particular type of market combinatorics in whéctirthl outcome is a
ranking ovem competing candidates. Let the set of candidate§’he- {1,...,n}, which is also
used to represent the set of positions. In the setfihg, the set of all permutations ovar,,. An
outcomeo € (2 is interpreted as the scenario in which each candidatels up in positiomr (7).
Chen et al. [29] propose two betting languagaghset bettingind pair betting for this type of
combinatorics and analyze the complexity of the auctioneer’s order matctabtgm for each. In

what follows we address the complexity of operating an LMSR market ftir betting languages.

5.4.1 Subset Betting

As in Chen et al. [29], participants in a LMSR market for subset betting naettwo types of
compound securities: (1) a security of the fofi®) where® C N, is a subset of positions;
and (2) a securitfV|j) where¥ C N, is a subset of candidates. The secutityp) pays off
$1 if candidate; stands at a position that is an elementdofind $0 otherwise. Similarly, the
security(¥|j) pays off $1 if any of the candidatesinfinishes at positior and $0 otherwise. For
example, in a horse race, participants can trade securities of the fomse“Bowill come in the
second, fourth, or fifth place,” or “either horse B or horse C will comthinthird place.”
Note that owning one share @f®) is equivalent to owning one share @f;) for every;j € &,

and similarly owning one share ¢¥|;) is equivalent to owing one share @f;) for everyi € ¥.
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We therefore restrict our attention to a simplified market where securitiesdtrad of the form
(1]7). We show that even in this simplified market it#sP-hard for the market maker to provide
the instantaneous security prices, evaluate the cost function, or calgajetents for transactions,
which implies that the running an LMSR market for the more general caseegsbetting is also
#P-hard.

Traders can trade securitié$;) for all ¢ € A, andj € N, with the market maker. Lef; ; be
the total number of outstanding shares for secuity) in the market. LeQ = (g; j)ien,, jeN,
denote the outstanding shares for all securities. The market maker tkaelp®f () at all times.
From Equation 5.4, the instantaneous price of secuijty is

n b
EO’EQ:O’(i):j Hk::l er,a(k)/

pZJ(Q) = ZTGQ HZ’ZI eqk,q—(k)/b 9 (56)

and from Equation 5.3, the cost function for subset betting is

n
C(Q) =blog > [ et=w/t. (5.7)
ceN k=1
We will show that computing instantaneous prices, the cost function, apalyoanents of trans-
actions for a subset betting market4$>-hard by a reduction from the problem of computing the

permanent of a (0,1)-matrix.

Theorem 17 It is #P-hard to compute instantaneous prices in a LMSR market for subset betting

Additionally, it is#P-hard to compute the value of the cost function.

Proof: We show that if we could compute the instantaneous prices or the value afdtieiaction
for subset betting for any quantities of shares purchased, then wetamupute the permanent of
any (0, 1)-matrix in polynomial time.

Let A = (a;;) be anyn-by-n (0,1)-matrix, and definéV = n! 4 1. Note that[[", a; ,(;
is either 0 or 1. From Equation 5.5erm(A4) < n! and henceerm(A) mod N = perm(A).
We show how to computperm(A) mod N from prices in subset betting markets over up:to

candidates in which for each pair of candidatesdj, ¢; ; shares ofi|j) have been purchased,
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with

bln N if aiyj == 0,
Gij = (5.8)
bln(N + 1) if Q5 = 1.

Let B = (b;;) be an-by-n matrix containing entries of the fory ; = e%3/°. Note that
bij =Nifa;; =0andb;, ; = N +1if a; ; = 1. Thus,perm(A) mod N = perm(B) mod N.
Thus, from Equation 5.6, the price fgifj) in the market is

Y oeQio(i)=j [Ti=1 bkor) _ bij 2 oeio(iy=j L nzi Ok.ok) _ b perm(M; ;)
> rea [zt biri) > rea [li=1 bk r () perm(B)

pz’,j(Q) =

wherel; ; is the matrix obtained fron® by removing theth row andjth column. Thus the ability

to efficiently compute prices gives us the ability to efficiently computen(2/; ;) /perm(B).

It remains to show that we can use this ability to computen(B). We do so by telescoping
a sequence of prices. Lét; be the matrixB with the firsti rows and columns removed. From
above, we haveerm(B;)/perm(B) = p1,1(Q)/b1,1. Define@,, to be the(n — m)-by-(n — m)
matrix (¢; j)i>m,j>m, that is, the matrix of quantities of securitigg ;) with the firstk rows and
columns removed. In a market with only— m candidates, applying the same technique to the
matrix Q,,,, we can obtairperm(B,,,+1)/perm(B,,) from market prices forn = 1, ..., (n — 2).

Thus by computing: — 1 prices, we can compute
perm(B;)\ (perm(B;)\  (perm(Bn—1)\ _ (perm(Bn_1)
perm(B) perm(DBy) perm(B,_2)) \ perm(B) )’

Since B,,_1 only has one element, we thus can computen(B) from market prices. Conse-

quently,perm(B) mod N givesperm(A).

Therefore, given a-by-n (0, 1)-matrix A, we can compute the permanentb4fn polynomial
time using prices im — 1 subset betting markets wherein an appropriate quantity of securities have

been purchased.

Additionally, note that

C(Q)=blog Z H bk,o(k) = blog perm(DB) .
o€ k=1
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Thus if we can computé€'()), we can also computgerm(A).
As computing the permanent of & 1)-matrix is#P-hard, both computing market prices and

computing the cost function in a subset betting market&Pehard. |
Corollary 1 Computing the payment of a transaction in a LMSR for subset bettif# ibard.

Proof: Suppose the market maker starts the market with 0 share of every seDerityte)” as the

initial quantities of all securities. If the market maker can comgii@®) — C(Q) for any quantities
Q andQ, it can compute?(Q) — C(Q°) for any Q. As C(Q°) = blogn!, the market maker is
able to comput€’ (). By Theorem 17, computing the payment of a transactigaRshard. =

5.4.2 Pair Betting

In contrast to subset betting, where traders bet on absolute positiansdadidate, pair betting al-
lows traders to bet on the relative position of a candidate with respect theanore specifically,
traders buy and sell securities of the fotin> j), wherei and; are candidates. The security pays
off $1 if candidate ranks higher than candidajdi.e.,o (i) < o(j) whereo is the final ranking of
candidates) and $0 otherwise. For example, traders may bet on evéimsfofm “horse A beats
horse B”, or “candidate C receives more votes than candidate D”.

As for subset betting, the current state of the market is determined by thentotder of
outstanding shares for all securities. kgj denote the number of outstanding shares(fas j).
Applying Equations 5.3 and 5.4 to the present context, we find that the instants:price of the

security(i, j) is given by

/b
.. _ ZUEQ:a(i)<o—(j) Hi/yjlio‘(i’)<o-(jl) e‘]z N / o
pij(Q) = Rt ’ (5.9)
2orealli jrinn<rgn €
and the cost function for pair betting is
C@=blog) [ el (5.10)

0€Qi j:0(i)<o(j)

We show that computing prices, the value of the cost function, and/or pagroétransactions

for pair betting is#P-hard via a reduction from the problem of computing the number of linear
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extensions to any partial ordering. The proofis in Appendix A5.1. Thellzoy then follows from

a similar argument to the proof of Corollary 1.

Theorem 18 It is #P-hard to compute instantaneous prices in a LMSR market for pair betting.

Additionally, it is#P-hard to compute the value of the cost function.

Corollary 2 Computing the payment of a transaction in a LMSR for pair bettingkshard.

5.5 LMSR for Boolean Betting

We now examine an alternate type of market combinatorics in which the finaroetés a con-
junction of event outcomes. Formally, lgt be event space, consisting 6f individual events
Ay, -+, An, which may or may not be mutually independent. We define the state Sptcbe
the set of all possible joint outcomes for theevents, so that its size |€| = 2V. A Boolean
betting market allows traders to bet on Boolean formulas of these eventbenaegations. A
security (¢) pays off $1 if the Boolean formula is satisfied by the final outcome and $0 other-
wise. For example, a securityl; vV As) pays off$1 if and only if at least one of event4; and

As occurs, while a securityd; A A3 A = As) pays off$1 if and only if the eventsA; and A3 both
occur and the evemt; does not. Following the notational conventions of Fortnow et al. [53], we
usew € ¢ to mean that the outcome satisfies the Boolean formuta Similarly, w & ¢ implies
that the outcome does not satisfy.

In this section, we focus our attention to LMSR markets for a very simple Bodbetting
language, Boolean formulas of two events. We show that even whenrbetsls allowed to be
placed on disjunctions or conjunctions of two events, it is $tl-hard to calculate the prices, the
value of the cost function, and payments of transactions in a Boolean heidiriget operated by a
LMSR market maker.

Let X be the set containing all elements.dfand their negations. In other words, each event
outcomeX; € X is eitherA; or -A; for someA; € A. We begin by considering the scenario in
which traders may only trade securitigs; \V X ;) corresponding to disjunctions of any two event
outcomes.

Let ¢; ; be the total number of shares purchased by all traders for the seciity X;),

which pays off$1 in the event of any outcome such thatv € (X; Vv X;) and$0 otherwise. From
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Equation 5.4, we can calculate the instantaneous price for the seCXiyity X ;) for any two event

outcomesX;, X; € X as

qy 51/b
Zwegzwe(xivxj) ngi’<j’§2N:w€(Xi/\/Xj/) e

pii(Q) = (5.11)

q;’ v//b
> ren ngi’<j’§2N:Te(Xi/\/Xj/) e

Note that if X; = —X;, p; ;(Q) is always$1 regardless of how many shares of other securities

have been purchased. According to Equation 5.3, the cost function is

C(Q) =blog » 11 %/t | (5.12)
weN 1<i<j<2N:we(X;VX)
Theorem 19 shows that computing prices and the value of the cost functsuch a market is
#P-hard. The proof is via a reduction from the #2-SAT problem. The straafi the proof is
extremely similar to that of the pair betting case, and is given in Appendix Afha&.proof of the

corollary is then nearly identical to the proof of Corollary 1.

Theorem 19 Itis #P-hard to compute instantaneous prices in a LMSR market for Boolean betting
when bets are restricted to disjunctions of two event outcomes. Additioitally#P-hard to

compute the value of the cost function in this setting.

Corollary 3 Computing the payment of a transaction in a LMSR for Boolean bettigdidrard

when traders can only bet on disjunctions of two events.

If we impose that participants in a Boolean betting market may only trade sesuiree-
sponding to conjunctions of any two event outconiels, A A;), the following Corollary gives the

corresponding complexity results.

Corollary 4 Itis #P-hard to compute instantaneous prices in a LMSR market for Boolean betting
when bets are restricted to conjunctions of two event outcomes. Additioma#ly#P-hard to
compute the value of the cost function in this setting, #f#dhard to compute the payment for a

transaction.

Proof: Buying ¢ shares of security4; A A;) is equivalent to selling shares of—A4; vV —A4;).
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Thus if we can operate a Boolean betting market for securities of the(t§pa A;) in polyno-
mial time, we can also operate a Boolean betting market for securities of thg dypeA;) in

polynomial time. The result then follows from Theorem 19 and Corollary 3. |

5.6 An Approximation Algorithm for Subset Betting

There is an interesting relationship between logarithmic market scoring ruleetmaakers and a
common class of algorithms for online learning in an experts setting. In this seatioelaborate
on this connection, and show how results from the online learning communmityecased to prove

new results about an approximation algorithm for subset betting.

5.6.1 Review of the Experts Setting

We begin with a brief review the standard model of online learning with exgubrice, which is
described in more detail in Chapter 4. Recall that in Section 4.2, this modedefiaed in terms
of expertgains For the purposes of this chapter, it is easier to think in termgsxes which
are simply negated gains. We therefore start by reintroducing the setiimy slgyhtly altered
notation.

At each timet € {1,---,T}, each experi € {1,--- ,n} receives doss/;; € [0,1]. The
cumulative losf experti at timeT' is £;7 = Y., £i+. No statistical assumptions are made
about these losses, and in general, algorithms are expected to pertiravew if the sequence of
losses is chosen by an adversary.

An algorithm A maintains a current weight; , for each expert, where> " | w;; = 1.
These weights can be viewed as distributions over the experts. The algdhiém receives its
own instantaneous logs ; = > ", w; /; +, which may be interpreted as the expected loss of the
algorithm when choosing an expert according to the current distribufibe.cumulative loss of
A up to timeT is then defined in the natural way s 7 = 31, fa: = Yoy So witlis. A
common goal in such online learning settings is to minimize an algoritregiet Here the regret
is defined as the difference between the cumulative loss of the algorithimhamdmulative loss
of an algorithm that would have “chosen” the best expert in hindsigtgdiyng his weight td

throughout all the periods. Formally, the regret is givenlyr — min;ey; ... 3 Li7-
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Many algorithms that have been analyzed in the online experts setting @& dragxponen-
tial weight updates. As discussed in Chapter 4, these exponential sdlate the algorithm to
quickly transfer weight to an expert that is outperforming the othersekample, in the Weighted
Majority algorithm of Littlestone and Warmuth [98], the weight on each expierdefined as

w; t_le*nei,t e~ Mlit

Wi = = 5.13
it Z;L:1 wj,tfle_nzj’t Z?:l e~ "Lt ( )

wherer is thelearning rate a small positive parameter that controls the magnitude of the updates.
The following theorem gives a bound on the regret of Weighted Majoridy.afproof of this result

and a nice overview of learning with expert advice, see Cesa-Biandriagosi [25].

Theorem 20 (e.g., Cesa-Bianchi and Lugosi [23]¢t.4 be the Weighted Majority algorithm with

parametem. After a sequence df trials,

1
Lar— min Li7p <nT + In(n) :
. /'7

ie{l,n

WhenT is known in advance, setting= /In(n)/T yields the standarg/7 In(n) regret bound.

5.6.2 Relationship to LMSR Markets

There is a manifest similarity between the expert weights utilized by Weightedrityagmd the
prices in an LMSR market; simply compare the form of Equation 5.13 with the fariqua-

tion 5.2. One might ask if the results from the experts setting can be applied em#hesis of
prediction markets. Our answenjss For example, it is possible to use Theorem 20 to rediscover
the well-known bound ob In(n) for the loss of an LMSR market maker withoutcomes.

Let e be a limit on the number of shares that a trader may purchase or sell atreadiep; in
other words, if a trader would like to purchase or gedhares, this purchase must be broken down
into [¢/€¢| separate purchases«dr less shares. Note that the total number of time siepseded
to execute such a sequence of purchases and sales is proportibfal to

We will construct a sequence of loss functions in a setting wiélxperts to induce a sequence

of weight matrices that correspond to the price matrices of the LMSR marketach time step,
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letp;; € [0, 1] be the instantaneous price of securityt the end of period, and letg; ; € [—¢, €]

be the number of shares of securitpurchased during period Let Q; ; be the total number of
shares of security that have been purchased up to timeDefine the instantaneous loss of each
expert ad;; = (e — ¢;+)/(nb). First notice that this loss is always i, 1] as long as) > 2¢/b.

From Equations 5.2 and 5.13, at each time

eQit/b e€t/b—nLiy el

= = = W; .
n it/b net/b—nL; [y it
E =1 e@it/ E j=1€ /b=nLj ¢ E j=1¢ kgt

Pit =

Applying Theorem 20, and rearranging terms, we find that

T T n
max Y gy~ > Y pigdie < 7°TH+bln(n).
t=1

L CE t=1 i=1

The first term of the left-hand side is the maximum payment that the market medds to make,
while the second terms of the left-hand side captures the total money the meaket has re-
ceived. The right hand side is clearly minimized wheiis set as small as possible. Setting
1 = 2¢/b (which, as we mentioned above, is the smallest value we can choog&fole guaran-

teeing that each expert’s instantaneous loss [8,if]) gives us

T T n
~ max Z qit — Z Zpi,t%}t < 46°Th + bln(n).
el i t=1 i=1

SinceT = O(1/e), the termde>Th goes to 0 ag becomes very small. Thus in the limit as
approaches, we get the well-known result that the worst-case loss of the market risa@unded

by b1n(n).

5.6.3 Considering Permutations

In recent work, Helmbold and Warmuth [67] show that many results frorstaedard experts
setting can be extended to a setting in which, instead of competing with the Ipest,éke goal
is to compete with the best permutation oveitems. Here each permutation suffers a loss at
each time step, and the goal of the algorithm is to maintain a weighting over permatatioh

that the cumulative regret to the best permutation is small. It is generally ibke#s treat each
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permutation as an expert and run a standard algorithm since this woulteragdatingr! weights
at each time step. Instead, they show that when the loss has a certairnrst(incparticular, when
the loss of a permutation is the sum of the losses of each of theppings), an alternate algorithm
can be used that requires tracking onfweights in the form of am x n doubly stochastic matrix.
Formally, letWW! be a doubly stochastic matrix of weights maintained by the algorithm
at time¢. Here Wf’j is the weight corresponding to the probability associated with itdre-

ing mapped into position. Let L' € [0,1]"*" be the loss matrix at tim¢. The instanta-

neous loss of a permutatianat timet is (5 = > ;" Lga(i)' The instantaneous loss of is
Cae = Doy 25—y Wi, Li ;, the matrix dot product betweelv* and L*. Notice thatl; is

equivalent to the expectation over permutatierdrawn according téV* of ¢, ;. The goal of the
algorithm is to minimize the cumulative regret to the best permutatlQny —min,cq £, 7 Where

the cumulative loss is defined as before.

Helmbold and Warmuth go on to present an algorithm called PermELearn tHategpthe
weight matrix in two steps. First, it creates a temporary mafrix such that for every and,
Wi, = Wl{je‘"%i. It then obtainsWZ.f;.rl by repeatedly rescaling the rows and column$16f
until the matrix is doubly stochastic. Alternately rescaling rows and columns ofrixmd in this
way is known as Sinkhorn balancing [116]. Normalizing the rows of a matexisvalent to pre-
multiplying by a diagonal matrix, while normalizing the columns is equivalent to podiptying
by a diagonal matrix. Sinkhorn [116] shows that this procedure coaseig a unique doubly
stochastic matrix of the fornRAM C where R and C' are diagonal matrices i#/ is a positive
matrix. Although there are cases in which Sinkhorn balancing does ngéimin finite time,
many results show that the number of Sinkhorn iterations needed to scalexasualrat row and

column sums aré =+ ¢ is polynomial inl/e [7, 73, 97].

The following theorem bounds the cumulative loss of the PermELearn in tdrins cumula-

tive loss of the best permutation.

Theorem 21 (Helmbold and Warmuth [67])et.A be the PermELearn algorithm with parameter

7. After a sequence df trials,

nin(n) + nminyecq Lo

Lar <
AT = 1—e™"
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5.6.4 Approximating Subset Betting

Using the PermELearn algorithm, it is simple to approximate prices for subigigoi@ polyno-
mial time. We start with & x n price matrixP* in which all entries aré /n. As before, traders
may purchase securities of the fo(i®) that pay off$1 if and only if horse or candidatfinishes
in a positionj € @, or securities of the formi’|j) that pay off$1 if and only if a horse or candidate
i € ¥ finishes in positiory.

As in Section 5.6.2, each time a trader purchases or gdlsares, the purchase or sale is
broken up intd[¢/¢] purchases or sales ethares or less, wheee> 0 is a small constanit.Thus
we can treat the sequence of purchases as a sequefitpwthases of or less shares, where
T = O(1/e¢). Letg; ; be the number of shares of securitigl®) with j € ® or (¥|j) with i € ¥
purchased at timg theng; ; € [—¢, €] for all i and;.

The price matrix is updated in two steps. First, a temporary mdttiis created where for
everyi andj, Pi’,j = Pl{jeq?j/b whereb > 0 is a parameter playing a similar role &an Equa-
tion 5.2. Next, P’ is Sinkhorn balanced to the desired precision, yielding an (approximately)
doubly stochastic matri@*!.

The following lemma shows that updating the price matrix in this way results in amiatex

that is equivalent to the weight matrix of PermELearn with particular lossifume

Lemma 14 The sequence of price matrices obtained by the approximation algorithsufiset
betting on a sequence of purchagés [—¢, ¢]**™ is equivalent to the sequence of weight matrices
obtained by running PermELearg)on a sequence of losséé with

t
€—(q;
!t Z?J
for all i andj, for anyn > 2¢/b.

Proof: First note that for any > 2¢/b, L;j € [0,1] for all ¢, i, andy, so the loss matrix is valid for

PermELearnP! andW! both contain all entries df/n. Assume tha’ = . When updating

We remark that dividing purchases in this way has the negative effectating a polynomial time dependence on
the quantity of shares purchased. However, this is not a problem if #r&tityuof shares bought or sold in each trade is
bounded to start, which is a reasonable assumption. The additional timieeckis then linear only if /e.
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weights for timet + 1, for all  andy,

P/, =Ple ot /b — W/;?ijGQ£,j/b — ee/bWiIijefe/bJrqf,j/b — es/bWZ{je*nLij — ee/bWi’J _
Since the matriX?”’ is a constant multiple of”’, the Sinkhorn balancing step will produce the
same matrices. ]

Using this lemma, we can show that the difference between the amount of rtiwatethe
market maker must distribute to traders in the worst case (i.e. when the tooemaiis the outcome
that pays off the most) and the amount of money collected by the market isié@duwe will see
in the corollary below that asapproaches 0, the worst case loss of the market maker approaches
bnln(n), regardless of the number of shares purchased. Unfortunately; if), this bound can

grow arbitrarily large.

Theorem 22 For any sequence of valid subset betting purch@éwereqfvj € [—¢, €] forall ¢, 4,
andj, let P!, ..., PT be the price matrices obtained by running the subset betting approximation

algorithm. Then

L& ' L& pt 26/b bl 2¢/b T
gé%}izzqi,a(i)_zzz wqw— — e—2¢/b nln(n) + 1_6726/1)_1 ns

t=1 i=1 t=1 i=1 j=1

Proof: By Theorem 21 and Lemma 14, we have that for any 2¢/b,

55 ()< () e B ()

t=1 =1 j=1 t=1 =1

Using the fact thaf! is doubly stochastic, this gives us

T ¢ 1 T 3 ot
I )

t=1 i=1 j=1

and multiplying through byb yields

T n n T n
enl — Z Z Z Pf,jqij < <1 —nen) (bn Inn+ enT — (I}é%); Z Z qf}o(i)> )

t=1 i=1 j=1



Finally, rearranging terms gives us

T n
<1 —ne—n> max > ¥ G~ DD D> Pt

t=1 i=1 t=1 i=1 j=1
n
< (1 —e‘") bnln(n) + <1 mpe i 1> enT .

Notice thatn/(1 — e™") > 1 for positive values of;). Furthermorey/(1 — e™") is strictly

n n

3

increasing inn. Thus the right hand side of this equation decreasesdecreases to 0. Setting
n = 2¢/b (the minimum value thag can take on while guaranteeing that the instantaneous loss is

always in[0, 1]) yields the result. [

Let us examine the bound in the theorem. Notice that the (@eyb) /(1 — e~2¢/*) goes to 1 in
the limit ase approaches 0. Additionally, the number of stépscales inversely with since each
lump purchase of shares must be broken intg/¢] individual purchases. Thus in the limit as

approaches, the loss of the market maker is boundedbbyin(n).

Corollary 5 For any sequence of valid subset betting purchases brokeritte O(1/¢)) small
purchases such thqf,j € [~¢, ¢l forall t,i,andj, let P!, - .. | PT be the price matrices obtained

by running the Subset Betting Approximation Algorithm. In the limit agproache9,

T n

T n n
ﬁ%fzzqia(i) N ZZZP;]‘Q;?J < bnln(n) .

t=1 i=1 t=1 i=1 j=1

This bound is comparable to worst-case loss bounds achieved usingitterathods for op-
erating LMSRs on permutations. A single LMSR operated on the entire outcpate $has a
guaranteed worst-case lossidh(n!), but is, of course, intractable to operate. A setdfM-

SRs operated as separate markets, one for each position, would also have a total weest-ca
lossbn In(n), but could not guarantee consistent prices. In the limit, our approximagonithim
achieves the same worst-case loss guarantee as if we were operséipgrate markets, but prices

remain consistent at all times.
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5.7 Open Questions

In the previous section, we demonstrated an interesting and previouslplorek relationship
between LMSR market makers and a common class of expert learning algariHhowever, it is
likely that the connection between no-regret learning and prediction tsdskdeeper than we have
suggested. Both can be viewed as techniques for aggregating the eelleutwledge of many
individuals by cleverly maintaining weights. Discovering additional connasticould provide
economists with the opportunity to take advantage of the already vast litecator@ine learning,

and would likely benefit machine learning research as well. This is disg¢ussee in Chapter 6.
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Chapter 6

Future Directions

Significant further research is required before our foundationadérstanding of problems in col-
lective learning will be sufficient to explain and resolve all of the issuesdaby practitioners
today. In this chapter, we conclude with a brief overview of some of thitieg@reas of research

that remain open.

6.1 Improved Models for Collaborative Filtering

The research described in Chapter 2 can be viewed as a theoretindhfimn for rudimentary
collaborative filtering. The collaborative filtering systems used in practicg,(the current Netflix
movie recommendation system) are significantly more complex, but are ofteti dbasonglomer-
ations of ad hoc techniques [13, 14]. While there have been some theenttical advancements
on collaborative filtering, there is still a wide gap between our foundationdérstanding of the
problem and algorithms that could perform well in practice.

Perhaps the most difficult aspect of closing this gap is developing themigtiel. To date, most
work on collaborative filtering focuses on techniques for low-rank matsimpletion [6, 117, 118],
in which each preference rating is entered into a matrix, with rows regiegearsers and columns
representing objects (for example, websites). Missing entries in the magrixpgroximated in
such a way that the resulting matrix is of low rank. The assumption behind thisflimerk is
that preferences can be decomposed into some small number of unkacarsf A significant

drawback of this work is that it does not take into account is the existelhkrawnfeatures of
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users (such as age or location) and objects (such as topic or desighercase of websites) that
are often available in practice and could potentially be extremely useful. r{Gable exception is
the recent work of Abernethy et al. [2], which aims to incorporate knattributes of both users
and products using specially designed attribute kernels, but doesovad@theoretical guarantees
about the quality of the solution.) When the amount of available training data is liniitean
be crucial to include these features; predicting a user’s rating for a ntleaieno other user has
rated is impossible without incorporating some outside information. On the athel; the simple
models we propose for taking known object features into account argehpowerful enough to
work well in practice.

In order to make real progress in this area, it seems necessary tomefieds that are able to
draw on the power of matrix completion techniques while taking into accouniailbble outside
information. How to best define these models and what is provable in thiisgyseemain open

guestions.

6.2 Network Diffusion and Viral Marketing

Sociologists have long been interested in the question of how new treridsites, and innova-
tions spread through social networks. This topic, knownetsvork diffusionhas recently gained
momentum in computer science due to the availability of data from social netwnoitksed by on-
line recommendation systems, social networking websites, and instant ingssggtems [132].
These networks are significantly larger than any that have been stuefme hin some cases con-
taining hundreds of millions of nodes and more than a billion edges [93],feieety is a real
concern.

One specific question that has received a lot of attention is how to deterreingtimal group
of individuals in a social network to target with an advertising campaign ierai@ cause a new
product or technology to spread throughout the network. Kempe @&4al8p] proved that solving
one natural variant of this problem exactly is NP-hard, but providemngle greedy algorithm
that can be used to obtain approximate results. However, their algorithringgdhat all relevant
parameters of the model are known, including the parameters describitghagior of every

individual in the network. They do not discuss techniques for learniegetiparameters from data
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or the potential harm that might be caused by running their algorithm usigréat parameter
values.

Some effort has been made to use technigues from machine learning téhlegrarameters
necessary to approximately solve alternate variations of the question 8vE08]. However,
this work is based largely on heuristic techniques, and the authors makéengpato show ei-
ther that these heuristics produce accurate parameter estimates or thdhasgurate estimates
doesn’t have an adverse effect.

In working towards algorithms that are applicable in real viral marketing gsttinseems that
an important next step is developing principled algorithms for learning or estignidtenrelevant
modeling parameters without requiring too much expensive data or makiegligtic assump-
tions. The resulting algorithms would be of immediate interest to advertiserscaud have
direct applications to many of the other problems to which ideas from the idiffuiserature are

commonly applied, potentially including preventing the spread of diseasentaramation [95].

6.3 Social Search and Advertising

Most of the revenue of companies such as Google, Yahoo!, and é@cebmes from their ability
to target ads to specific groups of users. Both search results andralle personalized based on
user demographics such as age, gender, and location, as well asdnfser interests and online
histories [120, 51, 71]. It is natural to speculate that when informatia@utafsiendships and
other network connections is available, it should be possible to use thisiafion to build more
complete user profiles by taking advantage of the assumption that peopkebreo be similar to
their friends (or at least likely to be interested in the same websites or ggddttowever, to the
best of our knowledge, there are no existing models of search ohsgdwertising that capture the
effects of the availability of network contacts and what can be learnedl tincs extra social data.
There are a number of difficulties in building such a model. First, it is hard davkrow much
influence friends have over each other. A typical Facebook user maglet tundreds of network
“friends”, but only a few with similar taste in books or movies, or whose opigion products
they fully trust. Even if it can be determined that two friends tend to listen to similaiarar

read the same books, there is an issue of causation to sort out; do phopke dooks based
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on recommendations from friends, or do they choose friends who lanarsinterests and are
therefore more likely to read the same books anyway? Finally, there saepissues that must be
addressed. Privacy is always a concern with personalized seatcusertising [89], but becomes
even more important and complex when the personal information collectedsfuser can impact
not only his own search results or ads but also those seen by his friends
Despite these potential road blocks, the possibility of social search asmditigthg is worth

some thought. In addition to posing a number of interesting theoretical question ideas de-
veloped would have a clear impact on industry and, if done well, could inepttoy experience of

web users too.

6.4 Additional Connections Between Learning and Markets

Section 5.6 details the first formal study of the connection between leaningdxpert advice
and pricing algorithms for prediction markets. Both areas can be viewetlidies of how to
aggregate the knowledge of many potentially diverse individuals. Funtivey, in both cases, this
aggregation is accomplished by cleverly maintaining sets of weights, eitheoot@mmes (in the
case of prediction markets) or over members of the population themselves @adé of learning
from expert advice). Despite these apparent similarities, no formaleotions between the two
areas have been posed beyond those described in this work.

The discovery and understanding of additional connections betwedrimadearning and pre-
diction markets could have huge impact. This somewhat open-ended linglohasmthe potential
to give researchers studying both machine learning and market desigippbetunity to learn
from and take advantage of years of existing research and priorl&dge; potentially leading to

breakthroughs in both fields, and should definitely be explored further.
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Appendix

Al Basic Tools from Probability Theory

For the sake of completeness, in this section we provide two simple resultpfotability theory
that are used throughout this document.
Al.1 Hoeffding’s Inequality

Hoeffding’s inequality [69] is a standard result in probability theory treat be used to bound the
probability that the sum of a set of random variables is far from its expectaHere we state a

general form of the inequality, which is used frequently throughout tissedtation.

Theorem 23 (Hoeffding’s Inequality [69]) Letz4,- - - , z, ben independent random variables,

with z; € [a;, b;] for eachi. Then for any value,

Pr

i=1 =1

—2n?t?
i=1\0i i

Notice that it isnot required thatcy, - - - , z;,, are identically distributed. If each; € [0, 1],

then the expression simplifies to

Pr

> tn] < 9o~ 2t

Al.2 McDiarmid’'s Inequality

McDiarmid’s inequality [102] is a generalization of Hoeffding’s inequalityttban be used to

bound the probability that a function depending on many independeramauariables is far from
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its expectation as long as the function doesn’t depend too much on any&niglele.

Theorem 24 (McDiarmid’s Inequality [102]) Letzy,--- ,z, be independent random variables

taking on values in a set and assume that : A™ — R satisfies

sup |f(x1, . zn) — f(1, . @i, Tty Tig 1, - -5 )| < ¢
Ty T EA

for everyl <i < n. Then for every > 0,

o2
Pr([f(z1,. ... 20) — E[f(z1,...,20)]| > t] < 2exp <22f62> .

A2 Additional Proofs from Chapter 2

A2.1 Proof of Lemma 3
Here we show one direction of the bound, namely that with probalilitys /2, for all h € H,

21n(2/9)

e(h) < é(h) +2LR,(H) + -

The proof of the other direction is nearly identical. Foe {1,...,n}, let (x;,y;) be theith
training instance, distributed according i, and let(z},y.) be independent random variables

drawn according td;. Note that for allh € H,
e(h) = e(h)+é(h)—é(h) < é(h)+ sup (e(h) —é(h'))
h'eH
= é(h) + sup ( (@ )y

sup Zczs (g, ' (] ] Zqﬁ(yz,h( z>>>
€ z‘:l
= é(h)+ sup ( @y} [ Z¢ yi, B (x7)) + o(yi, )]

heH

- Z ¢ (yi, I () + & (vs, 0)) :

When only one instancér;, y;) changes, theup term can change by at maatn. Thus we
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can apply McDiarmid’s inequality (see Section A1.2) to see that with probabillgeatl — §/2,

1~ , 21n(2/6
:lé%(E —n;¢(yi,h(xi))>]+ El/)

where the outer expectation is with respect to set of training instgrieesy;) }7_; and the inner

e(h) < é(h) +E

1 = / ! / /
- ' h
- ;:1 & (y;, b (x

expectation is with respect to the set of random variable$, v;)}7_,. Now it suffices to show
that this middle term is bounded By. R,,(H). Using the fact that the supremum of an expectation

is less than or equal to the expectation of a supremum, we find that

/ 1 = / /
E{<xizyi>}?:1 [Sllp ( (xhy e [ Z(b wh ] _nz¢(y17h(x1))>]
=1

h'eH

1 n
S O S (A [SHP = (¢ Wi W () — ¢ (s, h/(xi)))]

n
S e

= B p) i, @) o, [bup Zoz ¢’ (i, b (x ))¢’(yi,h’(xi)))]

n
WeH M i

IA

=R.(¢'oH).

her T2

E{(J:Z yi) 3 o, lsup 7ZJZ¢ yuh,(wz))

Lemma 2 implies thaf?, (¢’ o H) < 2LR,,(H) since¢ is Lipschitz with parametef.. The

result follows.

A2.2 Proof of Lemma5

We cannot apply Lemma 3 directly using the squared loss function, since ibotpyt values

outside of the rangé€0, 1]. Instead, we apply the Lemma 3 using the alternate loss function
L'(h, (z,y)) = ¢(y, h(z)) where

=(y+B)? ifa<-B,

‘H

¢(y,a) = 1h(y—a)? f-B<a<B,

W~

=+ B)? ifa>B.
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It is easy to see that always outputs values in the ran@e1]. Furthermore, for any € [—B, B,

¢ is Lipschitz in the second parameter with paraméyds. For any[a, b] € [ B, B,

— 2 2
1 2 2
< a —by+232 y(a—b),
1
< platblla— b+ grglyla—b)l < o]

Applying Lemma 3 gives a uniform convergence boundXfB)R,,(H) + \/21n(2/0)/n for

£'. Scaling by4B? yields the bound focC.

A2.3 Proof of Theorem 5

The proof first requires a uniform convergence bound for the enapimieerror, which is given in
the following lemma. Note that this bound is minimized whenis proportional ton;. In other

words, convergence is fastest when all data instances are weighizityeq

Lemma 15 Let’H be a hypothesis space of VC-dimensioiff a random labeled sample is gener-
ated by drawingr; points from each distribution fror®;, and labeling them according tfy, then

with probability at leasfl — ¢, for everyh € H:

2

K
ealh) - calh JZO‘Z (dlog(2n1.x) + log(1/5)) .

2n;
=1 v

Proof: For each sourcg let X; 1, ..., X; », be random variables that take on the values

LK () — filw)]

(2

for then; instances: € S;. Note thatX;; 1, ..., X; », € [0,a5n1.x/n;]. Then
K 1 K n
=" aeih) Zaz Yo Ih@) = fi@) = ——=> "> Xij.
1 ng ni:K “— “—
1= TE€S; =1 j=1
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By linearity of expectations, we have thaté, (h)] = eq(h), and so by Hoeffding's inequality,

for everyh € H,

-9 2 2 -9 2
Pr{léa(h) —ea(h)| > €] < 2exp ( PLKC ) = 2exp ‘ = |-
S > range?(X; ) S

The remainder of the proof for hypothesis classes of finite VC dimensitow® a standard
argument. In particular, the reduction to a finite hypothesis class usingdighgfunction does
not change [125, 4]. This, combined with the union bound, gives usrtiEpility that there exists
anyhypothesisi € H such thaté, (h) —eq (k)| > €. Substituting for the probability and solving

for € gives us the bound. [ |

We are now ready to state the proof of Theorem 5.

Let b} = argming,{er(h) + e;(h)}. For each source(and similarly for the targel’), define
ei(h,h') = Ezop, [|[h(x) — B/ (2)]]. Then
lea(h) —er(h)] =

<ZO‘Z‘€Z —er(h)]

Zaz lei(h) — ei(h, k)| + |ei(h, h}) — ep(h, hY)|

el(h) — eT

IN

+ lex (R, h;) — er(h)])
K

< Zaz (ei(hi) + lei(h, hi) —er(h, hy)| + er(h]))
K

< Zai min {er(h) +¢e;(h)} + }dHAH(Di Dr) ) .

i her 2 ’

The third line follows from the triangle inequality. The last line follows from tira@e fact that

for any hypothesek, h’' € H, for any sources;,

1
les(h,h') — er(h,h')| < §dHAH(Di,DT) -
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For notational convenience, l&t; = minpey {er(h) +¢;(h)}. Putting this together with

Lemma 15, we find that for any € (0, 1), with probability1 — 4,

K
. . 1
eT(h) S ea(h) + Z (67 <)\z + §dHAH(Di7 DT)>
i=1
~ K a2 K 1
< éa(h) + Z j(d 10g(2n1;[{) + log(l/é)) + Z o ()\1 + idHAH(Div DT))
i=1 " i=1
K 2 K 1
< ealhp) 4> o (dlog(2n1:x) +1og(1/8)) + ) oy <>\i + 5 dran(Di, DT)>
i=1 7" i=1
K 2 K
< ealhy) + 2\ > o (dlog(2n1.x) +og(1/9)) + ZCV%()\ + dHAH(DuDT)>
=1 ¢
K 2 K
< ep(hp) +24] > o (dlog(2n1:x) +10g(1/8)) + Y _ ei(2X\i+dyan(Di, Dr)) -
i=1 " i=1

A2.4 Proof of Theorem 6

The proof is almost identical to that of Theorem 5 with minor modifications to thigat®n of

the bound onjeq (h) — er(h)|. Leth* = argmin, {er(h) + eq(h)}. By the triangle inequality,

lea(h) —er(h)] < lea(h) = ealh, h*)| + |ealh, h*) = er(h, h*)| + |er(h, h*) — er(h)]
< ea(h?) +lealh, h*) —er(h,h")| + er(h)
< mln {eT )+ Zazez } + %dHAH(DOU Dr) .

The remainder of the proof is unchanged.

A3 Additional Proofs from Chapter 3

A3.1 Proof Sketch of Theorem 7

We first sketch the hardness construction. Kdie any class of Boolean circuits (that is, with gates
in C) that is not polynomially learnable in the standard PAC model; under stacdgrtbgraphic

assumptions, such a class exists. [ebe a hard distribution for PAC learniriy. Leth € H
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be a Boolean circuit withR inputs, S gates, and deptlv. To embed the computation lyin a
collective problem, we lelN = R+ S andT = D. We introduce an agent for each of tRenputs

to h, whose value after the initial state is set according to an arbin®ny, OR, or NOT gate. We
additionally introduce one agent for every gatia h. If a gateg in h takes as its inputs the outputs
of gatesy’ andg”, then at each time step the agent correspondiggctumputes the corresponding
function of the states of the agents corresponding emdg” at the previous time step. Finally, by
convention we always have théth agent be the agent corresponding to the output galie axid
define the output function a8(s) = sy. The distributionP over initial states of théV agents is
identical toD on the R agents corresponding to the inputsigfand arbitrary (e.g., independent

and uniform) on the remainin§ agents.

Despite the fact that this construction introduces a great deal of spucimmputation (for
instance, at the first time step, many or most gates may simply be computing Baahetions
of the random bits assigned to non-input agents), it is clear that if getat depthd in A, then
at timed in the collective simulation of the agents, the corresponding agent hatbyetkecvalue
computed by under the inputs ta (which are distributed according 13). Because the outcome
function is the value of the agent corresponding to the output gatebfimeT = D, pairs of the
form (s, F(s™)) provide exactly the same data as the PAC modehfanderD, and thus must

be equally hard.

For the polynomial learnability of from collective behavior, we note thétis clearly PAC
learnable, since it is just Boolean combinations of 1 or 2 inputs. In Sectiowe8give a general
reduction from collective learning of any agent strategy class to PAGileathe class, thus giving

the claimed result.

A3.2 Proof of Lemma 8

We bound the error of these estimations in two parts. First, since from Egaéave know that

for anyd; > 0, with probability1 — ¢y,

1 [In(4/6) 1
< 7 Tl Z frna < 7 vV MIn(4/61) ,

m:LmeEM

a Z fm,a -« Z fm,a

m:Im €M m:Lm EM
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and

(L= )M — (1= a)M| < /M (4/51)

a*

we have by Lemma 9 that for sufficiently largé

&Y mz,em fma @ > mTmem ma
(1—a)M (1—a)M
_ (2e) M]3 (1= &)M + 63,7, p Frna)
- (1—@&)2M2 — (1 — &)M+/M1n(4/61)/Zy-
Mn(4/61)((1 — &)M + aM)
Za+ (1 — @)2M?2 — (1 — &)M /M 1n(4/6,)
In(4/41)
Zoy+ (1 — 6)2V/M — (1 — &)+/In(4/61)

Now, by Hoeffding's inequality and the union bound, for any> 0, with probability1 — 0o,

for all a,

<V/MIn(2K/8)/2 .

Z I(apm =a) — E

m:Ly €M

Z Iam = a)]

m:Ly, €M

Settingd, = Kd1/2, we can again apply Lemma 9 and see that for sufficiently IAfge

(1—a)M (1—a)M
M1n(4/61)/2 (1 — &) Ze» M + V2M)
Zae(1 — &)2M? — (1 — &)M /M In(4/5,)
(4/61)/2 (1= &) Za +v2) (1= &)Za/V2+1)y/In(4/5))
T Ze(1—&)2VM — (1 - 6)y/In(4/01)  Ze=(1— &)2VM — (1 — &)y/In(4/51)

|Zm:Im€M I(am =a) E [Zm:zme/\/t I(am = a)} ‘

Settingd; = ¢/(1 + K/2) and applying the union bound yields the lemma.
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A3.3 Proof of Lemma 9

For the first direction,

U u o W _u—e _u_ uw-—e _u  uv+ uke — ev — uke
v v ~ v vtke v vlotke) v v(v + ke)
_u_u(vtke) —e(vtuk) e(v+uk) < e(v + uk)
W v(v + ke) Cv(vtek) T v(v—ek)
Similarly,
U u < ute u uwtev  u _ uv—uke+evtuke u
v v T v—ke v ovlv—ke) v v(v — ke) v
_ u(v—ke)te(vtuk) u _ e(v+uk)
N v(v — ke) v v(v—ek)’

A3.4 Proof of Lemma 10

As long asM is sufficiently large, for any fixed,

D lafat (1= a)wa) = (fa+ (1 — G)ig)|

a€eS
< Y la—alfat 11— a)we — (1 - d)idl
a€eS a€S
< Ja—al+ Y (Jo— g + Jwe — el (1 — &) — | — 6] - wg — 1ig])
a€S
20— af+ (1 - @)Y |we — a| — | — & Y wa — ]
a€eS aeS
o (A +28)/0) L K(Zer/V2+2)y/In(( 4 2K)/5) 201 — &)
- Zor VM Za-(1 = &)VM — \/In((4 + 2K)/5)’ '

Notice that this holds uniformly for afl, so the same bound holds when we take an expectation

IN

overf.

A3.5 Handling the case whereZ,- is small

Suppose that for an actian Z, < e. Letn, andu, be the true median and mean respectively
of the distribution from which the random variablgs , are drawn. Letf,ﬁ”gh be the mean value

of the distribution overf,, , conditioned onf,, , > n,, and similarly Ietfflow be the mean value
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conditioned onfn, . < 74, SO fta = ( low 4. f,i”gh> /2.1 Let f9" be the empirical average
of f,... conditioned onf,,, > 7., and fl°“ be the empirical average ¢f, , conditioned on

fm,a < na. (Note that we cannot actually comquiéigh and flov sincen, is unknown.) Finally,

let Zu'gh = (2/M) ZmzzmeM’;igh fm.a and Acllow = (2/M) Zmzzm e Miow fm,a- Notice thatZ, =
phigh flow
a a .

high

We show first thaif, phigh

and flev are close tof,?" and flo* respectively. Next we show that
fhigh and flov are close tofe™" and flov respectively. Finally, we show that this implies that if
Z, is small, then the probability that a random valuefgf,, is far fromn, is small. This in turn

implies a small; distance between our estimated model and the real model for each agent.

To bound the difference betweqﬁ”gh and f19" it is first necessary to lower bound the
number of points in the empirical samples wjth , > 7n,. Let z,, be a random variable that is 1
if fm,a > ne and O otherwise. Clearlr [z, = 1] = Pr [z, = 0] = 1/2. By a straightforward
application of Hoeffding’s inequality, for anys, with probability1 — é3,

5 Zm_% _  [me/osM

= f )
m:Lm EM

and so the number of samples averaged to§iét is at leas{ 1 /2) — \/In(2/d3) M /2. Applying
Hoeffding’s inequality again, with probability — 44,

In(2/6,)
M — \/2In(2/03)M

high rhigh
falg _falg ’S

Now, /2" is an empirical average df//2 values in[0, 1], while f29" is an empirical av-

erage of the same points, plus or minus upttn(2/63)M /2 points. In the worst cas yiah
either includes an additiongfIn(2/63) M /2 points with values lower than any pointMZigh, or

excludes the /In(2/03) M /2 lowest values points in,9" . This implies that in the worst case,

T(2/53)
VM2 = \/In(2/63)

rhigh thigh
fazg _falg ‘S

!Assume for now that it is never the case thiat. = 7.. This simplifies the explanation, although everything still
holds if f,,,o can ben,.
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By the triangle inequality,

fhigh _ fhigh‘ < In(2/64) n In(2/03) .
¢ © TV M-\ /2In(2/65)M /M2 — \/In(2/53)

The same can be show f@* and fl°. Hence ifZ, < ¢, then

high _ glow ln(2/54) 2 V 111(2/(53)
Ja fo" et M — \/21n(2/83)M - VMJ2 —\/In(2/83)

Call this quantitye’. Clearly we have

Ma — € < fclLOw < pa < ffigh < pa + €.

high

Sincef,"" is an average of points which are all higher thfat’, and similarlyf:** is an average

of points all lower tharffigh, this implies that for any > 0,

Pr [|fm,a - ,Ua‘ > € +T] <Pr [fm,a > féngh +T] + Pr [fm,a < fClLOw —7| < f,/(ﬁl +7).

Recall that wher?, is small for alla, we seté = 0 andw, = >, .7 o l(am = a). Let
Wy = apg + (1 — a)w,. Notice thatE [w,] = w,. Applying Hoeffding’s inequality yet again,
with probability 1 — 05, |, — wa| < \/In(2/d5)/2M. For anyr > 0,

E¢ ps [Z [(afa+ (1 = @)wa) = (&fa+ (1 - d)wa”]

aceS
= ZEfNDf [lefa + (1 — a)wg — Wal]

a€S
< ZEf~Df [lovfa + (1 — @)wa — Wal + [Wa — Wal]

aeS
< @) Eeopr [|[fa— al] + K/In(2/65)/2M

a€S
< K <<1 — e’j—T> (5’+7') + 6/:—T> —|—KV1H(2/55)/2M
- K <T+ ,6/ + 1n(2/55)/2M> .
S
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A3.6 Proof of Lemma 12

By the union bound,

Preops[Ba,beS: fo >0, f, >0,|Mgu| < M|

< Z Preps [fa >0, fo > 0, [Map| < M] < Z Pre pr [fa >0, fo > 0] .
a,beS a,be€S:| Mg p|<M

For any fixed pair of actions, b such thaiM, ;| < M, it follows from Hoeffding’s inequality
that for anys € (0, 1), with probability1 — ¢,
M In(1/9)

p a >0, < .
Te~Df [f >0 fb>0] ’M‘ + 2‘/\/”

Noting that the number of pairs is less thaR /2 and settingd = 26/ K? yields the lemma.

A3.7 Bounding the£,

Here we show that with high probability (over the choice/of and the draw off), if M is

sufficiently large,

2(1 + B)KN+/N1n(2K/9)
V2M — (1+ B)K(N +1)\/NIn(2K/5)

wafa qu)afa

ZSES wsfs ZSGS wsfs

a€S
First note that we can rewrite the expression on the left-hand side of thedlity above as

w:;fa wafa

ZseS’ w fs ZseS' Ws fs|

aeS’

where for alla, w;, = w./(3_,cs ws). We know from Equation 3.9 that with high probability

(over the data set and the choicefyffor all a € &,

o — o ful < — e+ OIS TV NICE/6)
T T VAM - (14 9)IS'V/ N In(2K2/6) |
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and

Z w{gfs - Z We fs

seS’ ses’

IN

Z f8|w; — W]

ses’
(1+ B)IS|V N In(2K2/6)
V2M — (1 + B)|S'|\/NIn(2K2/5)

Thus, using the fact thgrC g wsfs > 1/N, we can apply Lemma 9 once again to get that

IN

(1+ B)KN NTaRE/D) (fu+ gl )

;e S/ 'lbsfs

V2M — (1 + B)K(N + 1)y/N In(2K/$)

Wofa Wafa

‘ZSES/ wgfs ZSES/ wsfs

9

and

_ 2(1+4 8)KN+/NIn(2K/d)
T V2M — (14 B)K(N +1){/NIn(2K/5)

wofa Wafa

Doses Wels  Dses Wshs

acS’

A3.8 Learning Without Resets

Although the analyses in Section 3.5 are tailored to learnability in the sensdioitida 4, they
can easily be adapted to hold in the alternate setting in which the learner fess axdy to a
single, unbroken trajectory of states. In this alternate model, the learningthig observes a
polynomially long prefix of a trajectory of states for training, and then musiyce a generative
model which results in a distribution over the values of the subsedlistates close to the true

distribution.

When learning individual crowd affinity models for each agent in this settiggagain assume
that we are presented with a set of samplds where each instancg,, € M consists of a pair
(f, am). However, instead of assuming that the state distributfpnare distributed according
to D/, we now assume that the state and action pairs represent a single trajéstqmgviously
noted, the majority of the analysis for both the mixture and multiplicative variantiseo€rowd
affinity model does not depend on the particular way in which state distribuéotors are dis-
tributed, and thus carries over to this setting as is. Here we briefly disaai$evttmodifications

that are necessary.

The only change required in the analysis of the crowd affinity mixture medigias to handling
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the case in whichZ, is small for alla. Previously we argued that when this is the case, the
distribution D/ must be concentrated so that for @llf, falls within a very small range with high
probability. Thus it is not necessary to estimate the parametirectly, and we can instead learn
a single probability for each action that is used regardleds @& similar argument holds in the
no-reset variant. If it is the case thdt is small for alla, then it must be the case that for each
the value off, has fallen into the same small range for the entire observed trajectory. dastan
uniform convergence argument says that the probability fhauddenly changes dramatically is
very small, and thus again it is sufficient to learn a single probability for eatibn that is used

regardless of.

To adapt the analysis of the crowd affinity multiplicative model, it is first ne@egsto replace
Lemma 12. Recall that the purpose of this lemma was to show that when the tdtzeseot
contain sufficient samples in whicgfy > 0 and f; > 0 for a pair of actions andb, the chance of
observing a new state distributidnwith f, > 0 and f, > 0 is small. This argument is actually
much more straightforward in the no-reset case. By the definition of thelpibdeeasy to see
that if f, > 0 for some actioru at timet in a trajectory, then it must be the case tliat> 0 at
all previous points in the trajectory. Thusff > 0 on any test instance, thefj must have been
non-negative omrverytraining instance, and we do not have to worry about the case in whiah ther

is insufficient data to compare the weights of a particular pair of actions.

One additional, possibly more subtle, modification is necessary in the analytbis multi-
plicative model to handle the case in whigh, = x5, = 0 for all “active” pairs of actions
a,b € §'. This can happen only if agenthas extremely small weights for every actionSh
and had previously been choosing an alternate action that is no longbdesa.e., an action
for which f,; had previously been non-negative but suddenly is not. Howeverdeer dor f to
become), it must be the case that agemimself chooses an alternate action (say, acijdnstead
of s, which cannot happen since the estimated weight of aatiased by the model i8. Thus this

situation can never occur in the no-reset variant.
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A4 Additional Proofs from Chapter 4

A4.1 Proof of Theorem 16

The details of the proof follow the general sketch given in Section 4.5. fif$testep is to show
how the adversary can generate a “bad” sequence of gains fotgumttam A. The second step is

to show that in order to prove a general lower bound using this seq@emezation procedure, it

is sufficient to restrict our attention only to algorithms that satisfy a certaiof ggbperties, which

we call monotonef-compliant algorithms. In the third step, we break the sequence of gains into
“segments” and derive upper and lower bounds on the regret of @aynpliant algorithm in each
segment. We next show that it is possible to bound the total number of segmsergshe fact that

the algorithm we are considering has a worst case regret/@F to the best expert. Finally, we

show how to put these pieces together to achieve the main result.

Step 1: Generating the Sequence of Gains

Fix a constantx > 0. Figure A.1 shows a procedure that, given an algoritApngenerates a
sequence of expert gaigsof lengthT" (for any T > (150«)?) such thatg is a “bad sequence”
for A. In this procedure, the variabtgé keeps track of the difference between the gains of the
two experts at time. At each time step, this difference either increases by one or dectaases
one, since one expert receives a gain of one and the other zero.afibblelast(d) holds the
probability that the algorithm assigned to the leading expert the most recerthitite distance
between expert gains wés The variable:; then represents the difference between the probability
that the algorithm assigned to the current best expert at the last time sthjrhtthe difference in
expert gains was smaller thdp_; and the probability that the algorithm assigns to the best expert
for the upcoming time step This is used by the sequence generation algorithm to ensure that
the best expert will only do well when the algorithm does not have “too rhwelight on it. The
function f and parametey used in the procedure will be defined later in the analysis.

The sequence of gains generated by the procedure in Figure A.1 ificgllgcdesigned to
fool the algorithmA. In particular, whenever the algorithm updates its weights aggressikiely,
procedure assigns a positive gain to the second-place expert, indueizug reversion. On the

contrary, when the algorithm updates its weights conservatively, theguoe assigns a positive
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Figure A.1 TheGenerateBadSegyocedure for creating a “bad sequence” of gains.
/1 Input: An algorithm.A4, function f, and val ue v

Sett =1, Gavg,O = GA’(] =dy=0
while (Gavgt-1 — Gaz—1 < 0.115/T /) do
p1e = A(g),p2 =1 — A(g)
if (di—1 = 0) then
if (p1; < 3) then
g1t =1,924 = 0,last(|di—1|) = p1s
else
g1t = 0,924 = 1,last(|di—1|) = pay
end if
else
it = argmax; G 1, jr = argmin; G ;1
last(|de—1]) = i
€t = Pigt — last(\dt_l — 1|)
if (e < f(|di-1])) then
9t =1,95,t=0
else
it =0,95,t =1
end if
end if
Gar = Gai—1+Dp1191t + D292,
Gavg,t = Gavg,tfl + (gl,t + g?,t)/2
dy =di—1+ g1t — g2,
t=t+1
end while
g1+ = g2+ = 1/2 for the rest of the sequence

gain to the best expert, causing added momentum. These competing issoesest/ative versus
aggressive updates force the algorithm to have “bad” regret to eithdretst expert or the average

on some sequence of gains.

Step 2: Restricting Attention to Monotone f-Compliant Algorithms

We next show that in order to prove a lower bound using the sequeneeagi®n procedure defined
in Figure A.1, it is sufficient to consider only a specific class of algorithmgarticular, we first
show that for any arbitrary algorithm, there existsfanompliantalgorithm (to be defined shortly)
with equivalent or betters gains for whickenerateBadSepgroduces the same sequence. Thus

we may restrict our attention to onjfrcompliant algorithms. We then show that afygompliant

119



algorithm can be transformed inton@onotonef-compliant algorithm (defined below) which has
performance at least as good, allowing us to further restrict our attettionly monotonef-
compliant algorithms.

We begin with the definition of -compliant. We say that an algorithris f-compliant(for a
specific functionf which will be defined shortly) if at every timewe have (1x; = f(d;—1) + 9,
for an arbitrarily small (for examples = 1/72), and (2)p1+ = p2+ = 1/2if d—1 = 0. Since
0 can be arbitrarily small, we can think of this requirement as enforcing:tHm exactlyequal to
f(di—1), and allowing the algorithm to “choose” whether it should be considergédar smaller.
The following lemma implies that given the sequence generation process ire Agly we need
only to consider the class gi-compliant algorithms, since for any other algorithm that does not
haveQ(+/T) regret to the average, there exists frsompliant algorithm with better gains for

which the same sequence is generated.

Lemma 16 Consider any algorithrd such that for allt < T, Gapgi—1 —Gat—1 < 0.115@/%
and letg = GenerateBadSeq(A, f,~). There exists arf-compliant algorithmA’ such that
GenerateBadSeq(A’, f,v) = g and atevery timeé < T, g4 > ga.

Proof: First consider any time at whichd;_; = 0. When this is the case, the procedure will
always assign a gain of 1 to the expert with the lower probability. Thué setsp; ; < p2+ or
p2.+ < P14 itis possible to achieve a higher gain by setting = p»; = 1/2 without altering the
sequenceg generated byrenerate BadSegq.
Supposel;—; # 0. We can assume without loss of generality ttiat; > 0. Note that when
e < f(]d:—1|) we have a gain; ; = 1, SO maximizing:; by setting it arbitrarily close tg(|d;_1])
increases the gain without changi6gnerate BadSeq(A’, f,~). Similarly, whene; > f(|di—1])
we haveg,; = 1, so minimizinge, by setting it arbitrarily close t¢(|d;—1|) maximizes the gain
of A without changingZenerate BadSeq(A’, f,~). In both cases, letting. approachf (|d;—1])
is better for the algorithm and thus the modified algoritdhwill always have a higher payoff on
GenerateBadSeq( A, f,7). |
Given anf-compliant algorithm, we can write its probabilities as a function of the diffaxrenc

between expert gains. In particular, we define a functidd) = 1/2 + Zﬂl f(@), whereF(0) =

1/2. Itis easy to verify that an algorithmd that sets the probability of the best expert at time
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t to F(d,—1) is an f-compliant algorithm. Furthermore, asapproaches Ogvery f-compliant
algorithm will assign expert weights arbitrarily close to these weights. Itns@wient to think of
the algorithm weights in this way for the next steps of the analysis.

We are now ready to define the functigrused in sequence generation. Let

gm(d)—1 16
f(d) = where md:[d-‘.
(d) T (d) \/T‘ |
It then follows that
|d| - m(d) i
1 om()-1 1 2-1 [T\ _ 1 2m@
F(d) == — <= =] <= , 1
(d) 2*2 7ﬁ2+;7ﬁ<16a>2+167a @)

We next define the (possibly noncontiguous)segmentZ,,, to be the set of all times for

whichm(d;) = m. More explicitly,

Tm,

{t: (m - 1)(VT/(16)) < |d;] < m(vT/(160))} .

Based on this, we definemaonotonef-compliant algorithm to be afi-compliant algorithmA
such that whelirenerate BadSeq is applied taA it is the case that for ath andm/, for all t € 7,
andt’ € 7., if m < m/ thent < t’. In other words, arf-compliant algorithm is monotone if
everym segment consists of a contiguous set of time steps. The following obseristiseful
in simplifying the proof, allowing us to further restrict our attention to the cldssa@notonef-
compliant algorithms. It says that a lower bound on the performance of tmo@algorithms will

imply the general lower bound.

Lemma 17 Consider any non-monotonef-compliant algorithm A4, and let g =
GenerateBadSeq(A, f,v).  There exists a monotong-compliant algorithm A’ with

g’ = GenerateBadSeq(A', f,~) such that

T T
D > gan
t=1 t=1

Proof: If A is not monotone, then there must be some time stapd some distanaé > 0 such

thatm(d—|— 2) = m(d—l— 1) +1 and|dt| =d, ’dt+1| =d+1, ‘dH_Q‘ =d+2, and]dt+3] =d+ 1.
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Here the first crossover into the(d + 2) segment occurs at tintet- 2, and we cross back into the

m(d + 1) segment at time + 3. SinceA is f-compliant,
JAt+1 T gatr2 +garrs = F(d) + F(d+1)+ (1 - F(d+2)) = F(d) +1— f(d+2).

Now, consider a modified-compliant algorithmA’ that is the same ad everywhere except
it chooses to have the weight it places on the leading expert at tindgreated as arbitrarily close
to butgreater thanl/2 + F(d + 1) instead of arbitrarily close to blgss thanl /2 + F(d + 1),
and sets the weight of this expert at time- 3 arbitrarily close to but less thaly2 + F(d). This
has the effect of modifying the sequence of distances sddhat| = d; the rest of the sequence

remains the same. On this modified sequence,
Ia i1+ G gio F 9w s = F(d) + (1= F(d+1) + F(d) = F(d) + 1~ f(d+1).

Sincem(d +2) > m(d+ 1), it must be the case th#{d + 2) > f(d + 1) and the total gain of’
is strictly higher than the total gain of.

If A’ is not monotone, this transformation process can be repeated until a menGton
compliant algorithm is found. Each time, the gain of the algorithm will strictly ineeegielding
the result. |

The above lemma shows how we can change-aompliant algorithm into a monotong
compliant algorithm whose performance is at least as good. Therefer&an consider only

monotone algorithms.

Step 3: Bounding the Algorithm’s Regret from Above and Below in Eath Segment

Now that we have established that it suffices to consider only the penfiaanaf f-compliant
algorithms on the sequence of gains generated by the procedure in Rigunee are ready to
introduce the notion afmatched timeandunmatched times\Ne define a pair of matched times as
two timest; andt, such that the difference between the cumulative gains the two expergeshan
fromdtod—+ 1 by timet; and stays at least as higha&s- 1 until changing fromi + 1 back tod at
timet,. More formally, for some differencé, d;, _; = d;, = d, and for allt such that; <t < ts,

d; > d. Clearly each pair of matched times consists of one time step in which the gaireof on
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expert isl and the othef while at the other time step the reverse holds. We refer to any time at
which one expert has gainwhile the other has gaitithat isnot part of a pair of matched times as
an unmatched time. If at any tinteve haved; = d, then there must have beémnmatched times
at some point before time

We denote byM,,, andi/ M,,, the matched and unmatched times in thesegment7,,, re-
spectively. These concepts will become important due to the fact that aritlaig will lose with
respect to the average for every pair of matched times, but will gain wigecg$o the average on
every unmatched time.

The following lemma quantifies the regret of the algorithm to the best expérthenaverage

of all experts for each pair of matched times.

Lemma 18 For any f-compliant algorithmA and any pair of matched times andt, in them
segment, the gain of the algorithm from tintesindts (i.e., g4+, + ga,)iS1 — 271 /(y\/T),

while the gain of the average and the best expett is

Proof: Letd = d, — 1. Without loss of generality assume that the leading expert is expert
1, i.e.,,d > 0. The gain of the algorithm at tim& is p;;, = F(d), while the gain at is
pot, =1 —pig, =1—F(d+1) =1— (F(d) + f(d)). Thus the algorithm has a total gain of
1 — f(d) =1 —2m"1/(4/T) for these time steps. |
On the other hand, the following lemma provides an upper bound on the gtdie afgorithm

over the average expert from the unmatched times only.

Lemma 19 The gain of anyf-compliant algorithmA in only the unmatched times in the seg-
ment of the algorithm is at mo8t*\/T'/(256ya?) larger than the gain of the average expert in the
unmatched times in segment i.e.,
3 <g 1> - 2T

At~ 5 ) S 55a 5
teri M 2 256y«

Proof: Since the leading expert does not change in the unmatched times (in retjpggecan

assume w.l.0.g. that it is expdrt From (1), it follows that

VT _q

S e $ s )2

- = 2
teUUM,, —o 2 16va 16 — 256y«

123



|
Combining Lemmas 18 and 19, we can compute the number of matched times nedued in
m segment in order for the loss of the algorithm to the average from matchedttroeacel the

gain of the algorithm over the average from unmatched times.

Lemma 20 For any fixed integer, if there are at least’/(1282) + x pairs of matched times in
them segment, then the gain of afiycompliant algorithmA in them segment is bounded by the

gain of the average expert in the segment minus2™~! /(v\/T), i.e.,

1 2m71
ZQA,t§Z§— ’Y\/Tx.

teTm teTm

Proof: From Lemma 19,4 can not gain more tha2™/T/(256a2+) over the average in the
segment. From Lemma 18, the loss4fvith respect to the average for each pair of matched times
is 21 /(vV/T). Since there are at leay (128a2) + = pairs of matched times, thetal amount

the algorithm loses to the average in thesegment is at leagt” 2/ (yV/T). n

Step 4: Bounding the Number of Segments

The next lemma bounds the number of segments in the sequence using thatfdds ana/7-

regret algorithm.

Lemma 21 For any f-compliant algorithmA such thatRy.q 417 < aV/T and fory = 248@2/04,
there are at most8a? segments ig = GenerateBadSeq(A, f,7).

Proof: Once again we assume that leading expert is eXpesettingy = 248"‘2/a in (1), ensures
thatF(d) is bounded by/3 as long asn remains below8«a?. ThusF(d) is bounded by /3 for all
unmatched times until we reach segmésii®. This implies that if the sequence reaches segment
4802, then the regret with respect to the best expert will be at ksasty/T/(16a)(1/3) = a/T
which contradicts the fact that is a «v/T-regret algorithm, so it cannot be the case that the

sequence hasa? or more segments. n

Step 5: Putting the Pieces Together

We are now ready to prove the main lower bound theorem.
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First, consider the case in which the maii | e loop of Generate BadSeq(A, f,~) termi-
nates before tim@. It must be the case thét,,, ;1 — Ga;-1 > 0.115v/T/y = Q(/T) and
there is nothing more to prove.

Throughout the rest of the proof, assume that the mdiinl e loop is never exited while
generating the sequenge From Lemma 20 we know that if there are at I€&a%{128a?) pairs
of matched times in then segment, then the loss to the average from these times will cancel
the gain from unmatched times in this segment. By Lemma 21 there are at:8adssegments.

If the algorithm hasexactlyT/(128a?) pairs of matched times at each segment, it will have at
most a total of7'/(128a2)(48a2) = (3/8)T pairs of matched times and will cancel all of its
gain over the average from the unmatched times in all segments. Note thaatbeaé most
48a%v/'T/(16a) = 3a/T unmatched times. Since we have choesuch thaix < +/T/150, we
can bound this b.027'. This implies that there are at leastl97T pairs of matched times. We
define the following quantity for algorithmd: x,,, = |M,,|/2 — T/(128a2). We have that

4802 48a2|M ‘ 3T
m = ) - > 0497 — (3/8)T = 0.115T .
P E

Let m* be the first segment for which we haye" | z; > 0.115T. Since we consider only
monotone algorithms we know that by that time no segments largertfidrave been visited. For
everyk, 1 < k < m*, we havez, = Z?fk x; > 0 (otherwisem™ would not be the first segment).

Note that we can bound the regret to the average from below as follows,

i—1

m ginl 1 1 ™
Ti——= = r1+ i | 1+ 271
; WT o WT WT; AP

=1
1 m* 1 m* i '
S DRSS
WT i=1 WT i=2 j=2

1 1 0.1157  0.115v/T
21+ E 22z > = .
VT VT = 7\/T ¥

This shows that the regret to the average must be at letisiv/T /vy = $vT where =
0.115a/282”  yielding the first result of the theorem.

Finally, for anyo’ < 1/10, leta = o/v/TogT < /logT/10. From the previous result, this
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implies that if the regret to the best expert is boundedyT logT = /T, then the regret to
the average must be at leg8t115q,/2(48/100) e Ty /T — (. 115a71/2-48/100 — Q(T1/50), This

proves the second part of the theorem.

A5 Additional Proofs from Chapter 5

A5.1 Proof of Theorem 18

Let P be a partial order ovefl, ..., n}. Recall that a linear (or total) ordétis alinear extension
of P if wheneverz < y in P it also holds that: < y in 7. We denote byV (P) the number of
linear extensions oP.

Recall that(i, 7) is acovering pairof P if : < j in P and there does not exiét~ i, j such that
i < ¢ <j. Let{(i1,j1), (i2,72), --- , (ix, Jx)} be a set of covering pairs @f. Note that covering
pairs of a partially ordered set withelements can be easily obtained in polynomial time, and that
their number is less thaw?.

We will show that we can design a sequence of trades that, given a ligsvefing pairs forP,
provides\ (P) through a simple function of market prices.

We consider a pair betting market overcandidates. We construct a sequencé tfading
periods, and denote b;jj andp;?’j respectively the outstanding quantity of secufity- j) and its
instantaneous price at the end of perioét the beginning of the markquj = 0 for anyi andj.
At each period t) < t < k, blnn! shares of securityi; > j;) are purchased.

Let

Nt(l,j) _ Z H eqz/’j//b ,

oeQo(i)<o(j) i ,j":0(i")<a(j")

and

D, = Z H qu,,j,/b ‘

o€Q i 5o (i) <o (j')
Note that according to Equation 558, . = N (i, ji)/ D;.

For the first period, as only the securily > j;) is purchased, we get

2
Dy = Z n! + Z 1:("!);”!.

c€Qo(i1)<o(j1) o:0(i1)>0(j1)
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We now show thaD;, can be calculated inductively froi; using successive prices given by
the market. During period b Inn! shares ofi; > j;) are purchased. Note also that the securities
purchased are different at each period, so ¢figt = 0if s <t andg;, ; = blnn!if s > 1. We
have

Ni(is, je) = Ne-1(ie, je)e"™"/® = nINy 1 (i, i)
Hence,

pgtdt _ Nt(itajt)/Dt . n!D;_q

pffjlt © Ne—1(ie,je)/Deer Dy

k pef.l
Dy = (n))*! ( “’»’“) Dy .

V4
(=2 Piy e

and therefore,

So D, can be computed in polynomial timeingiven the prices.

Alternately, since the cost function at the end of periathn be written a€’(Q) = blog Dy,

Dy, can also be computed efficiently from the cost function in pekiod

We finally show that giverDy, we can computé/(P) in polynomial time. Note that at the
end of thek trading periods, the securities purchased correspond to the coveiisgopP, such
thate?i/? = nl if (i,4) is a covering pair of? ande?;/" = 1 otherwise. Consequently, for a
permutatiornr that satisfies the partial ordé, meaning that (i) < o(j) whenever < jin P, we

have

[T e’ =y

i,5":0 (i) <o (j')
On the other hand, if a permutatiendoes not satisfyP, it does not satisfy at least one covering

pair, meaning that there is a covering pairfaf(i, j), such that (i) > o(j), so that

H eqf/,]-//b < (n!)k—l '
i',j"0(i")<o(5')
Since the total number of permutationssthe total sum oéll terms in the sunb;, corresponding
to permutations that do not satisfy the partial ordetihig less than or equal ta! (n!)*~! = (n!)*,
and is strictly less thaiin!)* unless the number of linear extensions is 0, while the total sum

of all the terms corresponding to permutations that do safisfg NV (P)(n!)*. ThusN(P) =
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We know that computing the number of linear extensions of a partial orderigdP-hard.
Therefore, both computing the prices and computing the value of the ¢utidn in pair betting

are#P-hard.

A5.2 Proof of Theorem 19

Suppose we are given a 2-CNF (Conjunctive Normal Form) formula
(Xil v le) A (Xiz N ij) ARRRNA (Xlk N Xjk) (2)

with k clauses, where each clause is a disjunction of two literals (i.e. events andebations).
Assume any redundant terms have been removed.

The structure of the proof is similar to that of the pair betting case. We cansiBeolean
betting market withN events, and show how to construct a sequence of trades that provides
through prices or the value of the cost function, the number of satisfiasigranents for the
2-CNF formula.

We createk trading periods. At period, a quantityb In(2V) of the security(X;, v Xj,) is
purchased. We denote W,j and quj respectively the price and outstanding quantities of the
security(X; v X;) at the end of period. Suppose the market starts with O share of every security.

Theng;, ;, = 0if s < tandg ;, = bIn(2"V)if s > t. Let
t
Nt(lyj) = Z H eqi’,j’/b 7
wEQWE(X;VX;) 1</ <j'<2Nwe (X VX /)

and

D, = Z H eqf',j'/b _

weR 1<’ <j/ <2N:we(Xy VX )

ThUS,pg’j = Nt(ityjt)/Dt-

Since only one securityX;, vV X; ) has been purchased in period 1, we get

Dy = > oN 4 > 1=3.22N-2 4 oN-2
wGQ:we(Xil\/le) wGQ:wé(Xil \/X]'l)

We then show thab, can be calculated inductively from,. As the only security purchased
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in periodt is (X;, V X,) in quantitybIn(2"), we obtain

Ni(it, jt) = Ny_1(ir, jo)e? 0 = Ny (i, i) 2N

Therefore,
pgt’jt — Nt(it7jt)/Dt _ 2NDt_1
pg;y'lt Ni—1(it, ji)/ D1 D,
and we get
ko -
Nyk—1 pie,jle
Dy = (27) e ) Dy .
=2 pif:jf

In addition, since the cost function at the end of peticzhn be expressed as
C(Q) = blog Dy, .

Dy, can also be computed efficiently from the cost function in pekiod
We now show that we can deduce frdm the number of satisfiable assignments for the 2-CNF

formula (Equation 2). Indeed, each term in the sum

Z H KL

we 1</ <G/ 2Nwe(Xy VX 1)

that corresponds to an outcomethat satisfies the formula is exact§’y, as exactlyk terms in
the product are”v and the rest are 1. On the contrary, each term in the sum that corossjooan
outcomew that doesnot satisfy the 2-CNF formula will be at mogt*—Y since at most — 1
terms in the product will be’V and the rest will be 1. Since the total number of outcome§’ighe
total sum ofall terms corresponding to outcomes that do not satisfy Equation 2 is less thgumabr e
to 2N (2(k=DN) = 2kN "and is strictly less tha2*" unless the number of satisfying assignments
is 0. Thus the number of satisfying assignmentslig /2% |.

We know that computing the number of satisfiable assignments of a 2-CNFl&isw#tP-hard.
We have shown how to compute it in polynomial time using prices or the value ob#tdunction
in a Boolean betting market d¥ events. Therefore, both computing prices and computing the

value of the cost function in a Boolean betting market is #P-hard.
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