
LEARNING FROM COLLECTIVE PREFERENCES,

BEHAVIOR, AND BELIEFS

Jennifer Wortman Vaughan

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2009

Michael Kearns
Supervisor of Dissertation

Jianbo Shi
Graduate Group Chairperson



Acknowledgments

Thanks...

First and foremost, to my advisor, Michael Kearns. At the risk of sounding cliche, Michael has

been a near ideal advisor to me. He helped me cultivate a taste in research problems, taught me

how to recognize and design good models and algorithms, and was a constant source of invaluable

advice on navigating the academic world. Perhaps most importantly, he helpedme to develop

confidence in myself as a researcher — no easy feat, I’m sure. I feeltruly lucky to have had the

chance to learn so much from him at the start of my career, and I sincerelyhope that we will remain

both collaborators and friends for many years to come.

To my thesis committee, Sanjeev Khanna, Yishay Mansour, Fernando Pereira, and Ben Taskar, for

their feedback and advice, and for being so supportive of me and of thiswork.

To Kevin Leyton-Brown, Eugene Nudelman, Yoav Shoham, and the rest of the Multiagent Group at

Stanford circa 2003, for giving me my first opportunity to get involved in research. It was because

of Kevin’s encouragement and contagious enthusiasm for research that I decided to go on for the

Ph.D., so the credit (or blame) for me being here in the first place should go tohim.

To Eyal Even-Dar and (again) Yishay Mansour, for acting as informalmentors and always giving

me valuable career advice, whether I wanted to hear it or not.

To my other collaborators, colleagues, and teachers, from whom I havelearned so much. I am

especially grateful to Nina Balcan, John Blitzer, Yiling Chen, Koby Crammer,Mark Dredze, Lance

Fortnow, Kuzman Ganchev, Amy Greenwald, Steve Hanneke, Stephen Judd, Sampath Kannan,

Alex Kulesza, Nicolas Lambert, John Langford, Lihong Li, Dave Pennock, Dan Reeves, Lawrence

Saul, Alex Strehl, Sid Suri, Jinsong Tan, Eugene Vorobeychik, Tong Zhang, and everyone who has

ii



been a part of the mlunch crowd at Penn.

To the awesome staff who keep things running around the department. In particular, to Mike Felker,

who has saved us all from bureaucratic disaster time and time again. The graduate program would

collapse without him.

To Aaron, Aline, Debbie, Drew, Kathleen, Kristin, Maggie, Margaret, Nick, Rob, and all of the

other people who have made Philadelphia feel like home to me over the past fiveyears.

To Hanna Wallach, who talked me down from the academic ledge on more occasions than I can

count. We are going to have a big drink when this is finished!

To my father, who got me hooked on logic puzzles as soon as I was old enough to read, and my

mother, who always believed in me, and to the newer members of my family, Joan Linskey, Joanne

and Mark Drexler, and Emily Vaughan, who warmly welcomed me into their lives and have been

cheering me on ever since.

Finally, to Jeff, for putting up with my workaholic tendencies for the past fiveyears, for believing I

could do anything (and sometimes managing to make me believe too), and for beingthe best friend

I’ve ever had, even through tough times. The best part about finishingthis dissertation is knowing

that we will go on to face what’s next together. It’s going to be great.

iii



ABSTRACT

LEARNING FROM COLLECTIVE PREFERENCES, BEHAVIOR, AND BELIEFS

Jennifer Wortman Vaughan

Supervisor: Michael Kearns

Machine learning has become one of the most active and exciting areas of computer science

research, in large part because of its wide-spread applicability to problems as diverse as natural

language processing, speech recognition, spam detection, search, computer vision, gene discovery,

medical diagnosis, and robotics. At the same time, the growing popularity of theInternet and

social networking sites like Facebook has led to the availability of novel sources of data on the

preferences, behavior, and beliefs of massive populations of users. Naturally, both researchers and

engineers are eager to apply techniques from machine learning in order toaggregate and make

sense of this wealth of collective information. However, traditional theoriesof learning fail to

capture the complex issues that arise in such settings, and as a result, many of the techniques

currently employed are ad hoc and not well understood.

The goal of this dissertation is to narrow this gap between theory and practice. To that end, we

present a series of new learning models and algorithms designed to address and illuminate prob-

lems commonly faced when aggregating local information across large population. We build on

the foundations of learning theory to examine the fundamental trade-offs that arise when aggre-

gating preference data across many similar users to learn a model of a singleuser’s tastes. We

introduce and analyze a computational theory of learning from collective behavior, in which the

goal of the algorithm is to accurately model and predict the future group behavior of a large pop-

ulation. We develop a forecaster that is guaranteed to perform reasonably well compared to best

expert in a population but simultaneously never any worse than the average. Finally, we investigate

the computational complexity of pricing in prediction markets, betting markets designed to ag-

gregate individuals’ opinions about the likelihood of future events, and propose an approximation

technique based on the previously unexplored connection between prediction market prices and

learning from expert advice.

iv



Contents

Acknowledgments ii

1 Introduction 1

1.1 Learning From Large Populations . . . . . . . . . . . . . . . . . . . . . . . . .. 2

1.1.1 Predicting Properties of the Population . . . . . . . . . . . . . . . . . . . 2

1.1.2 Aggregating and Exploiting Individuals’ Knowledge or Opinions . . . .. 4

1.1.3 Topics This Dissertation Does Not Cover . . . . . . . . . . . . . . . . . . 6

1.1.4 Other Distinguishing Features of Collective Learning Problems . . . . . .8

1.2 Overview of This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Learning from Like-Minded Users . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Learning from Collective Behavior . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Aggregating Opinions Via Expert Advice . . . . . . . . . . . . . . . . . . 11

1.2.4 Aggregating Opinions Via Prediction Markets . . . . . . . . . . . . . . . . 12

1.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Learning from Like-Minded Users 14

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 General Theory for the Multiple Source Problem . . . . . . . . . . . . . . .. . . 18

2.4 Simple Application to Binary Classification . . . . . . . . . . . . . . . . . . . . . 22

2.5 Bounds Using Rademacher Complexity . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Rademacher Complexity and General Lipschitz-Loss Bounds . . . . . .. 24

2.5.2 Application to Classification Using Rademacher Complexity . . . . . . . . 25

v



2.5.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.4 Remarks on the Use of Data-Dependent Complexity Measures . . . . . .. 27

2.6 Estimating the Disparity Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Synthetic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 A Few Words on Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.1 A Bound Using Pairwise Divergence . . . . . . . . . . . . . . . . . . . . 33

2.8.2 A Bound Using Combined Divergence . . . . . . . . . . . . . . . . . . . . 34

2.9 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Learning from Collective Behavior 36

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Agent Strategies and Collective Trajectories . . . . . . . . . . . . . . . . .39

3.2.2 The Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 A No-Reset Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Weaker Criteria for Learnability . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Social Strategy Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

3.3.1 Crowd Affinity: Mixture Strategies . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Crowd Affinity: Multiplicative Strategies . . . . . . . . . . . . . . . . . . 46

3.3.3 Crowd Aversion and Other Variants . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Agent Affinity and Aversion Strategies . . . . . . . . . . . . . . . . . . . 48

3.3.5 Incorporating Network Structure . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 A Reduction to I.I.D. Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 A Reduction for Deterministic Strategies . . . . . . . . . . . . . . . . . . 50

3.4.2 A General Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Learning Social Strategy Classes . . . . . . . . . . . . . . . . . . . . . . . . .. . 53

3.5.1 Learning Crowd Affinity Mixture Models . . . . . . . . . . . . . . . . . . 54

3.5.2 Learning Crowd Affinity Multiplicative Models . . . . . . . . . . . . . . . 58

3.6 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



4 The Trade-Offs of Learning from Expert Advice 63

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The Experts Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

4.3 TheΘ(T ) Frontier for Difference Algorithms . . . . . . . . . . . . . . . . . . . . 69

4.3.1 The Difference Frontier Lower Bound . . . . . . . . . . . . . . . . . . . .70

4.3.2 A Difference Algorithm Achieving the Frontier . . . . . . . . . . . . . . . 71

4.4 Breaking the Difference Frontier . . . . . . . . . . . . . . . . . . . . . . . . .. . 72

4.4.1 Regret to the Best and Worst Experts . . . . . . . . . . . . . . . . . . . . 73

4.4.2 PhasedAggression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 D-Prod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Sketch of A General Lower Bound . . . . . . . . . . . . . . . . . . . . . . . .. . 77

4.6 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Aggregating Opinions Via Prediction Markets and Machine Learning 79

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Logarithmic Market Scoring Rules . . . . . . . . . . . . . . . . . . . . . . . . . .83

5.3 Complexity of Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 LMSR for Permutation Betting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Subset Betting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.2 Pair Betting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 LMSR for Boolean Betting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 An Approximation Algorithm for Subset Betting . . . . . . . . . . . . . . . . . . 92

5.6.1 Review of the Experts Setting . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.2 Relationship to LMSR Markets . . . . . . . . . . . . . . . . . . . . . . . 93

5.6.3 Considering Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6.4 Approximating Subset Betting . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Future Directions 100

6.1 Improved Models for Collaborative Filtering . . . . . . . . . . . . . . . . . . .. . 100

6.2 Network Diffusion and Viral Marketing . . . . . . . . . . . . . . . . . . . . . .. 101

vii



6.3 Social Search and Advertising . . . . . . . . . . . . . . . . . . . . . . . . . . .. 102

6.4 Additional Connections Between Learning and Markets . . . . . . . . . . .. . . . 103

Appendix 104

A1 Basic Tools from Probability Theory . . . . . . . . . . . . . . . . . . . . . . . .. 104

A1.1 Hoeffding’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A1.2 McDiarmid’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A2 Additional Proofs from Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . .. 105

A2.1 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A2.2 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A2.3 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A2.4 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A3 Additional Proofs from Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . .. 109

A3.1 Proof Sketch of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A3.2 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A3.3 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A3.4 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A3.5 Handling the case whereZa∗ is small . . . . . . . . . . . . . . . . . . . . 112

A3.6 Proof of Lemma 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A3.7 Bounding theL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A3.8 Learning Without Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A4 Additional Proofs from Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . .. 118

A4.1 Proof of Theorem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A5 Additional Proofs from Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . .. 126

A5.1 Proof of Theorem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A5.2 Proof of Theorem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References 130

viii



List of Tables

1.1 A goal-based characterization of problems one might wish to solve with datacol-

lected across large populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.1 Summary of the lower bounds presented in Chapter 4 . . . . . . . . . . . . . .. . 66

4.2 Summary of the algorithmic results presented in Chapter 4 . . . . . . . . . . . . .67

ix



List of Figures

2.1 Visual illustration of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Simulation of the multiple source error bounds . . . . . . . . . . . . . . . . . . . 30

3.1 Sample simulations of a) the crowd affinity mixture model, b) the crowd affinity

multiplicative model, and c) the agent affinity model . . . . . . . . . . . . . . . . 46

4.1 TheBestWorstalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 ThePhasedAggressionalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.1 TheGenerateBadSeqprocedure used in the proof of Theorem 16 . . . . . . . . . . 119

x



Chapter 1

Introduction

Every day, web users flock to social networking sites like Facebook, personal data-sharing sites

like Flickr, online prediction markets like Intrade, and massive e-commerce siteslike Amazon.

Today’s web users are becoming increasingly comfortable sharing information about their interests

and beliefs online, either as a way to keep in touch with family and friends or asa way to obtain

more accurate personalized content in the form of search results, product recommendations, or

advice. As a result, there is now a newfound wealth of available data, not only on the preferences,

behaviors, and beliefs of huge populations of users, but also on the social links between members of

these populations. While researchers and engineers are eager to applymachine learning techniques

to this data, traditional theories of learning are not designed to handle the novel types of problems

that arise. Not surprisingly, many of the systems currently in use are ad hoc.

This dissertation introduces a series of new models and algorithms designed toaddress the

problems faced when aggregating local information across large populations of users. We build

on the theoretical foundations of machine learning to provide answers to some of the fundamental

questions that arise when learning from large populations:

• Suppose we want to learn a model of a single web user’s likes and dislikes.Under what

circumstances can we benefit from data on the preferences of other similar users?

• After observing the behavior of a large interacting population, can we accurately predict the

population’s future collective behavior?

• Suppose we would like to build a single forecaster to predict whether average stock prices

1



will rise or fall each day by aggregating the predictions of a population of experts. Can we

build a single forecaster that is simultaneously guaranteed to perform “nottoo much worse”

than the most accurate expert in the population and better than the population average?

• How can we efficiently aggregate the individual beliefs of a large population into a single

accurate prediction about a future event with exponentially many possible outcomes?

Before examining these questions in more detail, we take a step back and provide a brief

overview of the general types of learning problems one might be interestedin solving using data

collected across large populations and some of the distinguishing features of these problems.

1.1 Learning From Large Populations

There are a variety of natural ways one might choose to characterize thetypes of problems that

researchers and engineers are interested in solving with access to data from large populations.

Table 1.1 offers one such characterization based on five distinct high-level goals or agendas, in-

cluding examples of problems or applications that attack each goal. We discuss each of these goals

in turn below before describing some other distinguishing features of social learning problems in

Section 1.1.4.

1.1.1 Predicting Properties of the Population

Perhaps the most natural goal from a machine learning perspective is to use data collected from the

population to form predictions about the current or future state of the population. These predictions

may pertain to individuals or to the population as a whole.

Consider the problem of predicting which websites a specific web user is likely to enjoy. We

could attempt to solve this problem in isolation, considering only information about which websites

the user has liked or disliked in the past. However, intuitively it should be possible to make more

accurate predictions by incorporating website ratings contributed by otherusers. The problem of

providing users with accurate recommendations about products they might like or dislike based on

their own recorded preferences and the preferences of others is commonly known ascollaborative

filtering and is faced by companies such as Amazon and Netflix. In this problem, although we may

2



1. Predicting (local or global) properties of the population:
Collaborative filtering & preference modeling (Chapter 2)
Predicting the final outcome of an election from evolving voter preferencedata (Chapter 3)

2. Aggregating and exploiting the population’s knowledge or beliefs:
Predicting the daily rise or fall of the stock market from expert advice (Chapter 4)
Predicting the final outcome of an election from individuals’ inside knowledge (Chapter 5)

3. Helping the population perform (collective or individual) tasks:
Designing methods for users to aggregate personal data without violating privacy [81, 82]
Building reputation systems to help web users decide whom to trust [107, 3]

4. Manipulating the behavior of the population:
Incentivizing populations of advertisers to bid their true values for search ads [126, 50]
Maximizing the impact of a viral marketing campaign [108]

5. Determining how an individual in the population should behave:
Learning to obtain a high reward in multi-player stochastic games like online poker [129]
Learning to coordinate with others to achieve a common goal [34, 61]

Table 1.1: A goal-based characterization of the types of problems researchers and engineers might
wish to solve with data collected across large populations, and examples of problems or applica-
tions that attack each goal.

only care about the preferences of one individual, it is the ability to aggregate data across the entire

population that allows good models to be learned.

As another example, consider the problem of predicting the outcome of an election based on

preference data collected over time (for example, via polls). While we might tryto predict which

candidate each individual voter will choose, one could argue that whatreally matters is only the

ability to predict properties of thecollectiveoutcome of the election, such as the fraction of votes

each candidate is likely to receive or the probability that any single candidatewill secure at least

half the votes.

Whether the goal is to make predictions about specific individuals or the population as a whole,

there are two high level modeling approaches one might choose to use. Thefirst option is to

learn individual models for each user in the population. In the case of collaborative filtering, this

corresponds to learning a separate target function for each user, a technique that is explored in more

detail in Chapter 2. When predicting the outcome of an election, this corresponds to first learning

a model of how each individual in the population is likely to behave, and subsequently combining

the effects of this individual behavior to come up with a collective prediction.This technique is

3



discussed in Chapter 3.

The second option is to learn a single model that simultaneously captures the state of the

population as a whole. For collaborative filtering, this is frequently done using low-rank matrix

techniques [6, 117, 118]. In this framework, each known preference rating is entered into a matrix,

with rows representing users and columns representing (say) websites.Missing entries are then

approximated in such a way that the completed matrix has low rank, under the theory that only

a small number of (unknown) factors influence whether or not a given user will enjoy a given

website, and a user’s rating of a website depends solely on how much that particular user cares

about each of the factors. For election predictions, this might correspond to learning a single

model to predict the outcome based on general properties or statistics of thepopulation as a whole.

Learning a single model has the advantage that it can sometimes be more efficient than learning

individual models for each user, but there are situations in which a collection of individual models

can be more powerful.

1.1.2 Aggregating and Exploiting Individuals’ Knowledge orOpinions

Another natural goal that has received a lot of attention is aggregating the knowledge or advice

of members of a population, for example to form predictions about the outcomes of future events.

Variants of this problem have been studied in detail by two diverse and mostlydisjoint communi-

ties, leading to two mature bodies of work of different flavors.

On the one hand, the extensive and still-growing literature on “no-regretlearning” or “learning

from expert advice” has established that on any sequence ofT trials in which the predictions of

a population ofN individuals (referred to, perhaps misleadingly, as “experts”) are observed, it is

possible to maintain a dynamically weighted prediction whose cumulative performance (in terms

of some kind of reward or loss) is withinO(
√

T log N) of the performance of the best single

expert in hindsight (that is, after the full sequence has been revealed). This amazing guarantee

holds even in a fully adversarial setting, when no distributional assumptions are made about the

experts’ performance; see Cesa-Bianchi and Lugosi [25] for a thorough overview of this topic.

While these results are extremely impressive, they are based on what we might call a “needle

in a haystack” point of view. The guarantees have teeth only when we makethe implicit assump-

tion that there exist a small number of individuals in the population who dramatically outperform

4



the rest. When this is the case, the goal of the algorithms essentially boils down totracking the

performance of these superior experts.

Meanwhile, economists have been studying this problem from a different perspective, using

a natural incentive scheme to entice individuals to contribute to global predictions via prediction

markets [62, 63, 105]. Aprediction marketis a betting market designed to aggregate individual

beliefs about the outcome of an event into a single prediction. A standard binary prediction market

allows bets along a single dimension. For example, bettors might trade shares of a security that

pays off$1 if and only if Ford files for bankruptcy by the end of the year. If the current market price

of a share is$p, then a rational, risk-neutral bettor should be willing to buy shares if he believes the

true probability that Ford will go bankrupt is greater thanp. Conversely, he should be willing to

sell shares at this price if he believes that the true probability is lower. The current price per share

can be viewed as an estimate of how likely it is that Ford will go bankrupt this year according to the

population as a whole. Studies have shown that the forecasts obtained through prediction markets

are frequently more accurate than the predictions of individual domain specialists. For example,

the price of orange juice futures is a better predictor of weather than the National Weather Service

forecasts [109], while Oscar markets tend to be more accurate at predicting winners than expert

columnists [106].

In contrast to the literature on learning from expert advice, we can think of the prediction

market approach as encompassing a “wisdom of crowds” point of view.There is no longer any

need to assume the existence of a small number of individuals who outperform the rest. The power

comes instead from the fact that different individuals have access to different private information

and therefore begin with a diverse set of beliefs.

In this thesis, we aim to get the best of both works. In Chapter 4, we explore what happens

when we import the “wisdom of crowds” way of thinking into the expert advice setting, while in

Chapter 5, we see how algorithms from the expert advice setting can be applied to pricing problems

in the prediction market setting.

It is worth noting that other interpretations of the problem of harnessing thewisdom of crowds

have been studied in the machine learning literature as well. One notable exampleis the recent

line of work on supervised learning in settings in which individual, possibly malicious members

of population provide the labeled examples to the learner [44, 45]. This work is directly applicable

5



to data collected via “crowdsourcing” websites such as Galaxy Zoo, where users are invited to

label training images of galaxies, or Amazon’s Mechanical Turk, in which individuals can receive

a small payment for participating in a wide variety of crowdsourcing tasks.

1.1.3 Topics This Dissertation Does Not Cover

The remaining three high-level goals laid out in Table 1.1 are not addressed directly in this disser-

tation, but are worth elaborating on to obtain a more complete picture of problemsthat come up in

social applications and collective learning as a whole.

First, one might wish to apply machine learning techniques in order to help a population per-

form a task, either collectively or individually using globally-aggregated information. For example,

the website hunch.com helps individual users make decisions about every-day dilemmas such as

which digital camera to purchase, whether or not to donate blood, or whichweight-loss program to

try by automatically aggregating advice from users with similar personality traits or desires. The

collaborative filtering problem described above can also be viewed as serving this goal; collabo-

rative filtering algorithms help users make better decisions about movies to watch, books to read,

and websites to visit based on information gathered across the population. In a similar vein, the

literature on reputation systems [107, 3] provides tools that help web usersdetermine who in their

population to trust.

An example of an application designed to help the population perform acollectivetask is the

recently developed privacy-preserving belief propagation protocol[81, 82], which allows members

of a social network to aggregate their private information so that each individual can learn relevant

pieces of information (such as how likely it is that he has a contagious disease) without learning

too much about anyone else on the network (such as which of his friends are likely to be infected).

There are many situations in which it is desirable to manipulate the behavior of a population.

Consider the search advertising problem faced by search engines like Google and Yahoo [126, 50].

Large pools of advertisers place bids on various search terms with the hope of having their ads

displayed. The set of ads displayed when a user searches for a given term is then determined by

an auction mechanism. Advertisers pay the search engine a fee (which is also determined by the

auction mechanism) only when their ads are clicked. In this example, the revenue of the search

engine roughly grows as advertisers’ bids increase, so it is in the best interest of the search engine

6



to motivate each advertiser to choose a bid per click that is close to the true value that the advertiser

has for getting the click.

The search advertising problem is an example of the more general class ofmechanism design

problems [127, 104, 100]. At a high level, mechanism design refers to thesubfield of game theory

in which a designer is given control over the rules of the game being played. The designer can use

this power to achieve his own objective. Prediction market design is anotherexample. In this case,

the goal of the designer is to design the rules of the betting market to encourage users to participate

in the first place and to place their bets in such a way as to reveal useful information about their

private beliefs. There have been some recent attempts to study the connection between mechanism

design and machine learning [8], but this work is far outside the scope of this dissertation.

Interesting motivational problems also arise in settings in which the algorithm or designer is

given little or no control over the rules that the population must obey or the rewards that they re-

ceive. For example, advertisers are interested in the problem of influence maximization for viral

marketing [108]. Here the goal of the algorithm is to determine the optimal groupof individuals

in a social network to target with an advertising campaign in order to cause a new product or tech-

nology to spread virally throughout the network. Some open problems in this area are discussed in

Chapter 6.

Finally, one might be interested in using machine learning techniques to figure out the optimal

way for an individual to behave when interacting with other members of a large population. For

example, when presented with polling data, instead of trying to make a global prediction about

the outcome of the election as described above, we might instead choose to ask if there are ways

in which one individual or small group of individuals can alter their actions or stated beliefs in

order to influence the outcome of the election. In the search advertising setting, we might ask how

individual advertisers can alter their bids in order to achieve a desired outcome, such as forcing

their competitors to pay more per click. In other scenarios, we might ask instead how a collection

of individuals can independently learn strategies that allow them to coordinate with each other to

achieve a common goal [34, 61]. Variants of this type of problem have been examined in great de-

tail in the vast literature on multiagent learning [70, 64, 115] and in the literature on reinforcement

learning more generally [121].

7



1.1.4 Other Distinguishing Features of Collective LearningProblems

In addition to the different motivations and goals one might consider for learning across large pop-

ulations, there are other distinguishing features of collective learning problems that are worthy of

discussion. One obvious distinguishing feature is the amount of structure that exists in the popula-

tion. In some applications, such as viral marketing and the privacy-preserving belief propagation

protocol mentioned above, there is an explicit social network defined over individuals, representing

friendships, collaborations, or other binary relationships between members of the population. In

other problems, such as collaborative filtering, there is an implicit “soft” or weighted network over

individuals, for example representing the level of similarity between pairs ofpeople. Finally, in

problems such as learning from expert advice, there is generally no need to assume any structure

over the population at all.

Another distinguishing feature of these problems is how much (and in what way) the algorithm

is able to observe the population. In collaborative filtering, it is assumed thateach member of the

population voluntarily provides the algorithm with a full description of his preferences over (say)

websites with which he is already familiar. On the contrary, in the prediction market scenario,

members of the population reveal information about their beliefs only throughthe bets that they

choose to make, and it is up to the mechanism to entice them to reveal their true beliefs [62,

90]. One can imagine other variants of the problems described here in whichthe algorithm could

have access to more or less information about the population, or even active learning variants [41,

9] in which the algorithm is endowed with the ability to query specific individuals about their

preferences or beliefs.

1.2 Overview of This Dissertation

This dissertation proposes new theoretical models and algorithms designed toaddress some of the

challenging problems introduced above. We now describe each of these problems in more detail

and summarize the main technical results contained in this document.

8



1.2.1 Learning from Like-Minded Users

Most real-life collaborative filtering systems, like those used by Amazon andNetflix, rely on com-

plicated combinations of ad hoc techniques with little theoretical justification [13, 14]. While

there has been a surge of theoretical work on the use of low-rank matrix completion techniques

for collaborative filtering [6, 117, 118], very little thought has been given to alternate theoretical

frameworks.

In Chapter 2, we approach this problem from a different angle. Buildingon the basic founda-

tions of learning theory [76, 125] , we develop a full PAC-style theory oflearning from multiple

sources of similar data (in this case, website or movie ratings from multiple similar users). Our

results illustrate the fundamental trade-offs that arise when combining data from a set of users to

learn a personalized model for one particular user.

More specifically, given distinct samples from multiple data sources and estimates of the dis-

similarities between these sources, we provide a general theory of which samples should be used

to learn models for each source, establishing a set of error bounds thatclearly express a trade-off

between three quantities: the sample size used, a weighted average of the disparities of the sources

whose data is used, and a model complexity term. These bounds apply in a widerange of learn-

ing paradigms, including classification, regression, and in some cases, density estimation. In fact,

the theory can be applied to any learning setting in which the loss function obeys an “approxi-

mate” triangle inequality and the hypothesis class under consideration obeysuniform convergence

of empirical estimates of loss to their expectations.

We also briefly turn to more recent work on the related problem of domain adaptation with

multiple sources. The key distinction between this setting and those mentioned above is that here

the underlying distributionover data points is different for each source, while the labeling func-

tions are assumed to be similar. As an example of a situation in which we might expect these

assumptions to hold, suppose that we would like to build a personalized spam filter for each user of

an email system. Here we might guess that any pair of users are likely to agree on which messages

should be considered spam, while the distribution over email they receive could be quite different.

We describe uniform convergence bounds in this setting for algorithms thatminimize a convex

combination of empirical error on each source of data.

9



1.2.2 Learning from Collective Behavior

Sociologists, economists, and researchers in a variety of other fields have spent decades study-

ing the collective behavior of large populations in countless domains. The result is an impres-

sive literature on models of collective behavior for phenomena as diverse as herding behavior

in financial markets [131], diffusion of government policies such as anti-smoking laws or state

lottery adoption [114, 119], the spread of new agricultural or medical practices [110, 36] or Holly-

wood trends [43], and the contagion properties of obesity [33]. More recently, collective behavior

has attracted the attention of computer scientists, leading to work on viral marketing [108, 94],

information propagation on blogs [96, 60], the transmission of infectious diseases or computer

viruses [46, 18], and the prevention of water contamination [95]. The mathematical details of

these models vary dramatically, but they all share the underlying assumption that each agent’s cur-

rent behavior is entirely or largely determined by the recent behavior of the other agents. The

population evolves over time according to its own internal dynamics.

Inspired by this exciting line of work, in Chapter 3, we introduce and describe a new compu-

tational theory of learning from collective behavior. In our model, each agenti acts according to

a fixed but unknown strategyci drawn from a known classC. A strategy probabilistically maps

the current state of the population (or the state of the agent’s local neighborhood, if a network

structure is defined over the population) to the next state or action for that agent, and each agent’s

strategy may be different. The goal of the learning algorithm is to accuratelymodel and predict

the future behavior of a large population after observing their interactionsduring a training phase

of polynomial length.

As an example of the type of interaction we have in mind, consider a population of students

who must each decide which local bar to patronize each night. Each student is faced with the task

of balancing his desire to frequent the current hot spot with his own intrinsic preferences based

on decor or price. Similarly, an American citizen voting in a presidential electionmight alter her

anticipated voting decision over time in response to primary or polling news, balancing her intrinsic

preferences over the candidates with a desire to avoid wasting a vote on an“unelectable” candidate.

We consider models in which agents integrate these sometimes opposing forceswhen deciding

how to behave at each moment, and study the problem of how a learning algorithm watching the

collective behavior of such a population might produce an accurate modelof their future behavior.

10



We start by defining a formal model for efficient learning in such settings,and go on to develop

general theory for this model. Our main result is a polynomial-time reduction of learning from

collective behavior to more traditional i.i.d. learning. We then define specific classes of agent

strategies, including “crowd affinity” strategies (in which agents balance personal preferences with

a desire to be like the crowd) and complementary “crowd aversion” strategies (in which agents

prefer to stand out from the crowd), and provide provably efficient algorithms for learning from

collective behavior for these classes. We also discuss some natural variants of the model, and

describe how to extend our results to these alternative settings.

1.2.3 Aggregating Opinions Via Expert Advice

Suppose that every evening, we would like to predict whether or not it is going to rain the fol-

lowing day. We might base our prediction on the opinions of friends or coworkers, reports from

meteorologists, advice from newscasters, and so on. Each of these “experts” is sometimes right

and sometimes wrong, and there’s no way of knowing a priori whose predictions will be best. In

such a setting, a natural goal that we might consider is to be able to combine thepredictions of our

sources in such a way that our own predictions won’t be too much worse than those of the source

who predicted best in retrospect.

As described above, the literature on no-regret learning shows that it ispossible to do just

that. In particular, on any sequence ofT trials in which the predictions of a set ofN experts are

observed, it is possible to guarantee a cumulative reward that is withinO(
√

T log N) of the reward

of the best single expert in hindsight using a simple dynamically weighted prediction.1 Somewhat

strikingly, this result holds even in a fully adversarial setting in which no distributional assumptions

are made about the performance of the experts.

However, despite the impressiveness of these results, there are many situations in which com-

peting with the best individual in the population is not good enough. Consider the following simple

example, in which there are only two experts. The rewards for expert1 alternate1, 0, 1, 0, · · · ,
while the rewards for expert2 alternate0, 1, 0, 1, · · · . Due to their aggressive updates, standard

regret minimization algorithms (including Exponential Weights [98, 55], Follow thePerturbed

1In this setting, the “rewards” can be thought of as scores based on howaccurate each expert’s predictions are. For
example, the reward might be 1 for each correct prediction and 0 for each incorrect prediction.

11



Leader [72], and Prod [26]) yield a cumulative reward ofT/2 − Θ(
√

T ), meeting their guarantee

of O(
√

T ) regret with respect to the best expert. However, this performance leaves something to

be desired. In this example, where both experts have similar performance,all of the algorithms

above end up sufferingΩ(
√

T ) regret to theworstexpert as well.

In Chapter 4, we examine no-regret learning in abicriteria setting. We analyze not only the

standard notion of regret to the best expert, but also the regret to the average of all experts, the regret

to any fixed mixture of experts, and the regret to the worst expert. We show that any algorithm

that achieves onlyO(
√

T ) cumulative regret to the best expert on a sequence ofT trials must,

in the worst case, suffer regretΩ(
√

T ) to the average, and that for a wide class of update rules

that includes many existing no-regret algorithms (such as Exponential Weights and Follow the

Perturbed Leader), the product of the regret to the best and the regret to the average is, in the

worst case,Ω(T ). We then describe and analyze two alternate new algorithms that both achieve

cumulative regret onlyO(
√

T log T ) to the best expert and have onlyconstantregret to any given

fixed distribution over experts. The key to achieving such guarantees is toallow the aggressiveness

of the algorithm to change over time, updating more aggressively only when itbecomes clear that

one expert is dominating the rest.

These results demonstrate the inherent tension between aggressively following the current best

expert (the “needle in a haystack” approach) and not changing weight too quickly when there are

small fluctuations in expert performance. We show that existing algorithms frequently manage this

trade-off poorly, while our new algorithms enjoy optimal bicriteria performance guarantees.

1.2.4 Aggregating Opinions Via Prediction Markets

As described above, prediction markets are betting markets designed to aggregate beliefs about

the outcome of a future event into a single accurate prediction. Most prediction markets operate

over relatively small outcome spaces. A typical horse race market might allow bettors to choose

one ofn horses as the expected winner, ignoring the fact thatn! distinct outcomes are possible

if we choose to consider all possible permutations of horses in the race. One could argue that

such simplifications are necessary. It is difficult for humans to reason about large outcome spaces,

and computationally demanding to store and update an exponential number of prices. However,

restricting the betting language in other ways (for example, allowing only bets of the form “horse A

12



will either come in first place or third place”) can simplify the reasoning process for bettors while

simultaneously making price computations tractable in certain types of markets [29].

In Chapter 5, we investigate the computational complexity of market maker pricing algorithms

for these “combinatorial” prediction markets. We restrict our attention to the popular logarithmic

market scoring rule market maker (LMSR) introduced by Hanson [62, 63]. Our goal is to im-

plicitly maintain correct LMSR prices across an exponentially large outcome space. We examine

both permutation combinatorics, where outcomes are permutations of objects (as is the case in a

horse race or an election), and Boolean combinatorics, where outcomes are combinations of binary

events, and show that even with severely limited languages, LMSR pricing is#P-hard. These re-

sults contrast with the results of Chen et al. [29], who show that solving theauctioneer’s matching

problem can be done in polynomial time for one of the same languages.

We go on to demonstrate and study the previously unexplored connection between LMSR

prices and the weights maintained by algorithms for learning from expert advice. We propose an

approximation technique for pricing permutation markets which takes advantage of known results

for online permutation learning [67]. We believe that this striking connection between two disjoint

fields may be of independent interest, opening up new directions of futureresearch; see Chapter 6.

1.3 Bibliographic Notes

The model and analysis of learning from like-minded users in Chapter 2 are based primarily on

joint work with Koby Crammer and Michael Kearns [40]. The extensions discussed in Section 2.8

grew out of work with John Blitzer, Koby Crammer, Alex Kulesza, and Fernando Pereira [20]. The

model and analysis of learning from collective behavior in Chapter 3 are based on joint work with

Michael Kearns [77]. The new perspective and analysis of learning from expert advice in Chapter 4

are based on joint work with Eyal Even-Dar, Michael Kearns, and Yishay Mansour [52]. Finally,

the work on pricing problems in combinatorial prediction markets and the connection to no-regret

learning presented in Chapter 5 are based on joint work with Yiling Chen, Lance Fortnow, Nicolas

Lambert, and David Pennock [31]. All results, figures, and text that have been published elsewhere

are included with the permission of all authors.

13



Chapter 2

Learning from Like-Minded Users

Over the past decade, the increasing popularity of e-commerce and onlineshopping sites has led

to the launch of countless product recommendation systems. These systems provide web users

with personalized suggestions for books, movies, music, and more. Netflix offers each of its users

individual movie recommendations based on the user’s own preferencesand the preferences of

other users with similar taste. Amazon offers a variety of personalized product recommendations

to each user based on their previous shopping habits and the set of items that other similar shoppers

have viewed or purchased. Such social recommendation orcollaborative filteringsystems work

reasonably well in practice, but are frequently based on conglomerations of ad hoc techniques [13,

14]. While there have been some recent theoretical advancements on collaborative filtering, these

have largely focused on techniques for low-rank matrix completion [6, 117]. There remains little

foundational understanding of why the complicated systems used in practicework as well as they

do, or how to make them better.

The work presented in this chapter can be seen as a step towards gaining this understanding.

Here we build upon the foundations of learning theory and examine the fundamental trade-offs that

arise when combining data from a set of users to learn a personalized model for a single user. The

specific problem we analyze is the somewhat more general problem of learning accurate models

from multiple sources of “nearby” data. In particular, given distinct samples from multiple data

sources and estimates of the dissimilarities between these sources, we provide a general theory of

which samples should be used to learn models for each source. This theoryis applicable in a broad

decision-theoretic learning framework, and yields general results for classification and regression.

14



Most of the work described in this chapter was done in collaboration with Koby Crammer and

Michael Kearns [40]. The final section describes joint work with John Blitzer, Koby Crammer,

Alex Kulesza, and Fernando Pereira [20].

2.1 Overview

Suppose that for each web user in a large population, we wish to learn a classifier to predict which

sites that user is likely to find interesting. Assuming we have at least a small amount of labeled data

for each user (as might be obtained either through direct feedback, orvia indirect means such as

click-throughs following a search), one approach would be to apply standard learning algorithms

to each user’s data in isolation. However, if there are natural and accessible measures of similarity

between the interests of pairs of users (as might be obtained through their mutual labellings of

common web sites), an appealing alternative is toaggregatethe data of “similar” users when

learning a classifier for each particular user. This alternative is intuitively subject to a trade-off

between the increased sample size and how different the aggregated users are.

We treat this problem in some generality and provide a bound addressing theaforementioned

trade-off. For the majority of this chapter, we consider a model in which there areK unknown data

sources, with sourcei generating a distinct sampleSi of ni observations. We assume we are given

only the samplesSi, and adisparity1 matrixD whose entryD(i, j) bounds the difference between

sourcei and sourcej. Given these inputs, we wish to decide which subset of the samplesSj will

result in the best model for each sourcei. Our framework includes settings in which the sources

produce data for classification, regression, and in some special cases, density estimation (and more

generally any additive-loss learning problem obeying certain conditions).

Our main result is a general theorem establishing a bound on the expected loss incurred by

using all data sources within a given disparity of the target. Optimization of this bound then yields

a recommended subset of the data to be used in learning a model of each source. Our bound

clearly expresses a trade-off between three quantities: the sample size used (which increases as we

include data from more distant models), a weighted average of the disparitiesof the sources whose

data is used, and a model complexity term. It can be applied to any learning setting in which the

1We avoid using the term distance since our results include settings in which the underlying loss measures may not
be formal distances.

15



underlying loss function obeys anapproximatetriangle inequality and the class of hypothesis mod-

els under consideration obeys uniform convergence of empirical estimates of loss to expectations.

For classification problems, the standard triangle inequality holds. For regression we prove a 2-

approximation to the triangle inequality. Uniform convergence bounds for the settings we consider

may be obtained via standard data-independent model complexity measures such as VC dimension

and pseudo-dimension, or via data-dependent measures such as Rademacher complexity.

The final section of this chapter touches on more recent work on the related problem of domain

adaptation with multiple sources. Suppose that our goal is no longer to produce personalized

product recommendations, where individual tastes and preferences are crucial, but instead to build

a personalized spam filter for each user of an email system. We might assumethat any pair of

users are likely to agree on which messages should be considered spam. However, the underlying

distributionover email received by two users could be quite different. We briefly present uniform

convergence bounds in this setting for algorithms that minimize a convex combination of empirical

error on each source.

The primary framework examined in this chapter can be viewed as a model forrudimentary

collaborative filtering. While there have been some theoretical developmentsin collaborative

filtering in recent years, almost all of them deal with the problem of low-rank matrix comple-

tion [6, 117, 118], in which each known preference rating is entered intoa matrix, with rows

representing users and columns representing movies, and missing entries are then approximated in

such a way that the completed matrix has low rank. This work makes the implicit assumptions that

preferences can be decomposed into a small number of unknown factorsand that it is not neces-

sary to explicitly define features in order to find this decomposition. While theremay be settings in

which these assumptions hold, incorporating available feature data can be crucial when the amount

of training data is limited; as an extreme example, there is no hope of estimating a user’s rating for

a website no other user in the system has rated before unless additional feature data is considered.

There is little theoretical work on alternate approaches to this problem.

This work can also be viewed as a specific type of multi-task learning or transfer learning [12,

15, 101]. Wu and Dietterich [133] studied a related problem experimentally inthe context of

SVMs. In earlier work [39], we examined the considerably more limited problem of learning a

model when all data sources are corrupted versions of asingle, fixedsource, for instance when

16



each data source provides noisy samples of a fixed binary function, butwith varying levels of

noise. On the contrary, here the labels on each source may be entirely unrelated to those on other

source except as constrained by the bounds on disparities, requiring us to develop new and more

general techniques.

Chapter Outline: In the next section, we introduce a decision-theoretic framework for proba-

bilistic learning that includes classification, regression, density estimation, and many other settings

as special cases, and then give our multiple source generalization of this model. In Section 2.3 we

provide our main result, which is a general bound on the expected loss incurred by using all data

within a given disparity of a target. Section 2.4 discusses the most simple application of this bound

to binary classification using VC theory. In Section 2.5, we give applicationsof our general theory

to classification and regression using Rademacher complexity, and show more generally how the

theory can be applied for any Lipschitz loss function. In Section 2.6 we discuss the important

detail of how to empirically estimate the disparity matrix from data. In Section 2.7, weillustrate

the theory through synthetic simulations. In Section 2.8, we mention more recentwork on domain

adaptation from multiple sources. Finally, in Section 2.9, we mention some related open directions

of research.

2.2 The Learning Model

Before detailing our multiple-source learning model, we first introduce a standard decision-

theoretic learning framework in which our goal is to find a model minimizing a generalized notion

of empirical loss [65]. Let thehypothesis classH be a set of models (which might be classifiers,

real-valued functions, densities, etc.), and letf be thetarget model, which may or may not lie in

the classH. Let z be a (generalized) data point or observation. For instance, in noise-free clas-

sification and regression,z consists of a pair〈x, y〉 wherey = f(x). We assume that the target

modelf induces some underlying distributionPf over observationsz. In the case of classification

or regression,Pf is induced by drawing the inputsx according to some underlying distributionP,

and then settingy = f(x) (possibly corrupted by noise).

Each setting we consider has an associatedloss functionL(h, z). For example, in classification

we typically consider the 0/1 loss:L(h, 〈x, y〉) = 0 if h(x) = y, and 1 otherwise. In regression we

17



might consider the squared loss functionL(h, 〈x, y〉) = (y−h(x))2. In each case, we are interested

in the expected loss of a modelh2 on targeth1, e(h1, h2) = Ez∼Ph1
[L(h2, z)]. Expected loss is

not necessarily symmetric.

In our multiple source model, we are presented withK distinct mutually independent sam-

ples orsourcesof dataS1, ..., SK , and a symmetricK × K matrix D. Each sourceSi con-

tains ni observations that are generated from a fixed and unknown modelfi, and D satisfies

max(e(fi, fj), e(fj , fi)) ≤ D(i, j). WhenD is unknown, it often can be estimated from a small

amount of data; see Section 2.6 for more details. Our goal is to decide which sourcesSj to use in

order to learn the best approximation (in terms of expected loss) to eachfi.

While we are interested in accomplishing this goal for eachfi, it suffices and is convenient

to examine the problem from the perspective of a fixedfi. Thus without loss of generality let us

suppose that we are given sourcesS1, ..., SK of sizen1, . . . , nK from modelsf1, . . . , fK such that

ε1 ≡ D(1, 1) ≤ ε2 ≡ D(1, 2) ≤ · · · ≤ εK ≡ D(1, K), and our goal is to learnf1. Here we

have simply taken the problem in the preceding paragraph, focused on theproblem forf1, and

reordered the other models according to our estimations or their proximity tof1. To highlight

the distinguished role of the targetf1 we shall denote itf . We denote the observations inSj by

zj
1, . . . , z

j
nj . We analyze, for everyk ≤ K, the error of the hypothesiŝhk minimizing the empirical

lossêk(h) on the firstk sourcesS1, . . . , Sk, that is

ĥk = argmin
h∈H

êk(h) = argmin
h∈H

1

n1:k

k
∑

j=1

nj
∑

i=1

L(h, zj
i ) ,

where we define the shorthandn1:k = n1 + · · ·+nk. We also denote the expected error of function

h with respect to the firstk sources of data as

ek(h) = E [êk(h)] =
k
∑

i=1

(

ni

n1:k

)

e(fi, h).

2.3 General Theory for the Multiple Source Problem

In this section we provide the first of our main results: a general bound onthe expected loss of the

model minimizing the empirical loss on the nearestk sources. Optimization of this bound leads to

18



a recommended set of sources to incorporate when learningf = f1. The key ingredients needed to

apply this bound are an approximate triangle inequality and a uniform convergence bound, which

we define below. In the subsequent sections we demonstrate that these ingredients can indeed be

provided for a variety of natural learning problems.

Definition 1 For α ≥ 1, we say that theα-triangle inequality holds for a class of modelsF and

expected loss functione if for all h1, h2, h3 ∈ F we have

e(h1, h2) ≤ α(e(h1, h3) + e(h3, h2)).

The parameterα ≥ 1 is a constant that depends onF ande.

The choiceα = 1 yields the standard triangle inequality. We note that the restriction to models

in the classF may in some cases be quite weak — for instance, whenF is all possible classifiers

or real-valued functions with bounded range — or stronger, as in densities from the exponential

family. Our results require only that the unknownsourcemodelsf1, . . . , fK lie in F , even when

our hypothesismodels are chosen from some possibly much more restricted classH ⊆ F . For

now we simply leaveF as a parameter of the definition.

Definition 2 A uniform convergence bound for a hypothesis spaceH and loss functionL is a

bound that states that for any0 < δ < 1, with probability at least1 − δ for anyh ∈ H

|ê(h) − e(h)| ≤ β(n, δ) ,

whereê(h) = 1
n

∑n
i=1 L(h, zi) for n observationsz1, . . . , zn generated independently according

to distributionsP1, . . . Pn, and e(h) = E [ê(h)] where the expectation is taken with respect to

z1, . . . , zn. Hereβ is a function of the number of observationsn and the confidenceδ, and depends

onH andL.

This definition simply asserts that for every model inH, its empirical loss on a sample of size

n and the expectation of this loss are “close” whenβ(n, δ) is small. In general the functionβ

incorporates standard measures of the complexity ofH, and is a decreasing function of the sample

sizen, as in the classicalO(
√

d/n) bounds of VC theory. Our bounds are derived from the rich

19



literature on uniform convergence. The only twist to our setting is the fact that the observations are

no longer necessarily identically distributed, since they are generated from multiple sources. How-

ever, generalizing the standard uniform convergence results to this setting is mostly straightforward

as we show in the upcoming sections on applications of the bound.

We are now ready to present our general bound.

Theorem 1 Lete be the expected loss function for lossL, and letF be a class of models for which

theα-triangle inequality holds with respect toe. LetH ⊆ F be a class of hypothesis models for

which there is a uniform convergence boundβ for L. Let K, f = f1, f2, . . . , fK ∈ F , {εi}K
i=1,

{ni}K
i=1, and ĥk be defined as above. For anyδ such that0 < δ < 1, with probability at least

1 − δ, for anyk ∈ {1, . . . , K}

e(f, ĥk) ≤ α2 min
h∈H

{e(f, h)} + (α + α2)
k
∑

i=1

(

ni

n1:k

)

εi + 2αβ(n1:k, δ/2K) .

Before providing the proof, let us examine the bound of Theorem 1, which expresses a natural

and intuitive trade-off. The first term in the bound is simply theapproximation error, the residual

loss that we incur by limiting our hypothesis model to fall in the restricted classH. The second

term is a weighted sum of the disparities of thek ≤ K models whose data is used with respect to

the target modelf = f1. We expect this term toincreaseas we increasek to include more distant

sources. The final term is determined by the uniform convergence bound. We expect this term to

decreasewith added sources due to the increased sample size. All three terms are influenced by

the strength of the approximate triangle inequality that we have, as quantified by α.

The bound given in Theorem 1 can be loose, but provides an upper bound necessary for opti-

mization and suggests a natural choice for the number of sourcesk∗ to use to estimate the target:

k∗ = argmin
k

(

(α + α2)
k
∑

i=1

(

ni

n1:k

)

εi + 2αβ(n1:k, δ/2K)

)

.

Theorem 1 and this optimization make the implicit assumption that the best subset ofsources to

use is a prefix of the sources — that is, that we should not “skip” a nearby source in favor of more

distant ones. This assumption is true for typical data-independent uniform convergence bounds,

and is true on average for data-dependent bounds, where we expect uniform convergence bounds

20



to improve with increased sample size. We now give the proof of Theorem 1.

Proof of Theorem 1: By Definition 1, for anyh ∈ H, anyk ∈ {1, . . .K}, and anyi ∈ {1, . . . , k},

(

ni

n1:k

)

e(f, h) ≤
(

ni

n1:k

)

(αe(f, fi) + αe(fi, h)) .

Summing over alli ∈ {1, . . . , k}, we find

e(f, h) ≤
k
∑

i=1

(

ni

n1:k

)

(αe(f, fi) + αe(fi, h))

= α
k
∑

i=1

(

ni

n1:k

)

e(f, fi) + α
k
∑

i=1

(

ni

n1:k

)

e(fi, h) ≤ α
k
∑

i=1

(

ni

n1:k

)

εi + αek(h) .

In the first line above we have used theα-triangle inequality to deliberately introduce a

weighted summation involving thefi. In the second line, we have broken up the summation

using the fact thate(f, fi) ≤ εi and the definition ofek(h). Notice that the first summation is a

weighted average of the expected loss of eachfi, while the second summation is the expected loss

of h on the data. Using the uniform convergence bound, we may assert that with high probability

ek(h) ≤ êk(h) + β(n1:k, δ/2K), and with high probability

êk(ĥk) = min
h∈H

{êk(h)} ≤ min
h∈H

{

k
∑

i=1

(

ni

n1:k

)

e(fi, h) + β(n1:k, δ/2K)

}

.

Putting these pieces together, we find that with high probability

e(f, ĥk) ≤ α
k
∑

i=1

(

ni

n1:k

)

εi + 2αβ(n1:k, δ/2K) + α min
h∈H

{

k
∑

i=1

(

ni

n1:k

)

e(fi, h)

}

≤ α
k
∑

i=1

(

ni

n1:k

)

εi + 2αβ(n1:k, δ/2K)

+ α min
h∈H

{

k
∑

i=1

(

ni

n1:k

)

αe(fi, f) +
k
∑

i=1

(

ni

n1:k

)

αe(f, h)

}

= (α + α2)
k
∑

i=1

(

ni

n1:k

)

εi + 2αβ(n1:k, δ/2K) + α2 min
h∈H

{e(f, h)} .

21



2.4 Simple Application to Binary Classification

We demonstrate the applicability of the general theory given by Theorem 1 to several standard

learning settings. As a warm-up, we begin with the most straightforward application, classification

using VC bounds.

In (noise-free) binary classification, we assume that our target model isa fixed, unknown and

arbitrary functionf from some input setX to {0, 1}, and that there is a fixed and unknown dis-

tribution P on theX . Note that the distributionP over input does not depend on the target

function f . The observations are of the formz = 〈x, y〉 wherey ∈ {0, 1}. The loss function

L(h, 〈x, y〉) is defined as0 if y = h(x) and1 otherwise, and the corresponding expected loss is

e(h1, h2) = E〈x,y〉∼Ph1
[L(h2, 〈x, y〉)] = Prx∼P [h1(x) 6= h2(x)].

For 0/1 loss it is well-known and easy to see that the (standard)1-triangle inequality holds.

Classical VC theory [125] provides us with uniform convergence as follows.

Lemma 1 LetH : X → {0, 1} be a class of functions with VC dimensiond, and letL(h, 〈x, y〉) =

|y − h(x)| be the 0/1-loss. The following functionβ is a uniform convergence bound forH andL
whenn ≥ d/2:

β(n, δ) =

√

8(d ln(2en/d) + ln(4/δ))

n
.

The proof is analogous to the standard proof of uniform convergenceusing the VC Dimension

(see, for example, Chapters 2–4 of Anthony and Bartlett [4]), requiring only minor modifications to

the symmetrization argument to handle the fact that the samples need not be uniformly distributed.

With Lemma 1 in place, the conditions of Theorem 1 are easily satisfied, yielding the following

result.

Theorem 2 Let F be the set of all functions from an input setX into {0,1} and let d be the

VC dimension ofH ⊆ F . Let e be the expected 0/1 loss. LetK, f = f1, f2, . . . , fK ∈ F ,

{εi}K
i=1, {ni}K

i=1, andĥk be defined as above in the multi-source learning model, and assume that

n1 ≥ d/2. For anyδ such that0 < δ < 1, with probability at least1 − δ, for anyk ∈ {1, . . . , K}

e(f, ĥk) ≤ min
h∈H

{e(f, h)} + 2
k
∑

i=1

(

ni

n1:k

)

εi +

√

32 (d ln (2en1:k/d) + ln (8K/δ))

n1:k
.

22



Figure 2.1Visual illustration of Theorem 2. See the text for details.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATAMAX DATA

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

120

140

sa
m

pl
e 

si
ze

In Figure 2.1 we provide a visual illustration of the behavior of Theorem 2 applied to a sim-

ple classification problem. In this problem there areK = 100 classifiers, each classifierfi for

i = 1 . . . 100 is defined by 2 parameters represented by a point in the unit square, such that the

expected disagreement rate between two such classifiers is proportionaltheL1 distance between

their parameters.2 We chose the 100 parameter vectorsfi uniformly at random from the unit square

(the circles in the left panel). To generate varying source sizes, we letni decrease with the dis-

tance offi from a chosen “central” point at(0.75, 0.75) (marked “MAX DATA” in the left panel);

the resulting source sizes for each model are shown in the bar plot in the right panel, where the

origin (0, 0) is in the near corner,(1, 1) in the far corner, and the source sizes clearly peak near

(0.75, 0.75). For every functionfi we used Theorem 2 to find the best sourcesj to be used to

estimate its parameters. The undirected graph on the left includes an edge betweenfi andfj if and

only if the data fromfj is used to learnfi and/or the converse.

The graph simultaneously displays the geometry implicit in Theorem 2 as well as itsadaptivity

to local circumstances. Near the central point, the graph is sparse and theedges quite short, corre-

sponding to the fact that for such models we have enough direct data (represented with high bars

in the right panel) that it is not advantageous to include data from distant models. Far from the

central point the graph becomes dense and the edges long, as we are required to aggregate a larger

neighborhood to learn the optimal model. In addition, decisions are affectedlocally by how many

2It is easy to create simple input distributions and classifiers that generate exactly this geometry. For example, let the
inputx be a pairx = (p, b) wherep ∈ [0, 1], b ∈ {0, 1} and let the hypothesis class consist of functions defined as pairs
of thresholdsf = (t1, t2) wheref(x) = 1 if and only if (p > t1 andb = 0) or (p > t2 andb = 1). The distribution of
x = (p, b) is a product of a uniform distribution forp and a fair coin forb.

23



models are “nearby” a given model, when there are many close functionsfj to a givenfi there is

no need to use “far” models, but when the neighborhood of a function is not populated with many

examples, there is a need for data from models far-away.

2.5 Bounds Using Rademacher Complexity

Given the recent interest in tighter, potentially data-dependent convergence bounds such as maxi-

mum margin bounds, PAC-Bayes, and others, it is natural to ask how our multi-source theory can

exploit them. We examine one specific case here using Rademacher complexity[10, 11, 87, 88];

analogs can be derived in a similar manner for other complexity measures. Westart by deriving

bounds for settings in which generic Lipschitz loss functions are used, and then discuss specific

applications to classification and to regression with squared loss.

2.5.1 Rademacher Complexity and General Lipschitz-Loss Bounds

If H is a class of functions mapping from a setX to R, theempirical Rademacher complexityof

H on a fixed set of observationsx1, . . . , xn is defined as

R̂n(H) = E

[

sup
h∈H

∣

∣

∣

∣

∣

2

n

n
∑

i=1

σih(xi)

∣

∣

∣

∣

∣

]

,

where the expectation is taken with respect to independent uniform{±1}-valued random variables

σ1, . . . , σn. The Rademacher complexityfor n observations can then be defined asRn(H) =

E
[

R̂n(H)
]

where the expectation is with respect to observationsx1, . . . , xn. At a high level, the

Rademacher complexity quantifies the extent to which a function in the classH can be correlated

with a sequence of noise of lengthn, and thus how much overfitting is likely to take place when

selecting models from this class.

In the standard setting,x1, . . . , xn are assumed to be i.i.d. (independently and identically dis-

tributed), drawn from a single fixed distribution. In our setting, these observations are still indepen-

dent, but not necessarily identically distributed. We show that the standarduniform convergence

results still hold in this slightly modified setting.

Consider any setting in which each generalized data pointz = 〈x, y〉 for somex ∈ X and

24



y ∈ Y with y = f(x). A cost functionfor the lossL is any functionφ such thatL(h, 〈x, y〉) =

φ(y, h(x)) for all x ∈ X , y ∈ Y, andh ∈ H. We consider cost functionsφ that are Lipschitz in the

second parameter. Defineφ′(y, a) = φ(y, a) − φ(y, 0). If φ is Lipschitz in the second parameter

with constantL thenφ′ is also Lipschitz in the second parameter with the same constantL.

Lemma 3 below gives a uniform convergence bound for any loss functionwith a corresponding

Lipschitz cost function. The proof of this lemma is in Appendix A2.1. It is analogous to the proof

of Theorem 8 in Bartlett and Mendelson [10], which makes a similar claim in the i.i.d. setting, and

uses the following lemma.

Lemma 2 (Bartlett and Mendelson [10])If f : R → R is Lipschitz with constantL andf(0) = 0,

thenRn(f ◦ H) ≤ 2LRn(H).

Lemma 3 LetL be a loss function bounded in[0, 1], andφ a cost function such thatL(f, 〈x, y〉) =

φ(y, f(x)) whereφ is Lipschitz in the second parameter with constantL. Let H be a class of

functions fromX toY and let{〈xi, yi〉}n
i=1 be sampled independently. For anyn, for any0 < δ <

1, with probability1 − δ over samples of lengthn, everyh ∈ H satisfies

β(n, δ) = 2LRn(H) +

√

2 ln(2/δ)

n
.

2.5.2 Application to Classification Using Rademacher Complexity

Theorem 3 below follows from the application of Theorem 1 using the 1-triangle inequality and an

application of Lemma 3 with

φ(y, a) =



























1 if ya ≤ 0,

1 − ya if 0 < ya ≤ 1,

0 if ya > 1.

The middle condition is necessary only to enforce thatφ is Lipschitz with constant 1. IfL is the

0/1 loss, then for allx ∈ X , y ∈ {−1, 1}, andh ∈ X → {−1, 1}, we have thatya ∈ {0, 1} and

thusL(h, 〈x, y〉) = φ(y, h(x)), so Lemma 3 can be applied immediately.

25



Theorem 3 LetF be a set of functions from an input setX into {-1,1} and letRn1:k
(H) be the

Rademacher complexity ofH ⊆ F on the firstk sources of data. Lete be the expected 0/1 loss. Let

K, f = f1, f2, . . . , fK ∈ F , {εi}K
i=1, {ni}K

i=1, andĥk be defined as in the multi-source learning

model. For anyδ such that0 < δ < 1, with probability at least1 − δ, for anyk ∈ {1, . . . , K}

e(f, ĥk) ≤ min
h∈H

{e(f, h)} + 2
k
∑

i=1

(

ni

n1:k

)

εi + 2

√

2 ln(4K/δ)

n1:k
+ 4Rn1:k

(H) .

Before moving on, let us briefly examine the behavior of this bound. Similarly tothe VC-based

bound given in Theorem 2, ask increases and more sources of data are combined, the second term

grows while the third shrinks. The behavior of the final termRn1:k
(H), however, is less predictable

and may grow or shrink as more sources of data are combined.

Note that for the special case of classification with 0/1 loss, it is possible to get tighter bounds

with better dependence onRn1:k
by using a more careful analysis than the one in the proof of

Lemma 3. Such bounds are given in an early version of this work [40]; wechoose not to present

these alternate bounds here to simplify presentation.

2.5.3 Regression

We now turn to (noise-free) regression with squared loss. Here our target modelf is any function

from an input classX into some bounded subset ofR. (Frequently we haveX ⊆ R
d, but this

is not required.) Our loss function isL(h, 〈x, y〉) = (y − h(x))2, and the expected loss is thus

e(h1, h2) = E〈x,y〉∼Ph1
[L(h2, 〈x, y〉)] = Ex∼P

[

(h1(x) − h2(x))2
]

.

For regression it is known that the standard 1-triangle inequality does nothold. However, a

2-triangle inequality does hold and is stated in the following lemma.

Lemma 4 Given any three functionsh1, h2, h3 : X → R, a fixed and unknown distributionP on

the inputsX , and the expected losse(h1, h2) = Ex∼P

[

(h1(x) − h2(x))2
]

,

e(h1, h2) ≤ 2 (e(h1, h3) + e(h3, h1)) .

26



Proof: By Jensen’s inequality and the convexity ofx 7→ x2, for anyh1, h2, andh3,

e(h1, h2) = Ex∼P

[

(h1(x) − h2(x))2
]

= Ex∼P

[

4

(

1

2
(h1(x) − h3(x)) +

1

2
(h3(x) − h2(x))

)2
]

≤ Ex∼P

[

2(h1(x) − h3(x))2 + 2(h3(x) − h2(x))2
]

= 2 (e(h1, h3) + e(h3, h1)) .

We can derive a uniform convergence bound for squared loss usingRademacher complexity as

long as the regionY is bounded. The proof is in Appendix A2.2.

Lemma 5 LetH : X → [−B, B] be a class of functions, and letL(h, 〈x, y〉) = (y − h(x))2 be

the squared loss. The following functionβ is a uniform convergence bound forH andL:

β(n, δ) = 8BRn(H) + 4B2

√

2 ln(2/δ)

n
.

Combining this with Lemma 4 and applying Theorem 1 yields the following.

Theorem 4 LetF be the set of functions fromX into [−B, B], andH ⊆ F . Lete be the expected

squared loss. LetK, f = f1, f2, . . . , fK ∈ F , {εi}K
i=1, {ni}K

i=1, and ĥk be defined as in the

multi-source learning model. For anyδ such that0 < δ < 1, with probability at least1 − δ, for

anyk ∈ {1, . . . , K}

e(f, ĥk) ≤ 4 min
h∈H

{e(f, h)} + 6

k
∑

i=1

(

ni

n1:k

)

εi + 32BRn1:k
(H) + 16B2

√

2 ln(4K/δ)

n1:k
.

2.5.4 Remarks on the Use of Data-Dependent Complexity Measures

The following lemma, which relates the true Rademacher complexity of a function class to its

empirical Rademacher complexity, follows directly from Theorem 11 of Bartlett and Mendelson

[10], the proof of which does not require samples to be identically distributed.

27



Lemma 6 LetH be a class of functions mapping to[−1, 1]. For any integern, for any0 < δ < 1,

with probability1 − δ,
∣

∣

∣Rn(H) − R̂n(H)
∣

∣

∣ ≤
√

8 ln(2/δ)

n
.

This lemma immediately allows us to replaceRn(H) with that data-dependent quantitŷRn in

any of the bounds above for only a small penalty.

While the use of data-dependent complexity measures can be expected to yield more accurate

bounds and thus better decisions about the numberk∗ of sources to use, it is not without its costs

in comparison to the more standard data-independent approaches. In particular, in principle the

optimization of a data-dependent version of the bound given in Theorem 3to choosek∗ may

actually involve running the learning algorithm on all possible prefixes of thesources, since we

cannot know the data-dependent complexity term for each prefix withoutdoing so. In contrast, the

data-independent bounds can be computed and optimized fork∗ without examining the data at all,

and the learning performed only once on the firstk∗ sources. This is especially useful when the

number of sources is very large, or when labels are not free but must be purchased at a price.

2.6 Estimating the Disparity Matrix

A potential drawback of the theory presented here is the need to estimate the disparity matrixD

when it is unknown. However, it is often the case that this matrix can be estimated with many fewer

labeled samples than are required for learning. In this section, we discusshowD can be estimated

in the classification setting.

As before, consider the scenario in which each target function is a fixed, unknown and arbitrary

function from some input setX to {−1, 1}, and assume that there is a fixed and unknown distribu-

tion P overX . Suppose we are givenm data points labeled by a pair of functionsfi andfj , and

let ê(fi, fj) be the fraction of points on which the labels disagree. By Hoeffding’s inequality (see

Section A1.1), with probability1 − δ′,

|ê(fi, fj) − e(fi, fj)| ≤
√

ln(2/δ′)

2m
.

Thus in order to approximatee(fi, fj) with an error no more thanε, only ln(2/δ′)/(2ε2) commonly

28



labeled points are needed. Applying the union bound gives us the followinglemma.

Lemma 7 LetF be a set of functions fromX into {−1, 1}, and supposef1, . . . , fK ∈ F . Let e

be the expected 0/1 loss. Suppose that for each pairi, j ∈ {1, · · · , K}, there existmi,j ≥ m0

examples distributed according toP commonly labeled byfi andfj , where

m0 =
2 ln(K) + ln(2/δ)

2ε2

for any δ such that0 ≤ δ ≤ 1, and let ê(fi, fj) be the fraction of commonly labeled examples

on whichfi andfj disagree. Then with probability1 − δ, for all i, j ∈ {1, · · · , K}, |ê(fi, fj) −
e(fi, fj)| ≤ ε.

Using the lemma we set the upper bound on the mutual errore(fi, fj) between the pair of

functionfi andfj to beDi,j = ê(fi, fj) + ε. With probability at least1 − δ these bound holds

simultaneously for alli, j.

Note that in general,log(K) is significantly smaller than the dimensiond of H. Thus many

fewer labeled examples are required to estimate the disparity matrix than to actuallylearn the best

function in the class.

The assumption that there exist commonly labeled points for each pair of functions is natural

in many settings. Consider, for example, the problem of predicting whether or not users will enjoy

certain movies using ratings from other users. It is often the case that pairs of users have seen many

of the same movies. These commonly rated movies can be used to determine how similar each pair

of users are, while ratings of additional movies can be reserved to learn the prediction functions.

2.7 Synthetic Simulations

In this section, we illustrate the bounds of our main theorem through a simple synthetic simulation.

Our hypothesis classH consists of all linear separators through the origin in 15 dimensions. The

goal is to learn thirty classifiers from this class using only limited amounts of data.These data

points are drawn uniformly at random from inside the 15-dimensional unit sphere. In this restricted

setting, it is easy to calculate the disparity between two functions. Representing each functionf

29



Figure 2.2Simulation of the multiple source error bounds. See the text for details.

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

by a unit weight vectorw such thatf(x) = sign(w · x), the distance between functionsw andw′

is simplyθ/π whereθ = arccos(w · w′) is the angle betweenw andw′.

In each simulation we ran, the linear classifiers were generated as follows.First, three base

classifiers were generated by choosing weight vectors uniformly at random from the surface of the

15-dimensional sphere. Each of the thirty classifiers was then generatedby randomly choosing

one of the base classifiers, perturbing each coordinate of its weight vector, and renormalizing the

perturbed weights.

The number of training samples available for each function was generated from a Poisson

distribution with a mean of 8. Each data instance was then sampled from inside the15-dimensional

unit sphere via rejection sampling and labeled by the corresponding classifier, and 500 test samples

for each function were generated in the same manner.

To predict the optimal set of training data sources to use for each model, wecalculated an ap-

proximation of the multiple-source VC bound for classification. It is well known that the constants

in the VC-based uniform convergence bounds are not tight. Thus for the purpose of illustrating how

30



these bounds might be used in practice, we have chosen to show approximations of our bounds with

a variety of constants. In particular, we have chosen to approximate the bound with

2
k
∑

i=1

(

nk

n1:K

)

εk + C

√

(d ln (2en1:K/d) + ln (8K/δ))

n1:K

with δ = 0.001 for different values ofC. These approximations yield curves that are closer in shape

and magnitude to the actual error than a curve generated using the precise, overly conservative

constants of Theorem 2.

The set of plots shown in Figure 2.2 illustrates the results of a single multiple source simulation.

(Results from repeated versions of this experiment and experiments with different source sizes were

similar.) Each individual plot represents a particular target function. On the x axis is the number

of data sources used in training. On they axis is error. The solid curves (which appear blue in the

full-color version of this document) show test error of a model trained using logistic regression.

The dashed curves (red in the full-cover version) show our multiple source error bound withC set

to 1/4 in the lowest curve,1/2 in the middle curve, and1/
√

2 in the highest curve. The× on each

curve marks the minimum value.

These plots clearly show the trade-off that exists. When too few sourcesare used, there is not

enough data available to learn a 15-dimensional function. When too many sources are used, the

labels on the training data often do not correspond to the labels that would have been assigned by

the target function. The optimal amount of data lies somewhere in between.

Although the VC bounds remain loose even after constants have been dropped, the bounds tend

to maintain the appropriate shape and thus predict the optimal set of sourcesquite well. In general,

whenC is set to small values, the predicted error values for small amounts of data (low k) tend

to be quite accurate, while predicted values for larger amounts of data overestimate the true error.

As C is set to larger values, the predictions become much larger in magnitude than thetrue error

curves, but the shape of the prediction curves become more similar to the trueerror. In both cases,

although the bounds are loose, they can still prove useful in determining theoptimal set of sources

to consider.

31



2.8 A Few Words on Domain Adaptation

We now very briefly turn to the related problem of domain adaptation with multiple sources, and

describe a few more recent results. The key distinction between this setting and the one described

above is that theunderlying distributionover data points is different for each source, while the

labeling functions are assumed to be similar. For example, suppose that we would like to com-

bine data from many users in order to train a personalized spam filter for each user. While many

users are likely to agree on whether or not a particular message should belabeled as spam, the

distribution over a given user’s email could be very different from the distribution over another’s.

Domain adaptation problems arise in a variety of other applications of machine learning too, and

are especially common in face recognition systems [99], speech and acoustic modeling [92], and

natural language processing [27, 21].

As before, we are presented withK distinct samples or sources of dataS1, , · · · , SK . Now each

sourceSi is associated with both an unknown labeling functionfi, and an unknown distributionDi

over input points. SourceSi containsni training instances distributed according toDi and labeled

by fi. Our goal is to use these instances to train a model to perform well on atarget domain

〈DT , fT 〉, which may or may not be the same domain as one of the sources.

For simplicity, we limit the discussion of domain adaptation to binary classification. For each

sourcei, let ei(h) be the error of functionh on sourcei, soei(h) = Ex∼Di
[|h(x) − fi(x)|], and

defineeT similarly for the target domain. Let̂ei(h) be the empirical error ofh on sourcei, i.e., the

fraction of points inSi for whichh chooses the wrong label. We examine algorithms that minimize

convex combinations of training error over the labeled examples from eachsource domain. Given

a vectorα = (α1, · · · , αK) of nonnegative domain weights with
∑K

i=1 αi = 1, we define the

empiricalα-weighted error of functionh as

êα(h) =
K
∑

i=1

αiêi(h) =
K
∑

i=1

αi

ni

∑

x∈Si

|h(x) − fi(x)| .

The trueα-weighted erroreα(h) is defined analogously. Finally, letDα be a mixture of theK

source distributions with mixing weights equal to the components ofα.

We describe and contrast two alternative bounds on the error of the hypothesis that minimizes

the α-weighted error. The first bound considers the quality and quantity of data available from

32



each source individually, ignoring the relationships between sources. On the contrary, the second

bound (which also appears, with proof, in John Blitzer’s dissertation [19]) depends directly on the

distance between the target domain and aweighted combinationof source domains. This allows

us to achieve significantly tighter bounds when there exists a mixture of sources that approximates

the target better than any single source.

In order to simplify the presentation of the trade-offs that arise, we state thebound in terms of

VC dimension, but similar bounds could be obtained using alternate measure ofcomplexity. Both

measure the distance between domains using theH∆H-divergence,

dH∆H(D,D′) = 2 sup
h,h′∈H

∣

∣Prx∼D

[

h(x) 6= h′(x)
]

− Prx∼D′
[

h(x) 6= h′(x)
]∣

∣ .

If the H∆H-divergence is small, pairs of functions that appear similar to each other onD also

appear similar to each other onD′. Additionally, this quantity can be efficiently approximated

using a finite number ofunlabeledsamples of the distributionsD andD′ [16].

2.8.1 A Bound Using Pairwise Divergence

The first bound we present considers the pairwiseH∆H-divergence between each source and the

target, and illustrates the trade-off that exists between minimizing the average divergence of the

training data from the target and weighting all points equally to encourage faster convergence.

Somewhat surprisingly, the last term can be small even when there is not a single hypothesis that

works well for all heavily weighted sources. The proof of this theorem isin Appendix A2.3.

Theorem 5 Suppose we are givenni labeled instances from sourceSi for i = 1 . . .K. For a fixed

vector of weightsα, let ĥ = argminh∈H êα(h), and leth∗
T = argminh∈H eT (h). Then for any

δ ∈ (0, 1), with probability at least1 − δ,

eT (ĥ) ≤ eT (h∗
T ) + 2

√

√

√

√

K
∑

i=1

α2
i

2ni

(

d log(2n1:K) + log(1/δ)
)

+
K
∑

i=1

αi

(

2 min
h∈H

{eT (h) + ei(h)} + dH∆H(Di, DT )

)

.

33



In the special case in which theH∆H-divergence between each source and the target is 0 and

all data instances are weighted equally, the bound in Theorem 5 becomes

eT (ĥ) ≤ eT (h∗
T ) +

√

2 (d log(2n1:K) + log(1/δ))

n1:K
+ 2

K
∑

i=1

ni

n1:K
min
h∈H

{eT (h) + ei(h)} .

Notice that this bound is nearly identical to Theorem 2. Aside from the constants in the complexity

term, the only difference is that eachεi term is replaced withminh∈H {eT (h) + ei(h)}, which can

be viewed as an alternate measure of label error between sourceSi and the target, and is equivalent

when the target function is a member ofH.

2.8.2 A Bound Using Combined Divergence

In the previous bound, the divergence between sources is measured pairwise, so it is not necessary

to have a single hypothesis that is good for every source domain. However, this bound does not

give us the flexibility to take advantage of domain structure when calculating unlabeled divergence.

The alternate bound given in Theorem 6 allows us to effectively alter the source distribution by

changingα. This has two consequences. First, we must now demand that there exists ahypothesis

h∗ which has low error on both theα-weighted convex combination of sources and the target

domain. Second, we measureH∆H-divergence between the target and a mixture of sources, rather

than between the target and each single source. The proof of this theorem is in Appendix A2.4.

Theorem 6 Suppose we are givenni labeled instances from sourceSi for i = 1 . . .K. For a fixed

vector of weightsα, let ĥ = argminh∈H êα(h), and leth∗
T = argminh∈H eT (h). Then for any

δ ∈ (0, 1), with probability at least1 − δ,

eT (ĥ) ≤ eT (h∗
T ) + 2

√

√

√

√

K
∑

i=1

α2
i

2ni

(

d log(2n1:K) + log(1/δ)
)

+2 min
h

{

eT (h) +
K
∑

i=1

αiei(h)

}

+ dH∆H(Dα, DT ) .

34



2.9 Open Questions

There are a variety of open technical problems related to this work. For example, Theorems 5

and 6 provide bounds on the error of a classifier found by minimizing a weighted empirical error

term for a fixed weight vectorα. However, we do not have a general efficient algorithm for finding

the weight vectorα that minimizes the bound. It is also not known how these bounds will change

if the VC dimension is replaced by a more sophisticated measure of complexity as inTheorem 3,

though we believe it should be possible to derive analogous results.

More broadly, as mentioned above, the results described in this chapter can be viewed as a

simple theoretical foundation for rudimentary collaborative filtering. While there have been some

recent theoretical advancements in collaborative filtering (largely focused on techniques for low-

rank matrix completion), there is still a wide gap between theory and practice. One of the hardest

aspects of closing this gap is developing the right model for the problem; the simple models dis-

cussed in this chapter are not powerful enough to yield general practical algorithms, but the popular

matrix-completion models tend to discard valuable feature information that may be extremely im-

portant when there is only a small amount of training data available. The problem of developing

better models for collaborative filtering and some of the difficulties that arise are discussed in

Chapter 6.

35



Chapter 3

Learning from Collective Behavior

Collective behavior in large populations has been a subject of enduring interest in sociology and

economics, and has recently gained momentum in computer science. There is consequently now

an impressive literature on mathematical models of collective behavior for phenomena as diverse

as the diffusion of fads in social networks [58, 86, 132], voting behavior [58], housing choices

and segregation [113], herding behaviors in financial markets [131],information propagation on

blogs [96, 60], the transmission of infectious diseases or computer viruses [46, 18], the prevention

of water contamination [95], the spread of new agricultural or medical practices [110, 36], Holly-

wood trends [43], and the contagion properties of obesity [33]. The growing popularity of the Inter-

net has greatly increased the number of both controlled experiments [47, 49, 80, 111, 112, 83] and

open-ended systems (such as Wikipedia and many other instances of “human peer-production”)

that permit the logging and analysis of detailed collective behavioral data. It is natural to ask if

there are learning methods specifically tailored to such models and data.

In this chapter, we introduce a computational theory of learning from collective behavior, in

which the goal is to accurately model and predict the future behavior of a large population af-

ter observing their interactions during a training phase of polynomial length.We define a formal

model for efficient learning in such settings, and develop general theory for this model, including

a polynomial-time reduction of learning from collective behavior to more traditional i.i.d. learn-

ing. We define specific classes of agent strategies, including “crowd affinity” and complementary

“crowd aversion” classes, and provide provably efficient algorithms for learning from collective

behavior for these classes.

36



This material is based on joint work with Michael Kearns [77].

3.1 Overview

For decades, collective behavior has been a subject of interest in sociology and economics. The

specific mathematical models found throughout the collective behavior literature differ from one

another in terms of technical details, but generally share the significant underlying assumption that

each agent’s current behavior is entirely or largely determined by the recent behavior of the other

agents. Thus the collective behavior is asocialphenomenon. That is, the population evolves over

time according to its own internal dynamics. There is generally no exogenous“Nature” being

reacted to or injecting shocks to the collective.

In this chapter, we provide a new computational theory of learning from collective behavior.

We assume that each agenti in a population of sizeN acts according to a fixed but unknown

strategyci drawn from a known classC. A strategy probabilistically maps the current population

state to the next state or action for that agent, and each agent’s strategy maybe different. As is

common in much of the literature, there may also be a network structure governing the population

interaction, in which case strategies may map the local neighborhood state to next actions.

Learning algorithms in our model are given training data of the population behavior, either as

repeated finite-length trajectories from multiple initial states (anepisodicmodel), or in a single

unbroken trajectory from a fixed start state (ano-resetmodel). In either case, they must effi-

ciently (polynomially) learn to accurately predict or simulate (properties of) the future behavior of

the same population. Our framework may be viewed as a computational model for learning the

dynamics of an unknown Markov process — more precisely, a dynamic Bayes net — in which

our primary interest is in Markov processes inspired by simple models for social behavior. The

relationship between our results and prior work on parameter learning in Bayesian networks is

discussed in Section 3.2.2.

As a simple, concrete example of the kind of system we have in mind, consider apopulation in

which each agent makes a series of choices from a fixed set over time (such as what restaurant to

go to, or what political party to vote for). Like many previously studied models, we consider agents

who have a desire to behave like the rest of the population (because they want to visit the popular

37



restaurants, or want to vote for “electable” candidates). On the other hand, each agent may also

have different and unknown intrinsic preferences over the choices as well (based on cuisine and

decor, or the actual policies of the candidates). We consider models in which each agent balances

or integrates these two forces in deciding how to behave at each step [66]. Our main question is:

Can a learning algorithm watching the collective behavior of such a population for a short period

produce an accurate model of their future choices?

The assumptions of our model fit nicely with the literature cited above, much of which indeed

proposes simple stochastic models for how individual agents react to the current population state.

We emphasize from the outset the difference between our interests and those common in multiagent

systems and learning in games. In those fields, it is often the case that the agents themselves are

acting according to complex and fairly general learning algorithms (such asQ-learning [130], no-

regret learning [54], or fictitious play [23]). In contrast, while the agent strategies we consider

are certainly “adaptive” in a reactive sense, they are much simpler than general-purpose learning

algorithms, and we are interested in learning algorithms thatmodelthe full collective behavior.

Thus our interest is not in learning by the agents themselves, but at the higher level of an observer

of the population.

The primary contributions described in this chapter are the introduction of a computational

model for learning from collective behavior, the development of some general theory for this

model, the definition of specific classes of agent strategies, including variants of the “crowd affin-

ity” strategies sketched above, and complementary “crowd aversion” classes, and provably efficient

algorithms for learning from collective behavior for these same classes.

Chapter Outline: In Section 3.2, we introduce our main model for learning from collective be-

havior and discuss two natural variants. Section 3.3 introduces and motivates a number of specific

agent strategy classes that are broadly inspired by earlier sociologicalmodels and provides brief

simulations of the collective behaviors they can generate. Section 3.4 provides a general reduction

of learning from collective behavior to a generalized PAC-style model forlearning from i.i.d. data,

which is used subsequently in Section 3.5, where we give provably efficient algorithms for learn-

ing some of the strategy classes introduced in Section 3.3. Brief conclusionsand topics for further

research are given in Section 3.6.

38



3.2 The Model

In this section we describe a learning model in which the observed data is generated from obser-

vations of trajectories (defined shortly) of the collective behavior ofN interacting agents. The key

feature of the model is the fact that each agent’s next state or action is alwaysdetermined by the re-

cent actions of the other agents, perhaps combined with some intrinsic “preferences” or behaviors

of the particular agent. As we shall see, we can view our model as one forlearning certain kinds

of factored Markov processes that are inspired by models common in sociology and related fields.

Each agent may follow a different and possibly probabilistic strategy. We assume that the

strategy followed by each agent is constrained to lie in a known (and possibly large) class, but is

otherwise unknown. The learner’s ultimate goal is not to discover each individual agent strategy

per se, but rather to make accurate predictions of thecollectivebehavior in novel situations.

3.2.1 Agent Strategies and Collective Trajectories

The main components of our framework are as follows:

• State Space.At each time step, each agenti is in some statesi chosen from a known, finite

setS of sizeK. We often think ofK as being large, and thus want algorithms whose running

time scales polynomially inK and other parameters. We viewsi as theactiontaken by agent

i in response to the recent population behavior. The joint action vectors ∈ SN describes the

current global state of the collective.

• Initial State Distribution. We assume that the initial population states0 is drawn according

to a fixed but unknown distributionP overSN . During training, the learner is able to see

trajectories of the collective behavior in which the initial state is drawn fromP , and as in

many standard learning models, must generalize with respect to this same distribution.

• Agent Strategy Class.We assume that each agent’s strategy is drawn from a known class

C of (typically probabilistic) mappings from the recent collective behavior intothe agent’s

next state or action inS. We mainly consider the case in whichci ∈ C probabilistically maps

the current global states into agenti’s next state. However, much of the theory we develop

applies equally well to more complex strategies that might incorporate a longer history of

the collective behavior on the current trajectory.

39



Given these components, we can now define what is meant by acollective trajectory.

Definition 3 Let c ∈ CN be the vector of strategies for theN agents,P be the initial state dis-

tribution, andT ≥ 1 be an integer. AT -trajectory of c with respect to P is a random vari-

able 〈s0, · · · , sT 〉 in which the initial states0 ∈ SN is drawn according toP , and for each

t ∈ {1, · · · , T}, the componentst
i of the joint statest is obtained by applying the strategyci

to st−1.

Thus, a collective trajectory in our model is simply a Markovian sequence ofstates thatfactors

according to theN agent strategies — that is, a dynamic Bayes net [57]. Our interest is in cases in

which this Markov process is generated by particular models of social behavior.

3.2.2 The Learning Model

We now formally define the learning model we study. In our model, learning algorithms are given

access to an oracleOEXP(c, P, T ) that returns aT -trajectory〈s0, · · · , sT 〉 of c with respect to

P . This is thus anepisodicor resetmodel, in which the learner has the luxury of repeatedly ob-

serving the population behavior from random initial conditions. It is most applicable in (partially)

controlled, experimental settings [47, 49, 80, 111, 112, 83] where such “population resets” can

be implemented or imposed. In Section 3.2.3 below we define a perhaps more broadly applicable

variant of the model in which resets are not available; the algorithms we provide can be adapted

for this model as well (see Appendix A3.8).

The goal of the learner is to find agenerative modelthat can efficiently produce trajectories

from a distribution that is arbitrarily close to that generated by the true population. Thus, let

M̂(s0, T ) be a (randomized) model output by a learning algorithm that takes as input astart state

s0 and time horizonT , and outputs a randomT -trajectory, and letQM̂ denote the distribution over

trajectories generated bŷM when the start state is distributed according toP . Similarly, let Qc

denote the distribution over trajectories generated byOEXP(c, P, T ). Then the goal of the learning

algorithm is to find a model̂M making theL1 distanceε(QM̂ , Qc) betweenQM̂ andQc small,

where

ε(QM̂ , Qc) ≡
∑

〈s0,··· ,sT 〉

∣

∣QM̂ (〈s0, · · · , sT 〉) − Qc(〈s0, · · · , sT 〉)
∣

∣ .

40



Note that we have defined the output of the learning algorithm to be a “black box” that simply

produces trajectories from initial states. Of course, it would be natural toexpect that this black

box operates by having good approximations to every agent strategy inc, and using collective

simulations of these to produce trajectories, but we choose to define the output M̂ in a more general

way since there may be other approaches. Second, we note that our learning criteria is both strong

(see below for a discussion of weaker alternatives) and useful, in the sense that ifε(QM̂ , Qc) is

smaller thanε, then we can samplêM to obtainO(ε)-good approximations to the expectation of

any (bounded)functionof trajectories. Thus, for instance, we can useM̂ to answer questions like

“What is the expected number of agents playing the plurality action afterT steps?” or “What is

the probability the entire population is playing the same action afterT steps?”

Our algorithmic results consider cases in which the agent strategies may themselves already

be rather rich, in which case the learning algorithm should be permitted resources commensurate

with this complexity. For example, the crowd affinity models have a number of parameters that

scales with the number of actionsK. More generally, we usedim(C) to denote the complexity or

dimension ofC; in all of our imagined applicationsdim(·) is either the VC dimension for determin-

istic classes, or one of its generalizations to probabilistic classes (such as pseudo-dimension [65],

fat-shattering dimension [74], combinatorial dimension [65], etc.).

We are now ready to define our learning model.

Definition 4 Let C be an agent strategy class over actionsS. We say thatC is polynomially

learnable from collective behavior if there exists an algorithmA such that for any population

sizeN ≥ 1, anyc ∈ CN , any time horizonT , any distributionP overSN , and anyε > 0 and

δ > 0, given access to the oracleOEXP(c, P, T ), algorithmA runs in time polynomial inN , T ,

dim(C), 1/ε, and1/δ, and outputs a polynomial-time modelM̂ such that with probability at least

1 − δ, ε(QM̂ , Qc) ≤ ε.

Note that if we cared only about sample complexity and not efficiency, we could apply Das-

gupta’s results on parameter learning in Bayesian networks [42] to show that any classC with finite

pseudo-dimensiondim(C) is learnable from collective behavior from a number of samples polyno-

mial in N , T , dim(C), 1/ε, and1/δ. However, Dasgupta’s analysis involves directly bounding the

41



pseudo-dimension of the class of Bayesian networks and therefore does not provide any algorith-

mic insight. More recently, Abbeel et al. [1] showed that efficient parameter learning in Bayesian

networks is possible when nodes have bounded in-degree. Since the maximum in-degree in our

setting isN , their techniques would lead to an exponential dependence on the number of agents in

both the run time and sample complexity.

On the other hand, the guarantees of both Dasgupta and Abbeel et al. are stronger than ours

in the sense that they require low KL divergence between the true joint distribution and the joint

distribution induced by the model while we ask for only lowL1 distance. For Abbeel et al., this

results in an inverse dependence in the sample complexity on the smallest conditional probability

in the network, which we avoid. Dasgupta gets around this problem by explicitly restricting the

space of models to those in which all probabilities are bounded away from zero.

We now discuss two reasonable variations on the model we have presented.

3.2.3 A No-Reset Variant

The model above assumes that learning algorithms are given access to repeated, independent tra-

jectories via the oracleOEXP, which is analogous to theepisodicsetting of reinforcement learning.

As in that field, we may also wish to consider an alternative “no-reset” modelin which the learner

has access only to asingle, unbroken trajectory of states generated by the Markov process. To do

so we must formulate an alternative notion of generalization, since on the onehand, the (distri-

bution of the) initial state may quickly become irrelevant as the collective behavior evolves, but

on the other, the state space is exponentially large and thus it is unrealistic to expect to model the

dynamics from anarbitrary state in polynomial time.

One natural formulation allows the learner to observe any polynomially long prefix of a trajec-

tory of states for training, and then to announce its readiness for the test phase. Ifs is the final state

of the training prefix, we can simply ask that the learner output a modelM̂ that generates accurate

T -step trajectoriesforward from the current states. In other words,M̂ should generate trajectories

from a distribution close to the distribution overT -step trajectories that would be generated if each

agent continued choosing actions according to his strategy. The length ofthe training prefix is

allowed to be polynomial inT and the other parameters.

While aspects of the general theory described below are particular to ourmain (episodic)

42



model, we note here that the algorithms we give for specific classes can in fact be adapted to

work in the no-reset model as well. Such extensions are discussed in Appendix A3.8.

3.2.4 Weaker Criteria for Learnability

We have chosen to formulate learnability in our model using a rather strong success criterion —

namely, the ability to (approximately) simulate the full dynamics of the unknown Markov process

induced by the population strategyc. In order to meet this strong criterion, we have also allowed the

learner access to a rather strong oracle, which returns allintermediatestates of sampled trajectories.

There may be natural scenarios, however, in which we are interested only in specific fixed

properties of collective behavior, and thus a weaker data source may suffice. For instance, suppose

we have a fixed, real-valuedoutcome functionF (sT ) of final states (for instance, the fraction of

agents playing the plurality action at timeT ), with our goal being to simply learn a functionG that

maps initial statess0 and a time horizonT to real values, and approximately minimizes

Es0∼P

[∣

∣G(s0, T ) − EsT

[

F (sT )
]∣

∣

]

wheresT is a random variable that is the final state of aT -trajectory ofc from the initial state

s0. Clearly in such a model, while it certainly would suffice, there may be no needto directly

learn a full dynamical model. It may be feasible to satisfy this criterion without even observing

intermediate states, but only seeing initial state and final outcome pairs〈s0, F (sT )〉, closer to a

traditional regression problem.

It is not difficult to define simple agent strategy classes for which learningfrom only

〈s0, F (sT )〉 pairs is provably intractable, yet efficient learning is possible in our model.This

idea is formalized in Theorem 7 below. The idea behind the proof is that the population forms a

rather powerful computational device mapping initial states to final states. Inparticular, it can be

thought of as a circuit of depthT with “gates” chosen fromC, with the only real constraint being

that each layer of the circuit is an identical sequence ofN gates which are applied to the outputs of

the previous layer. Intuitively, if only initial states and final outcomes are provided to the learner,

learning should be as difficult as a corresponding PAC-style problem. Onthe other hand, by ob-

serving intermediate state vectors we can build arbitrarily accurate models foreach agent, which

43



in turn allows us to accurately simulate the full dynamical model. A sketch of the full proof is in

Appendix A3.1.

Theorem 7 Let C be the class of 2-inputAND and OR gates, and one-inputNOT gates. ThenC
is polynomially learnable from collective behavior, but there exists a binary outcome functionF

such that learning an accurate mapping from start statess0 to outcomesF (sT ) without observing

intermediate state data is intractable.

Conversely, it is also not difficult to concoct cases in which learning the full dynamics in

our sense is intractable, but we can learn to approximate a specific outcome function from only

〈s0, F (sT )〉 pairs. Intuitively, if each agent strategy is very complex but the outcome function

applied to final states is sufficiently simple (e.g., constant), we cannot but donot need to model the

full dynamics in order to learn to approximate the outcome.

We note that there is an analogy here to the distinction betweendirect andindirect approaches

to reinforcement learning [75]. In the former, one learns a policy that is specific to a fixed reward

function without learning a model of next-state dynamics; in the latter, at possibly greater cost, one

learns an accurate dynamical model, which can in turn be used to compute goodpolicies for any

reward function. For the remainder of this chapter, we focus on the modelas we formalized it in

Definition 4, and leave for future work the investigation of such alternatives.

3.3 Social Strategy Classes

Before providing our general theory, including the reduction from collective learning to i.i.d. learn-

ing, we first illustrate and motivate the definitions so far with some concrete examples of social

strategy classes, some of which we analyze in detail in Section 3.5.

3.3.1 Crowd Affinity: Mixture Strategies

The first class of agent strategies we discuss are meant to model settings inwhich each individual

wishes to balance their intrinsic personal preferences with a desire to “follow the crowd.” We

broadly refer to strategies of this type ascrowd affinitystrategies (in contrast to thecrowd aversion

strategies discussed shortly), and examine a couple of natural variants.

44



As a motivating example, imagine that there areK restaurants, and each week, every member

of a population chooses one of the restaurants in which to dine. On the one hand, each agent has

personal preferences over the restaurants based on the cuisine, service, ambiance, and so on. On

the other, each agent has some desire to go to the currently “hot” restaurants — that is, where many

or most other agents have been recently. To model this setting, letS be the set ofK restaurants,

and supposes ∈ SN is the population state vector indicating where each agent dined last week.

We can summarize the population behavior by the vector or distributionf ∈ [0, 1]K , wherefa

is the fraction of agents dining in restauranta in s. Similarly, we might represent the personal

preferences of a specific agent by another distributionw ∈ [0, 1]K in which wa represents the

probability this agent would attend restauranta in the absence of any information about what the

population is doing. One natural way for the agent to balance their preferences with the population

behavior would be to choose a restaurant according to the mixture distribution (1 − α)f + αw

for some agent-dependent mixture coefficientα. Such models have been studied in the sociology

literature [66] in the context of belief formation.

We are interested in collective systems in which every agenti has some unknown preferences

wi and mixture coefficientαi, and in each weekt chooses its next restaurant according to(1 −
αi)f

t + αiwi, which thus probabilistically yields the next population distributionf t+1. How do

such systems behave? And how can we learn to model their macroscopic properties from only

observed behavior, especially when the number of choicesK is large?

An illustration of the rich collective behavior that can already be generatedfrom such simple

strategies is shown in Figure 3.1(a). Here we show a single but typical 1000-step simulation of

collective behavior under this model, in whichN = 100 and each agent’s individual preference

vectorw puts all of its weight on just one of 10 possible actions (represented as different shades

of gray, or colors in the full-color version); this action was selected independently at random for

each agent. All agents have anα value of just 0.01, and thus are selecting from the population

distribution 99% of the time. Each row shows the population state at a given step, with time

increasing down the horizontal axis of the image. The initial state was chosenuniformly at random.

It is interesting to note the dramatic difference betweenα = 0 (in which rapid convergence to

a common color is certain) and this small value forα; despite the fact that almost all agents play

the population distribution at every step, revolving horizontal waves of near-consensus to different

45



Figure 3.1Sample simulations of a) the crowd affinity mixture model, b) the crowd affinity multi-
plicative model, and c) the agent affinity model. See the text for details.

(a)

20 40 60 80 100

100

200

300

400

500

600

700

800

900

1000

(b)

20 40 60 80 100

100

200

300

400

500

600

700

800

900

1000

(c)

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

choices are present, with no final convergence in sight. The slight “personalization” of population-

only behavior is enough to dramatically change the collective behavior. Broadly speaking, it is such

properties we would like a learning algorithm to model and predict from sufficient observations.

3.3.2 Crowd Affinity: Multiplicative Strategies

One possible objection to the crowd affinity mixture strategies described above is that each agent

can be viewed asrandomlychoosing whether toentirely follow the population distribution (with

probability1−α) or toentirelyfollow their personal preferences (with probabilityα) at each time

step. A more realistic model might have each agent trulycombinethe population behavior with

their preferences at every step.

Consider, for instance, how an American citizen might alter their anticipated presidential voting

decision over time in response to recent primary or polling news. If their first choice of candidate

— say, an Independent or Libertarian candidate — appears over time to be“unelectable” in the

general election due to their inability to sway large numbers of Democratic and Republican voters,

a natural and typical response is for the citizen to shift their intended vote towhichever of the front-

runners they most prefer or least dislike. In other words, the low popularity of their first choice

causes that choice to be dampened or eradicated; unlike the mixture model above, where weightα

46



is always given to personal preferences, here there may remainnoweight on this candidate.

One natural way of defining a general such class of strategies is as follows. As above, let

f ∈ [0, 1]K , wherefa is the fraction of agents dining in restauranta in the current states. Similar

to the mixture strategies above, letwi ∈ [0, 1]K be a vector ofweightsrepresenting the intrinsic

preferences of agenti over actions. Then define the probability that agenti plays actiona to be

fa ·wi,a/Z(f ,wi), where the normalizing factor isZ(f ,wi) =
∑

b∈S fb ·wi,b. Thus, in suchmul-

tiplicative crowd affinity models, the probability the agent takes an action is always proportional

to the product of their preference for it and its current popularity.

Despite their similar motivation, the mixture and multiplicative crowd affinity strategiescan

lead to dramatically different collective behavior. Perhaps the most obvious difference is that in

the mixture case, if agenti has a strong preference for actiona there isalwayssome minimum

probability (αiwi,a) they take this action, whereas in the multiplicative case even a strong prefer-

ence can be eradicated from expression by small or zero values for thepopularityfa.

In Figure 3.1(b), we again show a single but typical 1000-step,N = 100 simulation for the

multiplicative model in which agent’s individual preference distributionsw are chosen to be ran-

dom normalized vectors over 10 actions. The dynamics are now quite different than for the additive

crowd affinity model. In particular, now there is never near-consensusbut a gradual dwindling of

the shades or colors represented in the population — from the initial full diversity down to 3 col-

ors remaining at approximatelyt = 100, until by t = 200 there is a stand-off in the population

between red and light green. Unlike the additive models, colors die out in thepopulation perma-

nently. There is also clear vertical structure corresponding to strong conditional preferences of the

agents once the stand-off emerges.

3.3.3 Crowd Aversion and Other Variants

It is easy to transform the mixture or multiplicative crowd affinity strategies intocrowd aversion

strategies — that is, in which agents wish to balance or combine their personalpreferences with

a desire to actdifferently than the population at large. This can be accomplished in a variety of

simple ways. For instance, iff is the current distributions over actions in the population, we can

simply define a kind of “inverse” to the distribution by lettingga = (1 − fa)/(K − 1), where

K − 1 =
∑

b∈S(1 − fb) is the normalizing factor, and applying the strategies above tog rather

47



thanf . Now each agent exhibits a tendency to “avoid the crowd”, moderated as before by their

own preferences.

Of course, there is no reason to assume that the entire population is crowd-seeking, or crowd-

avoiding; more generally we would allow there to be both types of individuals present. Further-

more, we might entertain other transforms of the population distribution than justga above. For

instance, we might wish to still consider crowd affinity, but to first “sharpen” the distribution by

replacing eachfa with f2
a and normalizing, then applying the models discussed above to the result-

ing vector. This has the effect of magnifying the attraction to the most popularactions. In general

our algorithmic results are robust to a wide range of such variations.

3.3.4 Agent Affinity and Aversion Strategies

In the two versions of crowd affinity strategies discussed above, an agent has personal preferences

over actions, and also reacts to the current population behavior, but only in an aggregate fashion.

An alternative class of strategies that we callagent affinitystrategies instead allows agents to prefer

to agree (or disagree) in their choice with specific other agents.

For a fixed agent, such a strategy can be modeled by a weight vectorw ∈ [0, 1]N , with one

weight for eachagentin the population rather than each action. We define the probability that this

agent takes actiona if the current global state iss ∈ SN to be proportional to
∑

i:si=a wi. In this

class of strategies, the strength of the agent’s desire to take the same action as agenti is deter-

mined by how large the weightwi is. The overall behavior of this agent is then probabilistically

determined by summing over all agents in the fashion above.

In Figure 3.1(c), we show a single but typical simulation, again withN = 100 but now with

a much shorter time horizon of 200 steps and a much larger set of 100 actions. All agents have

random distributions as their preferences over other agents; this model is similar to traditional

diffusion dynamics in a dense, random (weighted) network, and quickly converges to global con-

sensus.

We leave the analysis of this strategy class to future work, but remark that inthe simple case

in which K = 2, learning this class is closely related to the problem of learning perceptrons

under certain noise models in which the intensity of the noise increases with proximity to the

separator [35, 24] and seems at least as difficult.

48



3.3.5 Incorporating Network Structure

Many of the social models inspiring this work involve a network structure thatdictates or restricts

the interactions between agents [86]. It is natural to ask if the strategy classes discussed here can

be extended to the scenario in which each agent is influenced only by his neighbors in a given

network. Indeed, it is straightforward to extend each of the strategy classes introduced in this

section to a network setting. For example, to adapt the crowd affinity and aversion strategy classes,

it suffices to redefinefa for each agenti to be the fraction of agents in the local neighborhood of

agenti choosing actiona. To adapt the agent affinity and aversion classes, it is necessary onlyto

require thatwj = 0 for every agentj outside the local neighborhood of agenti. By making these

simple modifications, the learning algorithms discussed in Section 3.5 can immediately be applied

to settings in which a network structure is given.

3.4 A Reduction to I.I.D. Learning

Since algorithms in our framework are attempting to learn to model the dynamics of afactored

Markov process in which each component is known to lie in the classC, it is natural to investigate

the relationship between learning just a single strategy inC and the entire Markovian dynamics.

One main concern might be effects of dynamic instability — that is, that even smallerrors in

models for each of theN components could be amplified exponentially in the overall population

model. In this section we show that this can be avoided. More precisely, we prove that if the

component errors are all small compared to1/(NT )2, the population model also has small error.

Thus fast rates of learning for individual components are polynomially preserved in the resulting

population model.

To show this, we give a reduction showing that if a classC of (possibly probabilistic) strategies

is polynomially learnable (in a sense that we describe shortly) from i.i.d. data,thenC is also poly-

nomially learnable from collective behavior. The key step in the reduction is the introduction of

the experimental distribution, defined below. Intuitively, the experimental distribution is meant to

capture the distribution over states that are encountered in the collective setting over repeated trials.

Polynomial i.i.d. learning on this distribution leads to polynomial learning from the collective.

49



3.4.1 A Reduction for Deterministic Strategies

In order to illustrate some of the key ideas we use in the more general reduction, we begin by

examining the simple case in which the number of actionsK = 2 and and each strategyc ∈ C is

deterministic. We show that ifC is polynomially learnable in the (distribution-free) PAC model,

thenC is polynomially learnable from collective behavior.

In order to exploit the fact thatC is PAC learnable, it is first necessary to define a single

distribution over states on which we would like to learn.

Definition 5 For any initial state distributionP , strategy vectorc, and sequence lengthT , the

experimental distribution DP,c,T is the distribution over state vectorss obtained by querying

OEXP(c, P, T ) to obtain〈s0, · · · , sT 〉, choosingt uniformly at random from{0, · · · , T − 1}, and

settings = st.

We denote this distribution simply asD whenP , c, andT are clear from context. Given access

to the oracleOEXP, we can sample pairs〈s, ci(s)〉 wheres is distributed according toD using the

following procedure:

1. QueryOEXP(c, P, T ) to obtain〈s0, · · · , sT 〉.

2. Chooset ∈ {0, · · · , T − 1} uniformly at random.

3. Return
〈

st, st+1
i

〉

.

If C is polynomially learnable in the PAC model, then by definition, with access to the oracle

OEXP, for anyδ, ε > 0, it is possible to learn a modelĉi such that with probability1 − (δ/N),

Prs∼D [ĉi(s) 6= ci(s)] ≤
ε

NT

in time polynomial inN , T , 1/ε, 1/δ, and the VC dimension ofC using the sampling procedure

above; the dependence onN andT come from the fact that we are requesting a confidence of

1 − (δ/N ) and an accuracy ofε/(TN). We can learn a set of such strategiesĉi for all agentsi at

the cost of an additional factor ofN .

Consider a new sequence〈s0, · · · , sT 〉 returned by the oracleOEXP. By the union bound, with

probability1 − δ, the probability that there exists any agenti and anyt ∈ {0, · · · , T − 1}, such

50



that ĉi(s
t) 6= ci(s

t) is less thanε. If this is not the case (i.e., if̂ci(s
t) = ci(s

t) for all i and t)

then the same sequence of states would have been reached if we had instead started at states0 and

generated each additional statest by lettingst
i = ci(s

t−1). This implies that with probability1−δ,

ε(QM̂ , Qc) ≤ ε, andC is polynomially learnable from collective behavior.

3.4.2 A General Reduction

Multiple analogs of the definition of learnability in the PAC model have been proposed for distri-

bution learning settings. The probabilistic concept model [74] presents a definition for learning

conditional distributions over binary outcomes, while later work [78] proposes a definition for

learning unconditional distributions over larger outcome spaces. We combine the two into a single

PAC-style model for learning conditional distributions over large outcome spaces from i.i.d. data

as follows.

Definition 6 Let C be a class of probabilistic mappings from an inputx ∈ X to an outputy ∈ Y
whereY is a finite set. We say thatC is polynomially learnable if there exists an algorithmA

such that for anyc ∈ C and any distributionD overX , if A is given access to an oracle producing

pairs 〈x, c(x)〉 with x distributed according toD, then for anyε, δ > 0, algorithmA runs in time

polynomial in1/ε, 1/δ, anddim(C) and outputs a function̂c such that with probability1 − δ,

Ex∼D





∑

y∈Y

|Pr [c(x) = y] − Pr [ĉ(x) = y]|



 ≤ ε .

We could have chosen instead to require that the expected KL divergence betweenc andĉ be

bounded. Using Jensen’s inequality and Lemma 12.6.1 of Cover and Thomas [38], it is simple

to show that if the expected KL divergence between two distributions is bounded byε, then the

expectedL1 distance is bounded by
√

2 ln(2)ε. Thus any class that is polynomially learnable

under this alternate definition is also polynomially learnable under ours.

Theorem 8 For any classC, if C is polynomially learnable according to Definition 6, thenC is

polynomially learnable from collective behavior.

Proof: This proof is very similar in spirit to the proof of the reduction for the deterministiccase.

However, several tricks are needed to deal with the fact that trajectories are now random variables,

51



even given a fixed start state. In particular, it is no longer the case that we can argue that starting

at a given start state and executing a set of strategies that are “close to”the true strategy vector

usually yieldsthe samefull trajectory we would have obtained by executing the true strategies

of each agent. Instead, due to the inherent randomness in the strategies,we must argue that the

distribution over trajectories is similar when the estimated strategies are sufficiently close to the

true strategies.

To make this argument, we begin by introducing the idea of sampling from a distribution P1

using a “filtered” version of a second distributionP2 as follows. First, draw an outcomeω ∈ Ω

according toP2. If P1(ω) ≥ P2(ω), outputω. Otherwise, outputω with probabilityP1(ω)/P2(ω),

and with probability1 − P1(ω)/P2(ω), output an alternate action drawn according to a third dis-

tributionP3, where

P3(ω) =
P1(ω) − P2(ω)

∑

ω′:P2(ω′)<P1(ω′) P1(ω′) − P2(ω′)

if P1(ω) > P2(ω), andP3(ω) = 0 otherwise.

It is easy to verify that the output of this filtering algorithm is indeed distributedaccording to

P1. Additionally, notice that the probability that the output is “filtered” is

∑

ω:P2(ω)>P1(ω)

P2(ω)

(

1 − P1(ω)

P2(ω)

)

=
1

2
||P2 − P1||1 . (3.1)

As in the deterministic case, we make use of the experimental distributionD as defined in

Definition 5. If C is polynomially learnable as in Definition 6, then with access to the oracle

OEXP, for anyδ, ε > 0, it is possible to learn a modelĉi such that with probability1 − (δ/N),

Es∼D

[

∑

s∈S

|Pr [ci(s)=s] − Pr [ĉi(s)=s]|
]

≤
( ε

NT

)2
(3.2)

in time polynomial inN , T , 1/ε, 1/δ, anddim(C) using the three-step sampling procedure de-

scribed in the deterministic case; as before, the dependence onN andT stem from the fact that we

are requesting a confidence of1 − (δ/N) and an accuracy that is polynomial in bothN andT . It

is possible learn a set of such strategiesĉi for all agentsi at the cost of an additional factor ofN .

52



If Equation 3.2 is satisfied for agenti, then for anyτ ≥ 1, the probability of drawing a states

from D such that
∑

s∈S

|Pr [ci(s) = s] − Pr [ĉi(s) = s] | ≥ τ
( ε

NT

)2
(3.3)

is no more than1/τ .

Consider a new sequence〈s0, · · · , sT 〉 returned by the oracleOEXP. For eachst, consider the

actionst+1
i chosen by agenti. This action was chosen according to the distributionci. Suppose

instead we would like to choose this action according to the distributionĉi using a filtered version of

ci as described above. By Equation 3.1, the probability that the action choice of ci is “filtered” (and

thus not equal tost+1
i ) is half theL1 distance betweenci(s

t) and ĉi(s
t). From Equation 3.3, we

know that for anyτ ≥ 1, with probability at least1−1/τ , this probability is less thanτ(ε/(NT ))2,

so the probability of the new action being different fromst+1
i is less thanτ(ε/(NT ))2 +1/τ . This

is minimized whenτ = 2NT/ε, giving us a bound ofε/(NT ).

By the union bound, with probability1 − δ, the probability that there exists any agenti and

any t ∈ {1, · · · , T}, such thatst+1
i is not equal to the action we get by samplingĉi(s

t) using the

filtered version ofci must then be less thanε. As in the deterministic version, if this isnot the case,

then the same sequence of states would have been reached if we had instead started at states0 and

generated each additional statest by lettingst
i = ĉi(s

t−1) filtered usingci. This implies that with

probability1 − δ, ε(QM̂ , Qc) ≤ ε, andC is polynomially learnable from collective behavior.

3.5 Learning Social Strategy Classes

We now turn our attention to efficient algorithms for learning some of the specific social strategy

classes introduced in Section 3.3. We focus on the two crowd affinity model classes. Recall

that these classes are designed to model the scenario in which each agenthas an intrinsic set of

preferences over actions, but simultaneously would prefer to choose the same actions chosen by

other agents. Similar techniques can be applied to learn the crowd aversion strategies.

Formally, letf be a vector representing the distribution over current states of the agents; if s is

the current state, then for each actiona, fa = |{i : si = a}|/N is the fraction of the population

currently choosing actiona. (Alternately, if there is a network structure governing interaction

among agents,fa can be defined as the fraction of nodes in an agent’s local neighborhood choosing

53



actiona.) We denote byDf the distribution over vectorsf induced by the experimental distribution

D over state vectorss. In other words, the probability of a vectorf underDf is the sum over all

state vectorss mapping tof of the probability ofs underD.

We focus on the problem of learning the parameters of the strategy of a single agenti in each

of the models. We assume that we are presented with a set of samplesM, where each instance

Im ∈ M consists of a pair〈fm, am〉. Herefm is the distribution over states of the agents andam

is the next action chosen by agenti. We assume that the state distributionsfm of these samples are

distributed according toDf . Given access to the oracleOEXP, such samples could be collected,

for example, using a three-step procedure like the one in Section 3.4.1. We show that each class

is polynomially learnable with respect to the distributionDf induced byanydistributionD over

states, and so by Theorem 8, also polynomially learnable from collective behavior.

While it may seem wasteful to gather only one data instance for each agenti from eachT -

trajectory, we remark that only small, isolated pieces of the analysis presented in this section rely

on the assumption that the state distributions of the samples are distributed according toDf . In

practice, the entire trajectories could be used for learning with no impact on the structure of the

algorithms. Additionally, while the analysis here is geared towards learning under the experimental

distribution, the algorithms we present can be applied without modification in the no-reset variant

of the model; see Appendix A3.8.

3.5.1 Learning Crowd Affinity Mixture Models

In Section 3.3.1, we introduced the class of crowd affinity mixture model strategies. Such strategies

are parameterized by a (normalized) weight vectorw and parameterα ∈ [0, 1]. The probability

that agenti chooses actiona given that the current state distribution isf is thenαfa+(1−α)wa. In

this section, we show that this class of strategies is polynomially learnable fromcollective behavior

and sketch an algorithm for learning estimates of the parametersα andw.

Let I(x) be the indicator function that is 1 ifx is true and 0 otherwise. From the definition of

the model it is easy to see that for anym such thatIm ∈ M, for any actiona ∈ S, E [I(am = a)] =

αfa +(1−α)wa, where the expectation is over the randomness in the agent’s strategy. By linearity

54



of expectation,

E

[

∑

m:Im∈M

I(am = a)

]

=α
∑

m:Im∈M

fm,a+(1 − α)wa|M| . (3.4)

Standard results from uniform convergence theory say that we can approximate the left-hand

side of this equation arbitrarily well given a sufficiently large data setM. Replacing the expectation

with this approximation in Equation 3.4 yields a single equation with two unknown variables,α

andwa. To solve for these variables, we must construct apair of equations with two unknown

variables. We do so by splitting the data into instances wherefm,a is “high” and instances where

it is “low.”

Specifically, letM = |M|. For convenience of notation, assume without loss of generality

that M is even; ifM is odd, simply discard an instance at random. DefineMlow
a to be the set

containing theM/2 instances inM with the lowest values offm,a. Similarly, defineMhigh
a to be

the set containing theM/2 instances with the highest values offm,a. ReplacingM with Mlow
a

andMhigh
a respectively in Equation 3.4 gives us two linear equations with two unknowns. As long

as these two equations are linearly independent, we can solve the system ofequations forα, giving

us

α=
E
[

∑

m:Im∈Mhigh
a

I(am =a)−∑m:Im∈Mlow
a

I(am =a)
]

∑

m:Im∈Mhigh
a

fm,a −
∑

m:Im∈Mlow
a

fm,a
.

We can approximateα from data in the natural way, using

α̂=

∑

m:Im∈Mhigh
a

I(am=a)−∑m:Im∈Mlow
a

I(am=a)
∑

m:Im∈Mhigh
a

fm,a −
∑

m:Im∈Mlow
a

fm,a
. (3.5)

By Hoeffding’s inequality and the union bound, for anyδ > 0, with probability1 − δ,

|α − α̂| ≤
√

ln(4/δ)M
∑

m:Im∈Mhigh
a

fm,a −
∑

m:Im∈Mlow
a

fm,a

= (1/Za)
√

ln(4/δ)/M , (3.6)

where

Za =
1

M/2

∑

m:Im∈Mhigh
a

fm,a −
1

M/2

∑

m:Im∈Mlow
a

fm,a .

The quantityZa measures the difference between the mean value offm,a among instances with

55



“high” values offm,a and the mean value offm,a among instances with “low” values. While this

quantity is data-dependent, standard uniform convergence theory tells us that it is stable once the

data set is large. From Equation 3.6, we know that if there is an actiona for which this difference

is sufficiently high, then it is possible to obtain an accurate estimate ofα given enough data. If,

on the other hand, no sucha exists, it follows that there is very little variance in the population

distribution over the sample. We argue below that it is not necessary to learnα in order to mimic

the behavior of an agenti if this is the case.

For now, assume thatZa is sufficiently large for at least one value ofa, and call this valuea∗.

We can use the estimate ofα to obtain estimates of the weights for each action. From Equation 3.4,

it is clear that for anya,

wa =
E
[
∑

m:Im∈M I(am = a)
]

− α
∑

m:Im∈M fm,a

(1 − α)M
.

We estimate this weight using

ŵa =

∑

m:Im∈M I(am = a) − α̂
∑

m:Im∈M fm,a

(1 − α̂)M
. (3.7)

The following lemma shows that given sufficient data, the error in these estimates is small

whenZa∗ is large.

Lemma 8 Let a∗ = argmaxa∈S Za, and letα̂ be calculated as in Equation 3.5 witha = a∗. For

eacha ∈ S, let ŵa be calculated as in Equation 3.7. For sufficiently largeM , for anyδ > 0, with

probability1 − δ,

|α − α̂| ≤ (1/Za∗)
√

ln((4 + 2K)/δ)/M ,

and for all actionsa,

|wa − ŵa| ≤
((1 − α̂)Za∗/

√
2 + 2)

√

ln((4 + 2K)/δ)

Za∗(1 − α̂)2
√

M − (1 − α̂)
√

ln((4 + 2K)/δ)
.

The proof of this lemma appears in Appendix A3.2. It relies heavily on the following technical

lemma for bounding the error of estimated ratios, which is proved in Appendix A3.3 and used

56



frequently throughout the remainder of this chapter.

Lemma 9 For any positiveu, û, v, v̂, k, andε such thatεk < v, if |u − û| ≤ ε and |v − v̂| ≤ kε,

then
∣

∣

∣

∣

u

v
− û

v̂

∣

∣

∣

∣

≤ ε(v + uk)

v(v − εk)
.

Now that we have bounds on the error of the estimated parameters, we can bound the expected

L1 distance between the estimated model and the real model.

Lemma 10 For sufficiently largeM ,

Ef∼Df

[

∑

a∈S

|(αfa + (1 − α)wa) − (α̂fa + (1 − α̂)ŵa)|
]

≤ 2
√

ln((4 + 2K)/δ)

Za∗
√

M
+ min

{

K(Za∗/
√

2 + 2)
√

ln((4 + 2K)/δ)

Za∗(1 − α̂)
√

M −
√

ln((4 + 2K)/δ)
, 2(1 − α̂)

}

.

In this proof of this lemma, which appears in Appendix A3.4, the quantity

∑

a∈S

|(αfa + (1 − α)wa) − (α̂fa + (1 − α̂)ŵa)|

is boundeduniformly for all f using the error bounds. The bound on the expectation follows

immediately.

It remains to show that we can still bound the error whenZa∗ is zero or very close to zero. We

present a light sketch of the argument here; more details appear in Appendix A3.5.

Let ηa andµa be the true median and mean of the distribution from which the random variables

fm,a are drawn. Letfhigh
a be the mean value of the distribution overfm,a conditioned onfm,a >

ηa. Let f̄high
a be the empirical average offm,a conditioned onfm,a > ηa. Finally, let f̂high

a =

(2/M)
∑

m:Im∈Mhigh
a

fm,a be the empirical average offm,a conditioned onfm,a being greater

than theempiricalmedian. We can calculatêfhigh
a from data.

We can apply standard arguments from uniform convergence theory to show thatfhigh
a is close

to f̄high
a , and in turn that̄fhigh

a is close tof̂high
a . Similar statements can be made for the analogous

quantitiesf low
a , f̄ low

a , andf̂ low
a . By noting thatZa = f̂high

a − f̂ low
a this implies that ifZa is small,

57



then the probability that a random value offm,a is far from the meanµa is small. When this is the

case, it is not necessary to estimateα directly. Instead, we set̂α = 0 and

ŵa =
1

M

∑

m:Im∈M

I(am = a) .

Applying Hoeffding’s inequality again, it is easy to show that for eacha, ŵa is very close to

αµa +(1−α)wa, and from here it can be argued that theL1 distance between the estimated model

and the real model is small.

Thus for any distributionD over state vectors, regardless of the corresponding value ofZa∗ , it

is possible to build an accurate model for the strategy of agenti in polynomial time. By Theorem 8,

this implies that the class is polynomially learnable from collective behavior.

Theorem 9 The class of crowd affinity mixture model strategies is polynomially learnable from

collective behavior.

3.5.2 Learning Crowd Affinity Multiplicative Models

In Section 3.3.2, we introduced the crowd affinity multiplicative model. In this model,strategies

are parameterized only by a weight vectorw. The probability that agenti chooses actiona is

simplyfawa/
∑

b∈S fbwb.

Although the motivation for this model is similar to that for the mixture model, the dynamics

of the system are quite different (see the simulations and discussion in Section 3.3), and a very

different algorithm is necessary to learn individual strategies. In this section, we show that this

class is polynomially learnable from collective behavior, and sketch the corresponding learning

algorithm. The algorithm we present is based on a simple but powerful observation. In particular,

consider the following random variable:

χm
a =











1/fm,a if fm,a > 0 andam = a ,

0 otherwise.

Suppose that for allm such thatIm ∈ M, it is the case thatfm,a > 0. Then by the definition of

58



the strategy class and linearity of expectation,

E

[

∑

m:Im∈M

χm
a

]

=
∑

m:Im∈M

1

fm,a

(

fm,awa
∑

s∈S fm,sws

)

= wa

∑

m:Im∈M

1
∑

s∈S fm,sws
,

where the expectation is over the randomness in the agent’s strategy. Noticethat this expression

is the product of two terms. The first,wa, is precisely the value we would like to calculate. The

second term is something that depends on the set of instancesM, but does notdepend on action

a. This leads to the key observation at the core of our algorithm. Specifically,if we have a second

actionb such thatfm,b > 0 for all m such thatIm ∈ M, then

wa

wb
=

E
[
∑

m:Im∈M χm
a

]

E
[
∑

m:Im∈M χm
b

] .

Although we do not know the values of these expectations, we can approximate them arbitrarily

well given enough data. Since we have assumed (so far) thatfm,a > 0 for all m ∈ M, and we

know thatfm,a represents a fraction of the population, it must be the case thatfm,a ≥ 1/N and

χm
a ∈ [0, N ] for all m. By a standard application of Hoeffding’s inequality and the union bound,

we see that for anyδ > 0, with probability1 − δ,

∣

∣

∣

∣

∣

∑

m:Im∈M

χm
a − E

[

∑

m:Im∈M

χm
a

]∣

∣

∣

∣

∣

≤
√

N ln(2/δ)

2|M| . (3.8)

This leads almost immediately to the following lemma. The role ofβ in this lemma may appear

somewhat mysterious. It comes the fact that we are bounding the error ofa ratio of two terms.

An application of Lemma 9 using the bound in Equation 3.8 gives us a factor ofχa,b + χb,a in

the numerator and a factor ofχb,a in the denominator. This is problematic only whenχa,b is

significantly larger thanχb,a.

Lemma 11 Suppose thatfm,a > 0 andfm,b > 0 for all m such thatIm ∈ M. Then for anyδ > 0,

with probability1 − δ, for anyβ > 0, if χa,b ≤ βχb,a andχb,a ≥ 1, then if|M| ≥ N ln(2/δ)/2,

59



then
∣

∣

∣

∣

wa

wb
−
∑

m:Im∈M χm
a

∑

m:Im∈M χm
b

∣

∣

∣

∣

≤ (1 + β)
√

N ln(2/δ)
√

2|M| −
√

N ln(2/δ)
.

If we are fortunate enough to have a sufficient number of data instancesfor which fm,a > 0

for all a ∈ S, then this lemma supplies us with a way of approximating the ratios between all pairs

of weights and subsequently approximating the weights themselves. In general, however, this may

not be the case. Luckily, it is possible to estimate the ratio of the weights of eachpair of actionsa

andb that are used together frequently by the population using only those data instances in which

at least one agent is choosing each. Formally, define

Ma,b = {Im ∈ M : fm,a > 0, fm,b > 0} .

Lemma 11 tells us that ifMa,b is sufficiently large, and there is at least one instanceIm ∈ Ma,b

for whicham = b, then we can approximate the ratio betweenwa andwb well.

What if one of these assumptions does not hold? If we are not able to collect sufficiently many

instances in whichfm,a > 0 andfm,b > 0, then standard uniform convergence results can be used

to show that it is very unlikely that we see a new instance for whichfa > 0 andfb > 0. This idea

is formalized in the following lemma, the proof of which is in Appendix A3.6.

Lemma 12 For anyM < |M|, for anyδ ∈ (0, 1), with probability1 − δ,

Prf∼Df [∃a, b ∈ S : fa > 0, fb > 0, |Ma,b| < M ] ≤ K2

2

(

M

|M| +

√

ln(K2/(2δ))

2|M|

)

.

Similarly, if χa,b = χb,a = 0, then a standard uniform convergence argument can be used to

show that it is unlikely that agenti would ever select actiona or b whenfm,a > 0 andfm,b > 0.

We will see that in this case, it is not important to learn the ratio between these twoweights.

Using these observations, we can accurately model the behavior of agent i. The model consists

of two phases. First, as a preprocessing step, we calculate a quantity

χa,b =
∑

m:Im∈Ma,b

χm
a

for each paira, b ∈ S. Then, each time we are presented with a statef , we calculate a set of

60



weights for all actionsa with fa > 0 on the fly.

For a fixedf , let S ′ be the set of actionsa ∈ S such thatfa > 0. By Lemma 12, if the data

set is sufficiently large, then we know that with high probability, it is the case that for alla, b ∈ S ′,

|Ma,b| ≥ M for some thresholdM .

Now, leta∗ = argmaxa∈S′ |{b : b ∈ S ′, χa,b ≥ χb,a}|. Intuitively, if there is sufficient data,a∗

should be the action inS ′ with the highest weight, or have a weight arbitrarily close to the highest.

Thus for anya ∈ S ′, Lemma 11 can be used to bound our estimate ofwa/wa∗ with a value ofβ

arbitrarily close to 1. Noting that

wa
∑

s∈S′ ws
=

wa/wa∗
∑

s∈S′ ws/wa∗
,

we approximate therelativeweight of actiona ∈ S ′ with respect to the other actions inS ′ using

ŵa =
χa,a∗/χa∗,a

∑

s∈S′ χs,a∗/χa∗,s
,

and simply letŵa = 0 for anya 6∈ S ′. Applying Lemma 9, we find that for alla ∈ S ′, with high

probability,
∣

∣

∣

∣

wa
∑

s∈S′ ws
− ŵa

∣

∣

∣

∣

≤ (1 + β)K
√

N ln(2K2/δ)√
2M − (1 + β)K

√

N ln(2K2/δ)
,

whereM is the lower bound on|Ma,b| for all a, b ∈ S ′, andβ is close to 1. With this bound in

place, it is straightforward to show that we can apply Lemma 9 once more to bound the expected

L1,

Ef∼Df

[

∑

a∈S

∣

∣

∣

∣

wafa
∑

s∈S wsfs
− ŵafa
∑

s∈S ŵsfs

∣

∣

∣

∣

]

,

and that the bound goes to 0 at a rate ofO(1/
√

M) as the thresholdM grows. More details are

given in Appendix A3.7.

Since it is possible to build an accurate model of the strategy of agenti in polynomial time

under any distributionD over state vectors, we can again apply Theorem 8 to see that this class is

polynomially learnable from collective behavior.

Theorem 10 The class of crowd affinity multiplicative model strategies is polynomially learnable

from collective behavior.

61



3.6 Open Questions

We have introduced a computational model for learning from collective behavior, and populated it

with some initial general theory and algorithmic results for crowd affinity models. In addition to

positive or negative results for further agent strategy classes, thereare a number of other general

directions of interest for future research. These include extensions of our model to agnostic [79]

settings, in which we relax the assumption that every agent strategy falls in a known class, and

to reinforcement learning [121] or multiagent learning [70, 115] settings,in which the learning

algorithm may itself be a member of the population being modeled and wishes to learnan optimal

policy with respect to some reward function.

It would also be enlightening to study what collective information can or cannot be learned in

a setting in which the learner cannot seewhich agents choose each action at each time step, but

only how manyagents choose each. This would more accurately capture voting scenarios in which

only anonymized polling data is available.

62



Chapter 4

The Trade-Offs of Learning

from Expert Advice

Suppose that each day, we are interested in predicting whether averagestock prices are more likely

to rise or fall. We may choose to base our predictions on advice from friends, family, and cowork-

ers, in addition to journalists, bloggers, or financial analysts. The extensive and still-growing liter-

ature on “no-regret” learning has established that on any sequence oftrials in which the predictions

of a set of individuals, referred to asexperts, are observed, it is possible to maintain a dynamically

weighted prediction whose average performance asymptotically approaches that of the best single

expertin hindsightas the number of time steps grows. Surprisingly, such guarantees hold even in

a fully adversarial setting, with no distributional assumptions on the experts’performance [25].

Despite the impressiveness of such guarantees, competing with the best single expert is not

always good enough. This style of guarantee has teeth only when we makethe implicit assumption

that there exist a small number of individuals in the population who dramatically outperform the

rest. The goal of the algorithm then boils down to the “needle in a haystack” idea of finding and

tracking these superior experts. This goal is simply too weak if all experts ina population have

similar performance. When this is the case, the aggressive style of updatesrequired to make strong

general guarantees can result in the algorithm performing poorly compared to even the worst expert

in the population!

This chapter contains a study of no-regret learning in a bicriteria setting. We examine not

63



only the standard notion of regret to the best expert (formally defined in Section 4.2 below), but

also the regret to the average of all experts, the regret to any fixed mixture of experts, and the

regret to the worst expert. This study leads to a new understanding of thelimitations of existing

no-regret algorithms, as well as new algorithms with novel performance guarantees. Specifically,

we show thatany algorithm that achieves onlyO(
√

T ) cumulative regret to the best expert on a

sequence ofT trials must, in the worst case, suffer regretΩ(
√

T ) to the average, and that for a

wide class of update rules that includes many existing no-regret algorithms (such as Exponential

Weights [98, 55] and Follow the Perturbed Leader [72]), the product of the regret to the best and

the regret to the average is, in the worst case,Ω(T ). We then describe and analyze two alternate

new algorithms that both achieve cumulative regret onlyO(
√

T log T ) to the best expert and have

only constantregret to any given fixed distribution over experts (that is, with no dependence on

eitherT or the number of expertsN ). The key to the first algorithm is the gradual increase in

the “aggressiveness” of updates in response to observed divergences in expert performances. The

second algorithm is a simple twist on standard exponential-update algorithms.

The material in this chapter is based on joint work with Eyal Even-Dar, Michael Kearns, and

Yishay Mansour [52]. TheD-Prod algorithm in Section 4.4.3 grew out of a series of discussions

with Tong Zhang.

4.1 Overview

Beginning at least as early as the 1950s, the literature on no-regret learning has established the fol-

lowing type of result. Consider any sequence ofT trials in which the predictions ofN individuals

or expertsare observed. Suppose that on each trial, each expert receives a reward orgain based

on the quality of his prediction. For example, an expert might receive a gainof 1 for each correct

prediction he makes and a gain of 0 for each incorrect prediction. Consider an algorithm that main-

tains a dynamic set of weights over the experts, and define the gain of the algorithm on a given time

step to be the weighted average of the expert’s gains; this can be interpreted as the expected gain

the algorithm would receive if it chose a single expert to follow on each time step according to its

current distribution. There exist such algorithms whose cumulative regret to the best single expert

in hindsight(that is, the difference between the cumulative gains of the best performing expert

64



after the full sequence has been revealedand the cumulative gains of the algorithm) is guaranteed

to beO(
√

T log N), with absolutely no statistical assumptions on the sequence. Such results are

especially interesting in light of the fact that even in knownstochasticmodels, there is a matching

lower bound ofΩ(
√

T log N). The term “no-regret” derives from the fact that the per-step regret

is onlyO(
√

(log N)/T ), which approaches zero asT becomes large.

In this chapter, we revisit no-regret learning, but with a bicriteria performance measure that is of

both practical and philosophical interest. More specifically, in addition to looking at the cumulative

regret to thebestexpert in hindsight, we simultaneously analyze the regret to theaveragegain of

all experts (or more generally, any fixed weighting of the experts). For comparisons to the average,

the gold standard will be onlyconstantregret (independent ofT andN ). This is a sensible goal

since if we were to consider regret to the average in isolation,zeroregret would easily achieved by

simply leaving the weights uniform at all times.

Our results establish strict trade-offs between regret to the best expert and the regret to the

average in this setting, demonstrate that most known algorithms manage this trade-off poorly, and

provide new algorithms with near optimal bicriteria performance. On the practical side, our new

algorithms augment traditional no-regret results with a “safety net”: while stillmanaging to track

the best expert near-optimally, they are guaranteed to never underperform the average (or any other

given fixed weighting of experts) by more than just constant regret. On the philosophical side, the

bicriteria analyses and lower bounds shed new light on prior no-regretalgorithms, showing that the

unchecked aggressiveness of their updates can indeed cause them tobadly underperform simple

benchmarks like the average.

Viewed at a suitably high level, many existing no-regret algorithms have a similarflavor. These

algorithms maintain a distribution over the experts that is adjusted according to performance. Since

we would like to compete with the best expert, a “greedy” or “momentum” algorithmthat rapidly

adds weight to an outperforming expert (or set of experts) is natural. Most known algorithms shift

weight between competing experts at a rate proportional to1/
√

T , in order to balance the tracking

of the current best expert with the possibility of this expert’s performance suddenly dropping.

Updates on the scale of1/
√

T can be viewed as “aggressive”, at least in comparison to the minimal

average update of1/T required for any interesting learning effects. (If updates areo(1/T ), the

algorithm cannot make even a constant change to any given weight inT steps.)

65



Algorithm: If Regret to Best Is: Then Regret to Average Is:

Any Algorithm O(
√

T ) Ω(
√

T )

Any Algorithm ≤ √
T log T/10 Ω(T ε)

Any Difference Algorithm O(T
1

2
+α) Ω(T

1

2
−α)

Table 4.1: Summary of the lower bounds presented in this chapter.

How poorly can existing regret minimization algorithms perform with respect to the average?

Consider a sequence of gains for two experts where the gains for expert 1 are1, 0, 1, 0, · · · , while

the gains for expert2 are0, 1, 0, 1, · · · . Typical regret minimization algorithms (such as Exponen-

tial Weights [98, 55], Follow the Perturbed Leader [72], and the Prod algorithm [26]) will yield a

gain ofT/2 − Θ(
√

T ), meeting their guarantee ofO(
√

T ) regret with respect to the best expert.

However, this performance leaves something to be desired. Note that in this example the perfor-

mance of the best expert, worst expert, and average of the experts is identicallyT/2. Thus all of

the algorithms mentioned above actually suffer a regret to the average (andto the worst expert)

of Ω(
√

T ). The problem stems from the fact that in all even time steps the probability of expert

1 is exactly1/2. After expert1 observes a gain of1 we increase its probability byc/
√

T , where

the precise value ofc depends on the specific algorithm. Therefore in odd steps the probability of

expert2 is only (1/2 − c/
√

T ). Note that adding a third expert, which is defined as the average of

the original two, would not change this.1

This work establishes a sequence of results that demonstrate the inherenttension between regret

to the best expert and the average, illuminates the problems of existing algorithms in managing this

tension, and provides new algorithms that enjoy optimal bicriteria performance guarantees.

On the negative side, we show thatanyalgorithm that has a regret ofO(
√

T ) to the best expert

must suffer a regret ofΩ(
√

T ) to the average in the worst case. We also show that any regret

minimization algorithm that achieves at most
√

T log T/10 regret to the best expert, must, in the

worst case, suffer regretΩ(T ε) to the average, for some constantε ≥ 0.02. These lower bounds

are established even whenN = 2. A summary of these bounds is presented in Table 4.1.

On the positive side, we describe a new algorithm,PhasedAggression, that almost matches the

1The third expert would clearly have a gain of1/2 at every time step. At odd time steps, the weight of the first expert
would be1/3 + c/

√
T , while that of the second expert would be1/3 − c/

√
T , resulting in a regret ofΩ(

√
T ) to the

average.

66



Algorithm: Regret to Best: Regret to Average: Regret to Worst:

PhasedAggression O(
√

T log N(logT+loglogN)) O(1) O(1)

D-Prod O(
√

T log N +
√

T/ log N log T ) O(1) O(1)

BestWorst O(N
√

T log N) O(
√

T log N) 0

EW O(T
1

2
+α log N ) O(T

1

2
−α) O(T

1

2
−α)

Table 4.2: Summary of the algorithmic results presented in this chapter.

lower bounds above. Given any algorithm whose cumulative regret to thebest expert is at mostR

(which may be a function ofT andN but not of any data-dependent measures), we can use it to

derive an algorithm whose regret to the best expert isO(R log R) with only constant regret to the

average (or any given fixed distribution over the experts). Using anO(
√

T log N) regret algorithm,

this gives regret to the best ofO(
√

T log N(log T + log log N)). In addition, we show how to use

anR-regret algorithm to derive an algorithm with regretO(NR) to the best expert andzeroregret

to the worst expert. These algorithms treat the givenR-regret algorithm as a black box.

PhasedAggressionis somewhat different from many of the traditional regret minimization al-

gorithms, especially in its use ofrestartsthat are driven by observed differences in expert perfor-

mance. (Restarts have been used previously in the literature, but for other purposes [25].) We show

that this difference is no coincidence. For a wide class of update rules that includes many existing

algorithms (such as Weighted Majority/Exponential Weights, Follow the Perturbed Leader, and

Prod), we show that the product of the regret to the best and the regret to the average isΩ(T ). This

establishes a frontier from which such algorithms inherently cannot escape. Furthermore, any point

on this frontier can in fact be achieved by such an algorithm (i.e., a standard multiplicative update

rule with an appropriately tuned learning rate). However, we show it is possible to circumvent the

lower bound by using an algorithm “similar to” Prod to achieve guarantees close to those achieved

by PhasedAggressionwithout the use of restarts. This algorithm,D-Prod, escapes the lower bound

by using a modified update rule that directly depends on the average of the experts’ instantaneous

gains at each time step. Our algorithmic results are summarized in Table 4.2.

It is worth noting that it is not possible in general to guaranteeo(
√

T ) regret to any arbitrary

pair of distributions,D1 andD2. Consider a setting in which there are only two experts. Suppose

distributionD1 places all weight on one expert, while distributionD2 places all weight on a second.

67



Competing simultaneously with both distributions is then equivalent to competing with the best

expert, so we cannot expect to do better than known lower bounds ofΩ(
√

T ).

Previous work by Auer et al. [5] considered adapting the learning rate of expert algorithms

gradually. However, the goal of their work was to get an any-time regretbound without using the

standard doubling technique and thus it is not surprising that their algorithmperformance under the

bicriteria setting is similar to the other existing algorithms. Vovk [128] also considered trade-offs

in best expert algorithms. His work examined for which values ofa andb it is possible for an

algorithm’s gain to be bounded byaGbest,T + b log N , whereGbest,T is the gain of the best expert.

Chapter Outline: In Section 4.2, we review the standard framework for learning with experts.

In Section 4.3, we provide an analysis of the trade-off between regret tothe best and average for

the broad class of difference algorithms, showing that the product between the two regrets for this

class isΘ(T ). In Section 4.4, we go on to show how this frontier can be broken by non-difference

algorithms that gradually increase the aggressiveness of their updates.We first show how a very

simple algorithm can enjoy standard regret bounds compared to the best expert in terms ofT

(though worse in terms ofN ), while havingzerocumulative regret to the worst, and then present

two alternative algorithms that compete well with both the best expert and the average with only

logarithmic dependence onN . A general lower bound that holds forany algorithm is given in

Section 4.5, and we conclude with some open questions in Section 4.6.

4.2 The Experts Framework

We consider the classic experts framework, in which each experti ∈ {1, · · · , N} receives a gain

gi,t ∈ [0, 1] at each time stept.2 The cumulative gain of experti up to timet is Gi,t =
∑t

t′=1 gi,t′ .

We denote the average cumulative gain of the experts by timet asGavg,t = (1/N)
∑N

i=1 Gi,t, and

the gain of the best and worst expert asGbest,t = maxi Gi,t andGworst,t = mini Gi,t. For any fixed

distributionD over the experts, we define the gain of this distribution to beGD,t =
∑N

i=1 D(i)Gi,t.

At each timet, an algorithmA assigns a weightwi,t to each experti. These weights are

normalized to probabilitiespi,t = wi,t/Wt whereWt =
∑

i wi,t. AlgorithmA then receives a gain

2All results presented in this chapter can be generalized to hold for instantaneous gains in any bounded region.

68



gA,t =
∑N

i=1 pi,tgi,t. The cumulative gain of algorithmA up to timet is GA,t =
∑t

t′=1 gA,t′ =
∑t

t′=1

∑N
i=1 pi,t′gi,t′ .

The standard goal of an algorithm in this setting is to minimize the regret to the bestexpert at

a fixed timeT . In particular, we would like to minimize the regretRbest,A,T = max{Gbest,T −
GA,T , 1}. 3 In this work, we are simultaneously concerned with minimizing both this regret and

the regret to the average and worst expert,Ravg,A,T = max{Gavg,T −GA,T , 1} andRworst,A,T =

max{Gworst,T −GA,T , 1} respectively, in addition to the regretRD,A,T to a given distributionD,

which is defined similarly.

While in general the bounds on the regret of the algorithms can be defined using the time (for

example, a regret ofO(
√

T )) and these bounds are tight, this is considered a crude estimate and

better measures are at hand. We present our positive results in terms of the maximal absolute gains

Gmax = maxi Gi,T .

4.3 TheΘ(T ) Frontier for Difference Algorithms

We begin our results with an analysis of the trade-off between regret to thebest and average for a

wide class of existing algorithms, showing that the product between the two regrets for this class

is Θ(T ). A more general lower bound that holds foranyalgorithm is provided in Section 4.5.

Definition 7 (Difference Algorithm) We call an algorithmA adifference algorithmif, whenN =

2 and instantaneous gains are restricted to{0, 1}, the normalized weightsA places on each of the

two experts depend only on the difference between the experts’ cumulativegains. In other words,

A is a difference algorithm if there exists a functionf such that whenN = 2 andgi,t ∈ {0, 1} for

all i andt, p1,t = f(dt) andp2,t = 1 − f(dt) wheredt = G1,t − G2,t.

This simple definition is sufficient for the purposes of stating our lower bound below. Ex-

ponential Weights [98, 55], Follow the Perturbed Leader [72], and the Prod algorithm [26] are all

examples of difference algorithms. (For Prod, this follows from the restriction on the instantaneous

gains to{0, 1}.)

3This minimal value of1 makes the presentation of the trade-off “nicer” (for example in the statement of Theo-
rem 11), but has no real significance otherwise.

69



4.3.1 The Difference Frontier Lower Bound

Theorem 11 LetA be any difference algorithm. Then there exists a sequence of expert gains of

lengthT such thatRbest,A,T · Ravg,A,T ≥ Rbest,A,T · Rworst,A,T = Ω(T ).

Proof: For simplicity, assume thatT is an even integer. We will consider the behavior of the dif-

ference algorithmA on two sequences of expert payoffs. Both sequences involve only twoexperts

with instantaneous gains in{0, 1}. (Since the theorem provides a lower bound, it is sufficient to

consider an example in this restricted setting.) Assume without loss of generalitythat initially

p1,1 ≤ 1/2.

In the first sequence,S1, Expert1 has a gain of1 at every time step while Expert2 always

has a gain0. Let ρ be the first timet at whichA hasp1,t ≥ 2/3. If such aρ does not exist,

thenRbest,A,T = Ω(T ) and we are done. Assuming such aρ does exist,A must have regret

Rbest,A,T ≥ ρ/3 since it loses at least1/3 to the best expert on each of the firstρ time steps and

cannot compensate for this later.

Since the probability of Expert1 increases fromp1,1 ≤ 1/2 to at least2/3 in ρ time steps in

S1, there must be one time stepτ ∈ [2, ρ] in which the probability of Expert1 increased by at least

1/(6ρ), i.e.,p1,τ − p1,τ−1 ≥ 1/(6ρ). The second sequenceS2 we consider is as follows. For the

first τ time steps, Expert1 will have a gain of1 (as inS1). For the lastτ time steps, Expert1 will

have a gain of0. For the remainingT − 2τ time steps (in the range[τ, T − τ ]), the gain of Expert

1 will alternate0, 1, 0, 1, · · · . Throughout the sequence, Expert2 will have a gain of1 whenever

Expert1 has a gain of0 and a gain of0 every time Expert1 has a gain of1. This implies that each

expert has a gain of exactlyT/2 (and henceGbest,T = Gavg,T = Gworst,T = T/2).

During the period[τ, T − τ ], consider a pair of consecutive times such thatg1,t = 0 and

g1,t+1 = 1. SinceA is a difference algorithm we have thatp1,t = p1,τ andp1,t+1 = p1,τ−1.

The gain of algorithmA in time stepst and t + 1 is (1 − p1,τ ) + p1,τ−1 ≤ 1 − 1/(6ρ), since

p1,τ − p1,τ−1 ≥ 1/(6ρ). In every pair of time stepst andT − t, for t ≤ τ , the gain ofA in those

times steps is exactly1, since the difference between the experts is identical at timest andT − t,

and hence the probabilities are identical. This implies that the total gain of the algorithm A is at

most

τ +
T − 2τ

2

(

1 − 1

6ρ

)

≤ T

2
− T − 2τ

12ρ
.

70



On sequenceS1, the regret of algorithmA with respect to the best expert isΩ(ρ). Therefore, if

ρ ≥ T/4 we are done. Otherwise, on sequenceS2, the regret with respect to the average and worst

is Ω(T/ρ). The theorem follows.

4.3.2 A Difference Algorithm Achieving the Frontier

We now show that the standard Exponential Weights (EW) algorithm with an appropriate choice

of the learning rate parameterη [55] is a difference algorithm achieving the trade-off described in

Section 4.3.1, thus rendering it tight for this class. Recall that for all experts i, EW assigns initial

weightswi,1 = 1, and at each subsequent timet, updates weights withwi,t+1 = eηGi,t = wi,te
ηgi,t .

The probability with which experti is chosen at timet is then given bypi,t = wi,t/Wt where

Wt =
∑N

j=1 wj,t.

Theorem 12 Let G∗ ≤ T be an upper bound onGmax. For any α such that0 ≤ α ≤ 1/2,

let EW = EW (η) with η = (G∗)−(1/2+α). ThenRbest,EW,T ≤ (G∗)1/2+α(1 + lnN) and

Ravg,EW,T ≤ (G∗)1/2−α.

Proof: These bounds can be derived using a series of bounds on the quantityln(WT+1/W1). First

we bound this quantity in terms of the gain of the best expert and the gain of EW. This piece of the

analysis is standard (see, for example, Theorem 2.4 in [25]). The firstpiece of the bound follows

from the fact thatW1 = N and thatwbest,t+1 ≤ Wt+1.

ηGbest,T − lnN ≤ ln

(

WT+1

W1

)

.

The second pieces follows from a simple application of Taylor approximation.

ln

(

WT+1

W1

)

≤
(

η + η2
)

GEW,T . (4.1)

Therefore, we derive thatGbest,T − GEW,T ≤ ηGEW,T + lnN/η.

Next we bound the same quantity in terms of the average cumulative gain, usingthe fact that the

arithmetic mean of a set of nonnegative numbers is always greater than or equal to the geometric

71



mean.

ln

(

WT+1

W1

)

= ln

(

∑N
i=1 wi,T+1

N

)

≥ ln





(

N
∏

i=1

wi,T+1

)

1
N



 (4.2)

=
1

N

N
∑

i=1

lnwi,T+1 =
1

N

N
∑

i=1

ηGi,T = ηGavg,T .

Combined with the upper bound in Equation 4.1, this gives usGavg,T − GEW,T ≤ ηGEW,T .

Note that ifGbest,T ≤ GEW,T , both the regret to the best expert and the regret to the average

will be minimal, so we can assume this is not the case and replace the termGEW,T on the right

hand side of these bounds withGbest,T which is in turn bounded byG∗. This yields the pair of

boundsGbest,T − GEW,T ≤ ηG∗ + lnN/η andGavg,T − GEW,T ≤ ηG∗.

By changing the value ofη, we can construct different trade-offs between the two bounds.

Settingη = (G∗)−(1/2+α) yields the desired result.

This trade-off can be generalized to hold when we would like to compete with anarbitrary

distributionD by initializing wi,1 = D(i) and substituting an alternate inequality into (4.2). The

ln(N) term in the regret to the best expert will be replaced bymaxi∈N ln(1/D(i)), making this

practical only for distributions that lie inside the probability simplex and not too close to the bound-

aries.

4.4 Breaking the Difference Frontier

The results so far have established aΘ(T ) frontier on the product of regrets to the best and average

experts for difference algorithms. In this section, we will show how this frontier can be broken by

non-difference algorithms that gradually increase the aggressiveness of their updates via a series of

restarts invoked by observed differences in performance so far. Asa warm-up, we first show how a

very simple algorithm that is not a difference algorithm can enjoy standard regret bounds compared

to the best expert in terms ofT (though worse in terms ofN ), while havingzerocumulative regret

to the worst. In Sections 4.4.2 and 4.4.3, we present two alternative algorithmsthat compete well

with both the best expert and the average with only logarithmic dependence on N .

72



4.4.1 Regret to the Best and Worst Experts

Using a standard regret-minimization algorithm as a black box, we can produce a very simple

algorithm,BestWorst, that achieves a clear trade-off between regret to the best expert and regret

to the worst expert. LetA be a regret minimization algorithm such thatRbest,A,T ≤ R for some

R which may be a function ofT and N but not of any data dependent measures. We define

the modified algorithmBestWorst(A,R) as follows. While the difference between the cumulative

gains of the best and worst experts is smaller thanNR, BestWorst(A,R) places equal weight on

each expert, playing the average. After the first timeτ at which this condition is violated, it begins

running a fresh instance of algorithmA and continues to useA until the end of the sequence. See

Figure 4.1 below.

Figure 4.1TheBestWorstalgorithm forN experts.
// Input: An algorithm A and value R such that we are
// guaranteed Rbest,A,T ≤ R

while (Gbest,t − Gworst,t ≤ NR) do
Use probabilitiespi,t = 1/N for all i

end while
Reset and run algorithmA for all remaining time steps.

Until time τ , this algorithm must be performing at least as well as the worst expert since it

is playing the average. At timeτ , the algorithm’s gain must beR more than that of the worst

expert since the gain of the best expert isNR above the gain of the worst. Now since from timeτ

algorithmA is run, we know that the gain ofBestWorst(A,R) in the finalT − τ time steps will be

no more thanR less than the gain of any other expert. Therefore,BestWorst(A,R) will maintain

a lead over the expert that was worst in the first phase (and thus also theworst expert overall). In

addition, the regret of the algorithm to the best expert will be bounded byNR, since up to time

τ it will have a regret of at most(N − 1)R with respect to the best expert. This establishes the

following theorem.

Theorem 13 Let A be a regret minimization algorithm with regret at mostR to the best expert

and letBW beBestWorst(A,R). Then

Rbest,BW,T ≤ NR

73



and

GBW,T ≥ Gworst,T .

It follows immediately that using a standard regret minimization algorithm withR =

O(
√

T log N) as the black box, we can achieve a regret ofO(N
√

T log N) to the best expert

while maintaining a lead over the worst.

4.4.2 PhasedAggression

Again using any standard regret-minimization algorithm as a black box, we canproduce an al-

gorithm,PhasedAggression, that achieves a trade-off between regret to the best expert and regret

to the average without sacrificing too much in terms of the dependence onN . Figure 4.2 shows

PhasedAggression. This algorithm can achieve a constant regret toany specified distributionD,

not only the average, with no change to the bounds. The name of the algorithm refers to the fact

that it operates in distinct phases separated by restarts, with each phasemore aggressive than the

last.

Figure 4.2ThePhasedAggressionalgorithm forN experts.
// Input: An algorithm A and value R such that we are
// guaranteed Rbest,A,T ≤ R, and a distribution D with
// which we would like to compete

for k = 1 to blog(R)c do
Let η = 2k−1/R
Reset and run a new instance ofA
while (Gp

best,t − Gp
D,t < 2R) do

FeedA the previous gainsgt−1 and letqt be its distribution
Usept = ηqt + (1 − η)D

end while
end for
Reset and run a new instance ofA until timeT

The idea behind the algorithm is rather simple. We take a regret minimization algorithm A,

and mix betweenA and the target distributionD. As the gain of the best expert exceeds the

gain ofD by larger amounts, we put more and more weight on the regret minimization algorithm

A, “resetting”A to its initial state at the start of each phase. Once the weight onA has been

increased, it is never decreased again. In other words, in each successive phase of this algorithm

74



(or reduction), weight is moved from something that is not learning at all (the fixed distributionD)

to an algorithm that is implicitly learning aggressively (the given algorithmA). New phases are

invoked only in response to greater and greater outperformance by the current best expert, allowing

the amount of aggression to increase only as needed.

Theorem 14 LetA be any algorithm with regretR to the best expert,D be any distribution, and

PA be an instantiation ofPhasedAggression(A, R, D). ThenRbest,PA,T ≤ 2R(log R + 1) and

RD,PA,T ≤ 1.

Proof: We will again analyze the performance of the algorithm compared to the best expert and

the distributionD both during and at the end of any phasek. First consider any timet during phase

k. The regret of the algorithm is split between the regret of the fixed mixture and the regret of the

no-regret algorithm according to their weights. SinceA is anR-regret algorithm its regret to both

the best expert and to the distributionD is bounded byR, and thus the regret of the algorithm due

to the weight onA is 2k−1/R timesR. With the remaining1 − (2k−1/R) weight, the regret to

the best expert is bounded by2R sinceGp
best,t − Gp

D,t < 2R during the phase, and its regret to

distributionD is 0. Thus at any timet during phasek we have

Gp
best,t − Gp

PA,t ≤ R

(

2k−1

R

)

+ 2R

(

1 − 2k−1

R

)

≤ 2R

and

Gp
D,t − Gp

PA,t ≤ R

(

2k−1

R

)

= 2k−1 .

Now consider what happens when the algorithm exits phasek. A phase is only exited at some

time t such thatGp
best,t − Gp

D,t ≥ 2R. SinceA is R-regret, its gain (in the current phase) will

be within R of the gain of the best expert, resulting in the algorithmPA gaining alead over

distributionD for the phase:Gp
PA,t − Gp

D,t ≥ R(2k−1/R) = 2k−1.

Combining these inequalities, it is clear that if the algorithm ends in phasek at timeT , then

Gbest,T − GPA,T ≤ 2Rk ≤ 2R(log R + 1)

75



and

GD,T − GPA,T ≤ 2k−1 −
k−1
∑

j=1

2j−1 = 2k−1 − (2k−1 − 1) = 1 .

These inequalities hold even when the algorithm reaches the final phase and has all of its weight

onA, thus proving the theorem.

4.4.3 D-Prod

While Exponential Weights and Prod are both difference algorithms and cannot avoid theΩ(T )

frontier lower bound, it is possible to create an algorithm with exponential updates that can achieve

guarantees similar to those ofPhasedAggressionwithout requiring the use of restarts. This can be

accomplished via a simple algorithm that we refer to asD-Prod since its update rules and analysis

are inspired by those of Prod.

D-Prod differs from Prod in two important ways that together allow it to compete well with

the best expert while simultaneously guaranteeing only constant regret toa given fixed distribution

D. First, an additional expert (denoted expert0) representing the distributionD is added with

a large prior weight. Second, the update rule is modified to take into account the differencein

performance between each expert and the distributionD rather than the gains of each expert alone.

Because of this second modification,D-Prod is not a difference algorithm and is able to avoid the

Ω(T ) frontier.

Formally, letgi,t ∈ [0, 1] be the gain of experti at timet as before fori ∈ {1, . . . , N}, and

let g0,t be the instantaneous gain of the distributionD (or the special expert 0). Each experti

starts with an initial or prior weightwi,1 = µi. At each time step, weights are updated using

wi,t+1 = wi,t(1 + η(gi,t − g0,t)).

Lemma 13 For any experti (including the special expert 0), for anyη ≤ 1/2,

GD−Prod,T ≥ Gi,T +
ln(µi)

η
− η

T
∑

t=1

(gi,t − g0,t)
2 .

The proof is nearly identical to the proof of Lemma 2 of Cesa-Bianchi et al.[26]. Notice that

wheni = 0 (the special expert), the last term in the bound is 0. The following theorem shows how

76



to set the parametersη andµ to achieve a constant error rate to the distributionD without losing

much with respect to the best expert.

Theorem 15 Letη =
√

lnN/T , µ0 = 1 − η, andµi = η/N for i ∈ {1, . . . , N}. Then

Rbest,D−Prod,T = O

(

√
T lnN +

√

T

lnN
lnT

)

andRD,D−Prod,T = O(1).

4.5 Sketch of A General Lower Bound

So far we have seen that a wide class of existing algorithms (namely all difference algorithms) is

burdened with a stark best/average regret trade-off, but that this frontier can be avoided by simple

algorithms that tune how aggressively they update, in phases modulated by the observed payoffs

so far. What is the limit of what can be achieved in our bicriteria regret setting?

In this section we give a pair of general lower bounds that hold forall algorithms. The bounds

are stated for the average but once again hold for any fixed distributionD. These lower bounds

come close to the upper bound achieved by the algorithms described in the previous section. An

outline of the proof is sketched below.

Theorem 16 Any algorithm with regretO(
√

T ) to the best expert must have regretΩ(
√

T ) to the

average in the worst case. Furthermore, any algorithm with regret at most
√

T log T/10 to the

best expert must have regretΩ(T ε) to the average in the worst case for some positive constant

ε ≥ 0.02.

More specifically, we show that for any constantα > 0, there exists a constantβ > 0 such that

for sufficiently large values ofT (i.e. T > (150α)2), for any algorithmA, there exists a sequence

of gainsg of lengthT such that ifRbest,A,T ≤ α
√

T thenRavg,A,T ≥ β
√

T even whenN = 2.

Additionally, for any constantα′ ≤ 1/10 there exist constantsβ′ > 0 andε > 0 such that for

sufficiently large values ofT (i.e., T > 2(10α′)2), for any algorithmA, there exists a sequence of

gains of lengthT such that ifRbest,A,T ≤ α′
√

T log T thenRavg,A,T ≥ β′T ε.

The proof of this theorem begins by defining a procedure for creating a“bad” sequence of

gainsg, specifically designed to fool the algorithmA. Whenever the algorithm updates its weights

77



aggressively, the procedure assigns positive gains to the second-place expert, inducing mean rever-

sion. On the contrary, when the algorithm updates its weights conservatively, the procedure assigns

positive gains to the best expert, causing added momentum. The sequence can then be divided into

a number of (possibly noncontiguous) segments based on the algorithm’s weights at each time. By

first analyzing the maximum amount that the algorithm can gain over the average and the minimum

amount it can lose to the average in each segment, and then bounding the totalnumber of segments

possible under the assumption that an algorithm is no-regret, we can show that it is not possible for

an algorithm to haveO(
√

T ) regret to the best expert without havingΩ(
√

T ) regret to the average.

More details of the proof are given in Appendix A4.1.

4.6 Open Questions

The results in this chapter depend heavily on the fact that the gain of the algorithm at each time step

is the weighted average of the gains of the experts. This can be interpretedas the expected gain

that the algorithm would receive if it chose a single expert to follow on eachtime step according

to its current distribution and subsequently received the gain of this expert. We might instead

consider a scenario in which the algorithm is able to combine the advice of the experts in more

sophisticated ways and receive a gain based on this combination, for example based on the squared

loss of the combined prediction. It is not clear if similar results could be proved in such a setting. It

would also be interesting to determine whether or not similar trade-offs exist inthe related portfolio

setting [37, 68].

We currently do not know whether or not it is possible to strengthen Theorem 16 to say that any

algorithm with regretO(
√

T log T ) to the best expert must have regretΩ(T ε) to the average for

some constantε > 0. Such a result would further close the gap between our positive and negative

results, but would potentially require a different style of proof.

78



Chapter 5

Aggregating Opinions Via Prediction

Markets and Machine Learning

Suppose we are interested in obtaining an estimate of the probability that the average global tem-

perature will rise over the next five years. One way of forming an estimate isto invite people to

bet on it. Prediction markets are financial markets designed to aggregate individual beliefs about

the outcome of an event into a single prediction. In practice, these predictions are often highly

accurate, frequently outperforming forecasts made by domain experts.

Prediction markets generally operate in isolation, and over relatively small outcome spaces. For

example, a typical horse race market might allow bettors to choose one ofn horses to win, even

though the true outcome space of the event is much larger. (There aren! possible permutations

of horses in the race.) This is due in large part to the intensive amount of computation required

to store and update an exponential number of linked prices. Chen et al. [29] show that when

the market is operated by a central auctioneer who simply performs risklessorder matching, the

auctioneer’s matching problem can be made tractable by enforcing appropriate restrictions on the

betting language used (in particular, by allowing only bets of the form “eitherhorse A or horse C

will finish in third place”), even though the outcome space is exponentially large. However, such

markets suffer from low liquidity. It may be the case that no matches are made even when there

are parties willing to bet.

79



In this chapter, we investigate the computational complexity of market maker pricing algo-

rithms for combinatorial prediction markets. We focus on Hanson’s popularlogarithmic market

scoring rule market maker (LMSR) [62, 63], which isalwayswilling to accept bets onany out-

come at some price. Our goal is to implicitly maintain correct LMSR prices acrossan exponen-

tially large outcome space. We examine both permutation combinatorics, where outcomes are

permutations of objects, and Boolean combinatorics, where outcomes are combinations of binary

events. We look at three restrictive languages that limit what traders can bet on. Even with severely

limited languages, we find that LMSR pricing is#P-hard, even when the same language admits

polynomial-time matching without the market maker.

On the positive side, we point out and explore the previously unnoticed connection between

LMSR prices and the weights used in online learning with experts. Using this connection, we

propose an approximation technique for pricing permutation markets based on an algorithm for

online permutation learning.

The contents of this chapter are based on joint work with Yiling Chen, LanceFortnow, Nicolas

Lambert, and David Pennock [31], with helpful suggestions from SampathKannan.

5.1 Overview

One way to elicit information is to ask people to bet on it. Aprediction marketis a common forum

where people bet with each other or with a market maker [105]. They are commonly known by a

variety of names, including information markets, securities markets, event markets, event futures,

and idea futures [105]. A typical binary prediction market allows bets along one dimension, for

example, either for or against Barack Obama to win a second term as US President in 2012. In

this case, bettors would trade shares of securities that pay off$1 if and only if Obama wins. If the

current market price of a share is$p, then a rational, risk-neutral bettor should be willing to buy

shares if he believes the true probability of Obama winning is greater thanp. Conversely, he should

be willing to sell shares at this price if he believes that the true probability of Obama winning is

lower.

The current price per share thus provides an estimate of the population’scollective belief about

how likely it is that Obama will win a second term. In fact, under certain assumptions (in particular,

80



the assumption that all bettors are risk-neutral Bayesians with a common prior), it is possible to

prove that the trading price converges to what is known as arational expectations equilibriumthat

reflects the probability estimate that one would obtain by combining the private side information of

each member of the population [103, 59]. Indeed, in practice forecasts obtained through prediction

markets are frequently more accurate than forecasts provided by experts in a broad spectrum of set-

tings. The price of orange juice futures is a better predictor of weather than the National Weather

Service forecasts [109], Oscar markets are more accurate at predicting winners than expert colum-

nists [106], and election markets are more accurate than national polls [17]; see Pennock and Sami

[105] or Ledyard et al. [91] for a range of other examples.

Thousands of one- or small-dimensional markets exist today, each operating independently. At

the racetrack, betting on a horse to win does not directly impact the odds forthat horse to finish

among the top two, as logically it should, because the two bet types are handled separately. On

the contrary, acombinatorial prediction marketis a central clearinghouse for handling logically-

related bets defined on a combinatorial space. For example, the outcome space might be alln!

possible permutations ofn horses in a horse race, while bets are properties of permutations such

as “horse A finishes third” or “horse A beats horse B.” Alternately, the outcome space might be

all 250 possible state-by-state results for the 2012 US Presidential election, while bets are Boolean

statements such as “the Republican candidate wins in Florida but not in Pennsylvania or Ohio.”

Chen et al. [29] show that when the market is operated by a central auctioneer performing risk-

less order matching, the matching problem can be solved efficiently in some special cases, even

when the outcome space is exponentially large. However, low liquidity marginalizes the value

of these prediction markets, and combinatorics only exacerbates the problem by dividing traders’

attention among an exponential number of outcomes. A combinatorial matching market—the com-

binatorial generalization of a standard double auction—may simply fail to find any trades [53, 29].

In contrast, anautomated market makeris always willing to trade oneverybet at some price.

A combinatorial market maker implicitly or explicitly maintains prices across all (exponentially

many) outcomes, thus allowing any trader at any time to place any bet, if transacted at the market

maker’s quoted price.

Hanson’s logarithmic market scoring rule market maker (LMSR) [62, 63],which is described

in Section 5.2, is becoming the de facto standard market maker for prediction markets, largely

81



because it has a number of desirable properties, including bounded lossthat grows logarithmically

in the number of outcomes, infinite liquidity, and modularity that respects some independence

relationships. LMSR is used by a number of companies, including Microsoft,inklingmarkets.com,

thewsx.com, and yoonew.com, and is the subject of a number of research studies [30, 91, 28].

In this chapter, we analyze the computational complexity of LMSR in several combinatorial

betting scenarios. We examine both permutation combinatorics and Boolean combinatorics. We

show that both computing instantaneous prices and computing payments of transactions are#P-

hard in all cases we examine, even when we restrict participants to very simplistic and limited

types of bets. For example, in the horse race analogy, if participants can place bets only of the

form “horse A finishes in position N”, then pricing these bets properly according to LMSR is#P-

hard, even though matching up bets of the exact same form (with no market maker) can be done in

polynomial time [29].

On a more positive note, we examine an approximation algorithm for LMSR pricing in permu-

tation markets that makes use of powerful techniques from the literature on online learning with

expert advice [25, 98, 56]. We point out and examine the striking parallels that exist between the

specific form of standard LMSR prices and the expert weights employed by the Weighted Majority

algorithm [98]. We then show how a recent extension of Weighted Majority topermutation learn-

ing [67] can be transformed into an approximation algorithm for pricing in permutation markets in

which the market maker is guaranteed to have bounded loss.

Fortnow et al. [53] study the computational complexity of finding acceptable trades among a

set of bids in a Boolean combinatorial market. In their setting, the center is anauctioneerwho

takes no risk, only matching together willing traders. They study a call marketsetting in which

bids are collected together and processed once en masse, and show thatthe auctioneer matching

problem is co-NP-complete when orders are divisible andΣp
2-complete when orders are indivisi-

ble, but identify some tractable special cases. As mentioned above, Chen et al. [29] analyze the

the auctioneer matching problem for betting on permutations, examining subsetbetting and pair

betting. They give a polynomial-time algorithm for matching divisible subset bets,but show that

matching pair bets is NP-hard.

The work closest to our own is that of Chen et al. [32], who study a special case of Boolean

combinatorics in which participants bet on how far a team will advance in a single elimination

82



tournament, for example a sports playoff like the NCAA college basketball tournament. They

provide a polynomial-time algorithm for LMSR pricing in this setting based on a Bayesian network

representation of prices. They also show that LMSR pricing is NP-hard for a very general bidding

language.

Chapter Outline: In the next section, we describe Hanson’s logarithmic market scoring rule

market maker in detail, including the calculation of prices. Section 5.3 contains aquick review

of some known results from complexity theory that are referred to throughout the remainder of

the chapter. Section 5.4 and 5.5 contain our hardness results for permutation betting and Boolean

betting respectively. Finally, in Section 5.6, we discuss the connection between calculating LMSR

prices and calculating expert weights in online learning, and show how the PermELearn algorithm

of Helmbold and Warmuth [67] can be used to efficiently approximate prices for subset betting in

permutation markets. We briefly discuss some open directions of research inSection 5.7.

5.2 Logarithmic Market Scoring Rules

Proposed by Hanson [62, 63], a logarithmic market scoring rule is an automated market maker

mechanism that always maintains a consistent probability distribution over an outcome spaceΩ

reflecting the market’s estimate of the likelihood of each outcome. A generic LMSR offers a

security corresponding to each possible outcomeω. The security associated to outcomeω pays

off $1 if the outcomeω happens, and $0 otherwise. Letq = (qω)ω∈Ω indicate the number of

outstanding shares for all securities. The LMSR market maker starts the market with some initial

shares of securities,q0, which may be0. The market keeps track of the outstanding shares of

securitiesq at all times, and maintains a cost function

C(q) = b log
∑

ω∈Ω

eqω/b, (5.1)

and an instantaneous price function for each security

pω(q) =
eqω/b

∑

τ∈Ω eqτ /b
, (5.2)

83



whereb is a positive parameter related to the depth of the market. The cost function captures the

total money wagered in the market, andC(q0) reflects the market maker’s maximum subsidy to

the market. The instantaneous price functionpω(q) gives the current cost per share of an infinitely

small quantity of the security for outcomeω, and is the partial derivative of the cost function, i.e.

pω(q) = ∂C(q)/∂qω. We usep = (pω(q))ω∈Ω to denote the price vector. Traders buy and sell

securities through the market maker. If a trader wishes to change the number of outstanding shares

from q to q̃, the cost of the transaction that the trader pays isC(q̃) − C(q), which equals the

integral of the price functions following any path fromq to q̃.

When the outcome space is large, it is often natural to offer only compound securities on sets

of outcomes. A compound securityS pays $1 if one of the outcomes in the setS ⊂ Ω occurs and

$0 otherwise. Such a security is the combination of all securitiesω ∈ S. Buying or sellingq shares

of the compound securityS is equivalent to buying or sellingq shares of each securityω ∈ S.

Let Θ denote the set of all allowable compound securities. Denote the outstanding shares of all

compound securities asQ = (qS)S∈Θ. The cost function can be written as

C(Q) = b log
∑

ω∈Ω

e
P

S∈Θ:ω∈S qS/b = b log
∑

ω∈Ω

∏

S∈Θ:ω∈S

eqS/b . (5.3)

The instantaneous price of a compound securityS is computed as the sum of the instantaneous

prices of the securities that compose the compound securityS,

pS(Q) =

∑

ω∈S eqω/b

∑

τ∈Ω eqτ /b
=

∑

ω∈S e
P

S′∈Θ:ω∈S′ qS′/b

∑

τ∈Ω e
P

S′∈Θ:τ∈S′ qS′/b
=

∑

ω∈S

∏

S′∈Θ:ω∈S′ eqS′/b

∑

τ∈Ω

∏

S′∈Θ:τ∈S′ eqS′/b
. (5.4)

Logarithmic market scoring rules are so named because they are based onlogarithmic scoring

rules. A logarithmic scoring rule is a set of reward functions

{sω(r) = aω + b log(rω) : ω ∈ Ω},

wherer = (rω)ω∈Ω is a probability distribution overΩ, andaω is a free parameter. An agent who

reportsr is rewardedsω(r) if outcomeω happens. Logarithmic scoring rules areproper in the

sense that when facing them a risk-neutral agent will truthfully report his subjective probability

distribution to maximize his expected reward. A LMSR market can be viewed as asequential

84



version of logarithmic scoring rule, because by changing market prices fromp to p̃ a trader’s net

profit is sω(p̃) − sω(p) when outcomeω happens. At any time, a trader in a LMSR market is

essentially facing a logarithmic scoring rule.

LMSR markets have many desirable properties. They offer consistent pricing for combina-

torial events. As market maker mechanisms, they provide infinite liquidity by allowing trades at

any time. Although the market maker subsidizes the market, he is guaranteed a worst-case loss no

greater thanC(q0), which isb log n if |Ω| = n and the market starts with 0 share of every security.

In addition, it is a dominant strategy for a myopic risk-neutral trader to reveal his probability dis-

tribution truthfully since he faces a proper scoring rule. Even for forward-looking traders, truthful

reporting is an equilibrium strategy when traders’ private information is independent conditional

on the true outcome [30].

5.3 Complexity of Counting

We now briefly review some standard ideas and results from complexity theory that are used

throughout the remainder of the chapter.

The well-known classNP contains questions that ask whether a search problem has a solution,

such as whether a graph is 3-colorable. The class#P consists of functions thatcountthe number

of solutions ofNP search questions, such as the number of 3-colorings of a graph.

A function g is #P-hard if, for every functionf in #P, it is possible to computef in polyno-

mial time given an oracle forg. Clearly oracle access to such a functiong could additionally be

used to solve anyNP problem, but in fact one can solve much harder problems too. Toda [122]

showed that every language in the polynomial-time hierarchy can be solved efficiently with access

to a#P-hard function.

To show a functiong is a#P-hard function, it is sufficient to show that a functionf reduces

to g wheref was previously known to be#P-hard. In this work, we use the following#P-hard

functions to reduce from:

• Permanent: The permanent of ann-by-n matrixA = (ai,j) is defined as

perm(A) =
∑

σ∈Ω

n
∏

i=1

ai,σ(i) , (5.5)

85



whereΩ is the set of all permutations over{1, 2, ..., n}. Computing the permanent of a

matrixA containing only0-1 entries is#P-hard [123].

• #2-SAT: Counting the number of satisfying assignments of a formula given in conjunctive

normal form with each clause having two literals is#P-hard [124].

• Counting Linear Extensions: Counting the number of total orders that extend a partial

order given by a directed graph is#P-hard [22].

#P-hardness is the best we can achieve since all the functions in this chaptercan themselves be

reduced to some other#P function.

5.4 LMSR for Permutation Betting

In this section we consider a particular type of market combinatorics in which the final outcome is a

ranking overn competing candidates. Let the set of candidates beNn = {1, . . . , n}, which is also

used to represent the set of positions. In the setting,Ω is the set of all permutations overNn. An

outcomeσ ∈ Ω is interpreted as the scenario in which each candidatei ends up in positionσ(i).

Chen et al. [29] propose two betting languages,subset bettingandpair betting, for this type of

combinatorics and analyze the complexity of the auctioneer’s order matching problem for each. In

what follows we address the complexity of operating an LMSR market for both betting languages.

5.4.1 Subset Betting

As in Chen et al. [29], participants in a LMSR market for subset betting may trade two types of

compound securities: (1) a security of the form〈i|Φ〉 whereΦ ⊂ Nn is a subset of positions;

and (2) a security〈Ψ|j〉 whereΨ ⊂ Nn is a subset of candidates. The security〈i|Φ〉 pays off

$1 if candidatei stands at a position that is an element ofΦ and $0 otherwise. Similarly, the

security〈Ψ|j〉 pays off $1 if any of the candidates inΨ finishes at positionj and $0 otherwise. For

example, in a horse race, participants can trade securities of the form “horse A will come in the

second, fourth, or fifth place,” or “either horse B or horse C will come inthe third place.”

Note that owning one share of〈i|Φ〉 is equivalent to owning one share of〈i|j〉 for everyj ∈ Φ,

and similarly owning one share of〈Ψ|j〉 is equivalent to owing one share of〈i|j〉 for everyi ∈ Ψ.

86



We therefore restrict our attention to a simplified market where securities traded are of the form

〈i|j〉. We show that even in this simplified market it is#P-hard for the market maker to provide

the instantaneous security prices, evaluate the cost function, or calculatepayments for transactions,

which implies that the running an LMSR market for the more general case of subset betting is also

#P-hard.

Traders can trade securities〈i|j〉 for all i ∈ Nn andj ∈ Nn with the market maker. Letqi,j be

the total number of outstanding shares for security〈i|j〉 in the market. LetQ = (qi,j)i∈Nn,j∈Nn

denote the outstanding shares for all securities. The market maker keepstrack ofQ at all times.

From Equation 5.4, the instantaneous price of security〈i|j〉 is

pi,j(Q) =

∑

σ∈Ω:σ(i)=j

∏n
k=1 eqk,σ(k)/b

∑

τ∈Ω

∏n
k=1 eqk,τ(k)/b

, (5.6)

and from Equation 5.3, the cost function for subset betting is

C(Q) = b log
∑

σ∈Ω

n
∏

k=1

eqk,σ(k)/b . (5.7)

We will show that computing instantaneous prices, the cost function, and/orpayments of trans-

actions for a subset betting market is#P-hard by a reduction from the problem of computing the

permanent of a (0,1)-matrix.

Theorem 17 It is #P-hard to compute instantaneous prices in a LMSR market for subset betting.

Additionally, it is#P-hard to compute the value of the cost function.

Proof: We show that if we could compute the instantaneous prices or the value of the cost function

for subset betting for any quantities of shares purchased, then we could compute the permanent of

any(0, 1)-matrix in polynomial time.

Let A = (ai,j) be anyn-by-n (0,1)-matrix, and defineN = n! + 1. Note that
∏n

i=1 ai,σ(i)

is either 0 or 1. From Equation 5.5,perm(A) ≤ n! and henceperm(A) mod N = perm(A).

We show how to computeperm(A) mod N from prices in subset betting markets over up ton

candidates in which for each pair of candidatesi andj, qi,j shares of〈i|j〉 have been purchased,

87



with

qi,j =











b lnN if ai,j = 0,

b ln(N + 1) if ai,j = 1.
(5.8)

Let B = (bi,j) be an-by-n matrix containing entries of the formbi,j = eqi,j/b. Note that

bi,j = N if ai,j = 0 andbi,j = N +1 if ai,j = 1. Thus,perm(A) mod N = perm(B) mod N .

Thus, from Equation 5.6, the price for〈i|j〉 in the market is

pi,j(Q) =

∑

σ∈Ω:σ(i)=j

∏n
k=1 bk,σ(k)

∑

τ∈Ω

∏n
k=1 bk,τ(k)

=
bi,j
∑

σ∈Ω:σ(i)=j

∏

k 6=i bk,σ(k)
∑

τ∈Ω

∏n
k=1 bk,τ(k)

=
bi,j · perm(Mi,j)

perm(B)

whereMi,j is the matrix obtained fromB by removing theith row andjth column. Thus the ability

to efficiently compute prices gives us the ability to efficiently computeperm(Mi,j)/perm(B).

It remains to show that we can use this ability to computeperm(B). We do so by telescoping

a sequence of prices. LetBi be the matrixB with the firsti rows and columns removed. From

above, we haveperm(B1)/perm(B) = p1,1(Q)/b1,1. DefineQm to be the(n − m)-by-(n − m)

matrix (qi,j)i>m,j>m, that is, the matrix of quantities of securities(qi,j) with the firstk rows and

columns removed. In a market with onlyn − m candidates, applying the same technique to the

matrix Qm, we can obtainperm(Bm+1)/perm(Bm) from market prices form = 1, ..., (n − 2).

Thus by computingn − 1 prices, we can compute

(

perm(B1)

perm(B)

)(

perm(B2)

perm(B1)

)

· · ·
(

perm(Bn−1)

perm(Bn−2)

)

=

(

perm(Bn−1)

perm(B)

)

.

SinceBn−1 only has one element, we thus can computeperm(B) from market prices. Conse-

quently,perm(B) mod N givesperm(A).

Therefore, given an-by-n (0, 1)-matrixA, we can compute the permanent ofA in polynomial

time using prices inn−1 subset betting markets wherein an appropriate quantity of securities have

been purchased.

Additionally, note that

C(Q) = b log
∑

σ∈Ω

n
∏

k=1

bk,σ(k) = b log perm(B) .

88



Thus if we can computeC(Q), we can also computeperm(A).

As computing the permanent of a(0, 1)-matrix is#P-hard, both computing market prices and

computing the cost function in a subset betting market are#P-hard.

Corollary 1 Computing the payment of a transaction in a LMSR for subset betting is#P-hard.

Proof: Suppose the market maker starts the market with 0 share of every security.DenoteQ0 as the

initial quantities of all securities. If the market maker can computeC(Q̃)−C(Q) for any quantities

Q̃ andQ, it can computeC(Q) − C(Q0) for anyQ. As C(Q0) = b log n!, the market maker is

able to computeC(Q). By Theorem 17, computing the payment of a transaction is#P-hard.

5.4.2 Pair Betting

In contrast to subset betting, where traders bet on absolute positions for a candidate, pair betting al-

lows traders to bet on the relative position of a candidate with respect to another. More specifically,

traders buy and sell securities of the form〈i > j〉, wherei andj are candidates. The security pays

off $1 if candidatei ranks higher than candidatej (i.e.,σ(i) < σ(j) whereσ is the final ranking of

candidates) and $0 otherwise. For example, traders may bet on events ofthe form “horse A beats

horse B”, or “candidate C receives more votes than candidate D”.

As for subset betting, the current state of the market is determined by the total number of

outstanding shares for all securities. Letqi,j denote the number of outstanding shares for〈i > j〉.
Applying Equations 5.3 and 5.4 to the present context, we find that the instantaneous price of the

security〈i, j〉 is given by

pi,j(Q) =

∑

σ∈Ω:σ(i)<σ(j)

∏

i′,j′:σ(i′)<σ(j′) eqi′,j′/b

∑

τ∈Ω

∏

i′,j′:τ(i′)<τ(j′) eqi′,j′/b
, (5.9)

and the cost function for pair betting is

C(Q) = b log
∑

σ∈Ω

∏

i,j:σ(i)<σ(j)

eqi,j/b . (5.10)

We show that computing prices, the value of the cost function, and/or payments of transactions

for pair betting is#P-hard via a reduction from the problem of computing the number of linear

89



extensions to any partial ordering. The proof is in Appendix A5.1. The corollary then follows from

a similar argument to the proof of Corollary 1.

Theorem 18 It is #P-hard to compute instantaneous prices in a LMSR market for pair betting.

Additionally, it is#P-hard to compute the value of the cost function.

Corollary 2 Computing the payment of a transaction in a LMSR for pair betting is#P-hard.

5.5 LMSR for Boolean Betting

We now examine an alternate type of market combinatorics in which the final outcome is a con-

junction of event outcomes. Formally, letA be event space, consisting ofN individual events

A1, · · · , AN , which may or may not be mutually independent. We define the state spaceΩ to be

the set of all possible joint outcomes for theN events, so that its size is|Ω| = 2N . A Boolean

betting market allows traders to bet on Boolean formulas of these events andtheir negations. A

security〈φ〉 pays off $1 if the Boolean formulaφ is satisfied by the final outcome and $0 other-

wise. For example, a security〈A1 ∨ A2〉 pays off$1 if and only if at least one of eventsA1 and

A2 occurs, while a security〈A1 ∧ A3 ∧ ¬A5〉 pays off$1 if and only if the eventsA1 andA3 both

occur and the eventA5 does not. Following the notational conventions of Fortnow et al. [53], we

useω ∈ φ to mean that the outcomeω satisfies the Boolean formulaφ. Similarly, ω 6∈ φ implies

that the outcomeω does not satisfyφ.

In this section, we focus our attention to LMSR markets for a very simple Boolean betting

language, Boolean formulas of two events. We show that even when bets are only allowed to be

placed on disjunctions or conjunctions of two events, it is still#P-hard to calculate the prices, the

value of the cost function, and payments of transactions in a Boolean bettingmarket operated by a

LMSR market maker.

Let X be the set containing all elements ofA and their negations. In other words, each event

outcomeXi ∈ X is eitherAj or ¬Aj for someAj ∈ A. We begin by considering the scenario in

which traders may only trade securities〈Xi ∨ Xj〉 corresponding to disjunctions of any two event

outcomes.

Let qi,j be the total number of shares purchased by all traders for the security〈Xi ∨ Xj〉,
which pays off$1 in the event of any outcomeω such thatω ∈ (Xi ∨Xj) and$0 otherwise. From

90



Equation 5.4, we can calculate the instantaneous price for the security〈Xi ∨ Xj〉 for any two event

outcomesXi, Xj ∈ X as

pi,j(Q) =

∑

ω∈Ω:ω∈(Xi∨Xj)

∏

1≤i′<j′≤2N :ω∈(Xi′∨Xj′ )
eqi′,j′/b

∑

τ∈Ω

∏

1≤i′<j′≤2N :τ∈(Xi′∨Xj′ )
eqi′,j′/b

. (5.11)

Note that ifXi = ¬Xj , pi,j(Q) is always$1 regardless of how many shares of other securities

have been purchased. According to Equation 5.3, the cost function is

C(Q) = b log
∑

ω∈Ω

∏

1≤i<j≤2N :ω∈(Xi∨Xj)

eqi,j/b . (5.12)

Theorem 19 shows that computing prices and the value of the cost functionin such a market is

#P-hard. The proof is via a reduction from the #2-SAT problem. The structure of the proof is

extremely similar to that of the pair betting case, and is given in Appendix A5.2. The proof of the

corollary is then nearly identical to the proof of Corollary 1.

Theorem 19 It is #P-hard to compute instantaneous prices in a LMSR market for Boolean betting

when bets are restricted to disjunctions of two event outcomes. Additionally,it is #P-hard to

compute the value of the cost function in this setting.

Corollary 3 Computing the payment of a transaction in a LMSR for Boolean betting is#P-hard

when traders can only bet on disjunctions of two events.

If we impose that participants in a Boolean betting market may only trade securities corre-

sponding to conjunctions of any two event outcomes,〈Ai ∧ Aj〉, the following Corollary gives the

corresponding complexity results.

Corollary 4 It is #P-hard to compute instantaneous prices in a LMSR market for Boolean betting

when bets are restricted to conjunctions of two event outcomes. Additionally,it is #P-hard to

compute the value of the cost function in this setting, and#P-hard to compute the payment for a

transaction.

Proof: Buying q shares of security〈Ai ∧ Aj〉 is equivalent to sellingq shares of〈¬Ai ∨ ¬Aj〉.

91



Thus if we can operate a Boolean betting market for securities of the type〈Ai ∧ Aj〉 in polyno-

mial time, we can also operate a Boolean betting market for securities of the type〈Ai ∨ Aj〉 in

polynomial time. The result then follows from Theorem 19 and Corollary 3.

5.6 An Approximation Algorithm for Subset Betting

There is an interesting relationship between logarithmic market scoring rule market makers and a

common class of algorithms for online learning in an experts setting. In this section, we elaborate

on this connection, and show how results from the online learning community can be used to prove

new results about an approximation algorithm for subset betting.

5.6.1 Review of the Experts Setting

We begin with a brief review the standard model of online learning with expertadvice, which is

described in more detail in Chapter 4. Recall that in Section 4.2, this model wasdefined in terms

of expertgains. For the purposes of this chapter, it is easier to think in terms oflosses, which

are simply negated gains. We therefore start by reintroducing the setting using slightly altered

notation.

At each timet ∈ {1, · · · , T}, each experti ∈ {1, · · · , n} receives aloss`i,t ∈ [0, 1]. The

cumulative lossof experti at timeT is Li,T =
∑T

t=1 `i,t. No statistical assumptions are made

about these losses, and in general, algorithms are expected to perform well even if the sequence of

losses is chosen by an adversary.

An algorithmA maintains a current weightwi,t for each experti, where
∑n

i=1 wi,t = 1.

These weights can be viewed as distributions over the experts. The algorithm then receives its

own instantaneous loss`A,t =
∑n

i=1 wi,t`i,t, which may be interpreted as the expected loss of the

algorithm when choosing an expert according to the current distribution.The cumulative loss of

A up to timeT is then defined in the natural way asLA,T =
∑T

t=1 `A,t =
∑T

t=1

∑n
i=1 wi,t`i,t. A

common goal in such online learning settings is to minimize an algorithm’sregret. Here the regret

is defined as the difference between the cumulative loss of the algorithm andthe cumulative loss

of an algorithm that would have “chosen” the best expert in hindsight bysetting his weight to1

throughout all the periods. Formally, the regret is given byLA,T − mini∈{1,··· ,n} Li,T .

92



Many algorithms that have been analyzed in the online experts setting are based on exponen-

tial weight updates. As discussed in Chapter 4, these exponential updates allow the algorithm to

quickly transfer weight to an expert that is outperforming the others. Forexample, in the Weighted

Majority algorithm of Littlestone and Warmuth [98], the weight on each experti is defined as

wi,t =
wi,t−1e

−η`i,t

∑n
j=1 wj,t−1e−η`j,t

=
e−ηLi,t

∑n
j=1 e−ηLj,t

, (5.13)

whereη is thelearning rate, a small positive parameter that controls the magnitude of the updates.

The following theorem gives a bound on the regret of Weighted Majority. For a proof of this result

and a nice overview of learning with expert advice, see Cesa-Bianchi and Lugosi [25].

Theorem 20 (e.g., Cesa-Bianchi and Lugosi [25])LetA be the Weighted Majority algorithm with

parameterη. After a sequence ofT trials,

LA,T − min
i∈{1,··· ,n}

Li,T ≤ ηT +
ln(n)

η
.

WhenT is known in advance, settingη =
√

ln(n)/T yields the standard
√

T ln(n) regret bound.

5.6.2 Relationship to LMSR Markets

There is a manifest similarity between the expert weights utilized by Weighted Majority and the

prices in an LMSR market; simply compare the form of Equation 5.13 with the formof Equa-

tion 5.2. One might ask if the results from the experts setting can be applied to theanalysis of

prediction markets. Our answer isyes. For example, it is possible to use Theorem 20 to rediscover

the well-known bound ofb ln(n) for the loss of an LMSR market maker withn outcomes.

Let ε be a limit on the number of shares that a trader may purchase or sell at eachtime step; in

other words, if a trader would like to purchase or sellq shares, this purchase must be broken down

into dq/εe separate purchases ofε or less shares. Note that the total number of time stepsT needed

to execute such a sequence of purchases and sales is proportional to1/ε.

We will construct a sequence of loss functions in a setting withn experts to induce a sequence

of weight matrices that correspond to the price matrices of the LMSR market. At each time stept,

93



let pi,t ∈ [0, 1] be the instantaneous price of securityi at the end of periodt, and letqi,t ∈ [−ε, ε]

be the number of shares of securityi purchased during periodt. Let Qi,t be the total number of

shares of securityi that have been purchased up to timet. Define the instantaneous loss of each

expert as̀ i,t = (ε − qi,t)/(ηb). First notice that this loss is always in[0, 1] as long asη ≥ 2ε/b.

From Equations 5.2 and 5.13, at each timet,

pi,t =
eQi,t/b

∑n
j=1 eQj,t/b

=
eεt/b−ηLi,t

∑n
j=1 eεt/b−ηLj,t

=
e−ηLi,t

∑n
j=1 e−ηLj,t

= wi,t .

Applying Theorem 20, and rearranging terms, we find that

max
i∈{1,··· ,n}

T
∑

t=1

qi,t −
T
∑

t=1

n
∑

i=1

pi,tqi,t ≤ η2Tb + b ln(n).

The first term of the left-hand side is the maximum payment that the market makerneeds to make,

while the second terms of the left-hand side captures the total money the marketmaker has re-

ceived. The right hand side is clearly minimized whenη is set as small as possible. Setting

η = 2ε/b (which, as we mentioned above, is the smallest value we can choose forη while guaran-

teeing that each expert’s instantaneous loss is in[0, 1]) gives us

max
i∈{1,··· ,n}

T
∑

t=1

qi,t −
T
∑

t=1

n
∑

i=1

pi,tqi,t ≤ 4ε2Tb + b ln(n).

SinceT = O(1/ε), the term4ε2Tb goes to 0 asε becomes very small. Thus in the limit asε

approaches0, we get the well-known result that the worst-case loss of the market makeris bounded

by b ln(n).

5.6.3 Considering Permutations

In recent work, Helmbold and Warmuth [67] show that many results from thestandard experts

setting can be extended to a setting in which, instead of competing with the best expert, the goal

is to compete with the best permutation overn items. Here each permutation suffers a loss at

each time step, and the goal of the algorithm is to maintain a weighting over permutations such

that the cumulative regret to the best permutation is small. It is generally infeasible to treat each

94



permutation as an expert and run a standard algorithm since this would require updatingn! weights

at each time step. Instead, they show that when the loss has a certain structure (in particular, when

the loss of a permutation is the sum of the losses of each of then mappings), an alternate algorithm

can be used that requires tracking onlyn2 weights in the form of ann×n doubly stochastic matrix.

Formally, letW t be a doubly stochastic matrix of weights maintained by the algorithmA
at time t. HereW t

i,j is the weight corresponding to the probability associated with itemi be-

ing mapped into positionj. Let Lt ∈ [0, 1]n×n be the loss matrix at timet. The instanta-

neous loss of a permutationσ at time t is `σ,t =
∑n

i=1 Lt
i,σ(i). The instantaneous loss ofA is

`A,t =
∑n

i=1

∑n
j=1 W t

i,jL
t
i,j , the matrix dot product betweenW t and Lt. Notice that`A,t is

equivalent to the expectation over permutationsσ drawn according toW t of `σ,t. The goal of the

algorithm is to minimize the cumulative regret to the best permutation,LA,T −minσ∈Ω Lσ,T where

the cumulative loss is defined as before.

Helmbold and Warmuth go on to present an algorithm called PermELearn that updates the

weight matrix in two steps. First, it creates a temporary matrixW ′, such that for everyi andj,

W ′
i,j = W t

i,je
−ηLt

i,j . It then obtainsW t+1
i,j by repeatedly rescaling the rows and columns ofW ′

until the matrix is doubly stochastic. Alternately rescaling rows and columns of a matrix M in this

way is known as Sinkhorn balancing [116]. Normalizing the rows of a matrix isequivalent to pre-

multiplying by a diagonal matrix, while normalizing the columns is equivalent to post-multiplying

by a diagonal matrix. Sinkhorn [116] shows that this procedure converges to a unique doubly

stochastic matrix of the formRMC whereR and C are diagonal matrices ifM is a positive

matrix. Although there are cases in which Sinkhorn balancing does not converge in finite time,

many results show that the number of Sinkhorn iterations needed to scale a matrix so that row and

column sums are1 ± ε is polynomial in1/ε [7, 73, 97].

The following theorem bounds the cumulative loss of the PermELearn in terms of the cumula-

tive loss of the best permutation.

Theorem 21 (Helmbold and Warmuth [67])LetA be the PermELearn algorithm with parameter

η. After a sequence ofT trials,

LA,T ≤ n ln(n) + η minσ∈Ω Lσ,T

1 − e−η
.

95



5.6.4 Approximating Subset Betting

Using the PermELearn algorithm, it is simple to approximate prices for subset betting in polyno-

mial time. We start with an × n price matrixP 1 in which all entries are1/n. As before, traders

may purchase securities of the form〈i|Φ〉 that pay off$1 if and only if horse or candidatei finishes

in a positionj ∈ Φ, or securities of the form〈Ψ|j〉 that pay off$1 if and only if a horse or candidate

i ∈ Ψ finishes in positionj.

As in Section 5.6.2, each time a trader purchases or sellsq shares, the purchase or sale is

broken up intodq/εe purchases or sales ofε shares or less, whereε > 0 is a small constant.1 Thus

we can treat the sequence of purchases as a sequence ofT purchases ofε or less shares, where

T = O(1/ε). Let qt
i,j be the number of shares of securities〈i|Φ〉 with j ∈ Φ or 〈Ψ|j〉 with i ∈ Ψ

purchased at timet; thenqt
i,j ∈ [−ε, ε] for all i andj.

The price matrix is updated in two steps. First, a temporary matrixP ′ is created where for

everyi andj, P ′
i,j = P t

i,je
qt
i,j/b whereb > 0 is a parameter playing a similar role tob in Equa-

tion 5.2. Next,P ′ is Sinkhorn balanced to the desired precision, yielding an (approximately)

doubly stochastic matrixP t+1.

The following lemma shows that updating the price matrix in this way results in a pricematrix

that is equivalent to the weight matrix of PermELearn with particular loss functions.

Lemma 14 The sequence of price matrices obtained by the approximation algorithm forsubset

betting on a sequence of purchasesqt ∈ [−ε, ε]n×n is equivalent to the sequence of weight matrices

obtained by running PermELearn(η) on a sequence of lossesLt with

Lt
i,j =

ε − qt
i,j

ηb

for all i andj, for anyη ≥ 2ε/b.

Proof: First note that for anyη ≥ 2ε/b, Lt
i,j ∈ [0, 1] for all t, i, andj, so the loss matrix is valid for

PermELearn.P 1 andW 1 both contain all entries of1/n. Assume thatP t = W t. When updating

1We remark that dividing purchases in this way has the negative effect of creating a polynomial time dependence on
the quantity of shares purchased. However, this is not a problem if the quantity of shares bought or sold in each trade is
bounded to start, which is a reasonable assumption. The additional time required is then linear only in1/ε.

96



weights for timet + 1, for all i andj,

P ′
i,j = P t

i,je
qt
i,j/b = W t

i,je
qt
i,j/b = eε/bW t

i,je
−ε/b+qt

i,j/b = eε/bW t
i,je

−ηLt
i,j = eε/bW ′

i,j .

Since the matrixW ′ is a constant multiple ofP ′, the Sinkhorn balancing step will produce the

same matrices.

Using this lemma, we can show that the difference between the amount of moneythat the

market maker must distribute to traders in the worst case (i.e. when the true outcome is the outcome

that pays off the most) and the amount of money collected by the market is bounded. We will see

in the corollary below that asε approaches 0, the worst case loss of the market maker approaches

bn ln(n), regardless of the number of shares purchased. Unfortunately, ifε > 0, this bound can

grow arbitrarily large.

Theorem 22 For any sequence of valid subset betting purchasesqt whereqt
i,j ∈ [−ε, ε] for all t, i,

andj, let P 1, · · · , P T be the price matrices obtained by running the subset betting approximation

algorithm. Then

max
σ∈Sn

T
∑

t=1

n
∑

i=1

qt
i,σ(i) −

T
∑

t=1

n
∑

i=1

n
∑

j=1

P t
i,jq

t
i,j ≤

(

2ε/b

1 − e−2ε/b

)

bn ln(n) +

(

2ε/b

1 − e−2ε/b
− 1

)

εnT .

Proof: By Theorem 21 and Lemma 14, we have that for anyη ≥ 2ε/b,

T
∑

t=1

n
∑

i=1

n
∑

j=1

P t
i,j

(

ε − qt
i,j

ηb

)

≤
(

1

1 − e−η

)

(

n lnn + η min
σ∈Sn

T
∑

t=1

n
∑

i=1

(

ε − qt
i,σ(i)

ηb

))

.

Using the fact thatP t is doubly stochastic, this gives us

εnT

ηb
−

T
∑

t=1

n
∑

i=1

n
∑

j=1

P t
i,jq

t
i,j

ηb
≤
(

1

1 − e−η

)

(

n lnn +
εnT

b
− max

σ∈Sn

T
∑

t=1

n
∑

i=1

qt
i,σ(i)

b

)

,

and multiplying through byηb yields

εnT −
T
∑

t=1

n
∑

i=1

n
∑

j=1

P t
i,jq

t
i,j ≤

(

η

1 − e−η

)

(

bn lnn + εnT − max
σ∈Sn

T
∑

t=1

n
∑

i=1

qt
i,σ(i)

)

.

97



Finally, rearranging terms gives us

(

η

1 − e−η

)

max
σ∈Sn

T
∑

t=1

n
∑

i=1

qt
i,σ(i) −

T
∑

t=1

n
∑

i=1

n
∑

j=1

P t
i,jq

t
i,j

≤
(

η

1 − e−η

)

bn ln(n) +

(

η

1 − e−η
− 1

)

εnT .

Notice thatη/(1 − e−η) ≥ 1 for positive values ofη. Furthermore,η/(1 − e−η) is strictly

increasing inη. Thus the right hand side of this equation decreases asη decreases to 0. Setting

η = 2ε/b (the minimum value thatη can take on while guaranteeing that the instantaneous loss is

always in[0, 1]) yields the result.

Let us examine the bound in the theorem. Notice that the term(2ε/b)/(1− e−2ε/b) goes to 1 in

the limit asε approaches 0. Additionally, the number of stepsT scales inversely withε since each

lump purchase ofq shares must be broken intodq/εe individual purchases. Thus in the limit asε

approaches0, the loss of the market maker is bounded bybn ln(n).

Corollary 5 For any sequence of valid subset betting purchases broken intoT (= O(1/ε)) small

purchases such thatqt
i,j ∈ [−ε, ε] for all t, i, andj, let P 1, · · · , P T be the price matrices obtained

by running the Subset Betting Approximation Algorithm. In the limit asε approaches0,

max
σ∈Sn

T
∑

t=1

n
∑

i=1

qt
i,σ(i) −

T
∑

t=1

n
∑

i=1

n
∑

j=1

P t
i,jq

t
i,j ≤ bn ln(n) .

This bound is comparable to worst-case loss bounds achieved using alternate methods for op-

erating LMSRs on permutations. A single LMSR operated on the entire outcome space has a

guaranteed worst-case loss ofb ln(n!), but is, of course, intractable to operate. A set ofn LM-

SRs operated asn separate markets, one for each position, would also have a total worst-case

lossbn ln(n), but could not guarantee consistent prices. In the limit, our approximation algorithm

achieves the same worst-case loss guarantee as if we were operatingn separate markets, but prices

remain consistent at all times.

98



5.7 Open Questions

In the previous section, we demonstrated an interesting and previously unexplored relationship

between LMSR market makers and a common class of expert learning algorithms. However, it is

likely that the connection between no-regret learning and prediction markets is deeper than we have

suggested. Both can be viewed as techniques for aggregating the collective knowledge of many

individuals by cleverly maintaining weights. Discovering additional connections could provide

economists with the opportunity to take advantage of the already vast literatureon online learning,

and would likely benefit machine learning research as well. This is discussed more in Chapter 6.

99



Chapter 6

Future Directions

Significant further research is required before our foundational understanding of problems in col-

lective learning will be sufficient to explain and resolve all of the issues faced by practitioners

today. In this chapter, we conclude with a brief overview of some of the exciting areas of research

that remain open.

6.1 Improved Models for Collaborative Filtering

The research described in Chapter 2 can be viewed as a theoretical foundation for rudimentary

collaborative filtering. The collaborative filtering systems used in practice (e.g., the current Netflix

movie recommendation system) are significantly more complex, but are often based on conglomer-

ations of ad hoc techniques [13, 14]. While there have been some recenttheoretical advancements

on collaborative filtering, there is still a wide gap between our foundationalunderstanding of the

problem and algorithms that could perform well in practice.

Perhaps the most difficult aspect of closing this gap is developing the rightmodel. To date, most

work on collaborative filtering focuses on techniques for low-rank matrixcompletion [6, 117, 118],

in which each preference rating is entered into a matrix, with rows representing users and columns

representing objects (for example, websites). Missing entries in the matrix are approximated in

such a way that the resulting matrix is of low rank. The assumption behind this lineof work is

that preferences can be decomposed into some small number of unknown factors. A significant

drawback of this work is that it does not take into account is the existence of knownfeatures of

100



users (such as age or location) and objects (such as topic or designer,in the case of websites) that

are often available in practice and could potentially be extremely useful. (Onenotable exception is

the recent work of Abernethy et al. [2], which aims to incorporate knownattributes of both users

and products using specially designed attribute kernels, but does not provide theoretical guarantees

about the quality of the solution.) When the amount of available training data is limited, it can

be crucial to include these features; predicting a user’s rating for a moviethat no other user has

rated is impossible without incorporating some outside information. On the other hand, the simple

models we propose for taking known object features into account are not yet powerful enough to

work well in practice.

In order to make real progress in this area, it seems necessary to definemodels that are able to

draw on the power of matrix completion techniques while taking into account all available outside

information. How to best define these models and what is provable in these settings remain open

questions.

6.2 Network Diffusion and Viral Marketing

Sociologists have long been interested in the question of how new trends, behaviors, and innova-

tions spread through social networks. This topic, known asnetwork diffusion, has recently gained

momentum in computer science due to the availability of data from social networksinduced by on-

line recommendation systems, social networking websites, and instant messaging systems [132].

These networks are significantly larger than any that have been studied before, in some cases con-

taining hundreds of millions of nodes and more than a billion edges [93], so efficiency is a real

concern.

One specific question that has received a lot of attention is how to determine the optimal group

of individuals in a social network to target with an advertising campaign in order to cause a new

product or technology to spread throughout the network. Kempe et al. [84, 85] proved that solving

one natural variant of this problem exactly is NP-hard, but provided a simple greedy algorithm

that can be used to obtain approximate results. However, their algorithm requires that all relevant

parameters of the model are known, including the parameters describing thebehavior of every

individual in the network. They do not discuss techniques for learning these parameters from data

101



or the potential harm that might be caused by running their algorithm using incorrect parameter

values.

Some effort has been made to use techniques from machine learning to learnthe parameters

necessary to approximately solve alternate variations of the question above[48, 108]. However,

this work is based largely on heuristic techniques, and the authors make no attempt to show ei-

ther that these heuristics produce accurate parameter estimates or that using inaccurate estimates

doesn’t have an adverse effect.

In working towards algorithms that are applicable in real viral marketing settings, it seems that

an important next step is developing principled algorithms for learning or estimating the relevant

modeling parameters without requiring too much expensive data or making unrealistic assump-

tions. The resulting algorithms would be of immediate interest to advertisers, andcould have

direct applications to many of the other problems to which ideas from the diffusion literature are

commonly applied, potentially including preventing the spread of disease or contamination [95].

6.3 Social Search and Advertising

Most of the revenue of companies such as Google, Yahoo!, and Facebook comes from their ability

to target ads to specific groups of users. Both search results and ads can be personalized based on

user demographics such as age, gender, and location, as well as inferred user interests and online

histories [120, 51, 71]. It is natural to speculate that when information about friendships and

other network connections is available, it should be possible to use this information to build more

complete user profiles by taking advantage of the assumption that people arelikely to be similar to

their friends (or at least likely to be interested in the same websites or products). However, to the

best of our knowledge, there are no existing models of search or search advertising that capture the

effects of the availability of network contacts and what can be learned from this extra social data.

There are a number of difficulties in building such a model. First, it is hard to know how much

influence friends have over each other. A typical Facebook user might have hundreds of network

“friends”, but only a few with similar taste in books or movies, or whose opinions on products

they fully trust. Even if it can be determined that two friends tend to listen to similar music or

read the same books, there is an issue of causation to sort out; do people choose books based

102



on recommendations from friends, or do they choose friends who have similar interests and are

therefore more likely to read the same books anyway? Finally, there are privacy issues that must be

addressed. Privacy is always a concern with personalized search and advertising [89], but becomes

even more important and complex when the personal information collected from a user can impact

not only his own search results or ads but also those seen by his friends.

Despite these potential road blocks, the possibility of social search and advertising is worth

some thought. In addition to posing a number of interesting theoretical questions, any ideas de-

veloped would have a clear impact on industry and, if done well, could improve the experience of

web users too.

6.4 Additional Connections Between Learning and Markets

Section 5.6 details the first formal study of the connection between learning from expert advice

and pricing algorithms for prediction markets. Both areas can be viewed as studies of how to

aggregate the knowledge of many potentially diverse individuals. Furthermore, in both cases, this

aggregation is accomplished by cleverly maintaining sets of weights, either over outcomes (in the

case of prediction markets) or over members of the population themselves (in the case of learning

from expert advice). Despite these apparent similarities, no formal connections between the two

areas have been posed beyond those described in this work.

The discovery and understanding of additional connections between machine learning and pre-

diction markets could have huge impact. This somewhat open-ended line of work has the potential

to give researchers studying both machine learning and market design theopportunity to learn

from and take advantage of years of existing research and prior knowledge, potentially leading to

breakthroughs in both fields, and should definitely be explored further.

103



Appendix

A1 Basic Tools from Probability Theory

For the sake of completeness, in this section we provide two simple results fromprobability theory

that are used throughout this document.

A1.1 Hoeffding’s Inequality

Hoeffding’s inequality [69] is a standard result in probability theory that can be used to bound the

probability that the sum of a set of random variables is far from its expectation. Here we state a

general form of the inequality, which is used frequently throughout this dissertation.

Theorem 23 (Hoeffding’s Inequality [69]) Let x1, · · · , xn ben independent random variables,

with xi ∈ [ai, bi] for eachi. Then for any valuet,

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

xi −
n
∑

i=1

E[xi]

∣

∣

∣

∣

∣

≥ tn

]

≤ 2 exp

( −2n2t2
∑n

i=1(bi − ai)2

)

.

Notice that it isnot required thatx1, · · · , xn are identically distributed. If eachxi ∈ [0, 1],

then the expression simplifies to

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

xi −
n
∑

i=1

E[xi]

∣

∣

∣

∣

∣

≥ tn

]

≤ 2e−2nt2 .

A1.2 McDiarmid’s Inequality

McDiarmid’s inequality [102] is a generalization of Hoeffding’s inequality that can be used to

bound the probability that a function depending on many independent random variables is far from

104



its expectation as long as the function doesn’t depend too much on any singlevariable.

Theorem 24 (McDiarmid’s Inequality [102]) Let x1, · · · , xn be independent random variables

taking on values in a setA and assume thatf : An → R satisfies

sup
x1,...,xn,x′

i∈A

|f(x1, . . . , xn) − f(x1, . . . , xi−1, xi′ , xi+1, . . . , xn)| ≤ ci

for every1 ≤ i ≤ n. Then for everyt > 0,

Pr [|f(x1, . . . , xn) − E [f(x1, . . . , xn)]| ≥ t] ≤ 2 exp

( −2t2
∑n

i=1 c2
i

)

.

A2 Additional Proofs from Chapter 2

A2.1 Proof of Lemma 3

Here we show one direction of the bound, namely that with probability1 − δ/2, for all h ∈ H,

e(h) ≤ ê(h) + 2LRn(H) +

√

2 ln(2/δ)

n
.

The proof of the other direction is nearly identical. Fori ∈ {1, . . . , n}, let 〈xi, yi〉 be theith

training instance, distributed according toPi, and let〈x′
i, y

′
i〉 be independent random variables

drawn according toPi. Note that for allh ∈ H,

e(h) = e(h) + ê(h) − ê(h) ≤ ê(h) + sup
h′∈H

(

e(h′) − ê(h′)
)

= ê(h) + sup
h′∈H

(

E{〈x′
i,y

′
i〉}

n
i=1

[

1

n

n
∑

i=1

φ(y′i, h
′(x′

i))

]

− 1

n

n
∑

i=1

φ(yi, h
′(xi))

)

= ê(h) + sup
h′∈H

(

E{〈x′
i,y

′
i〉}

n
i=1

[

1

n

n
∑

i=1

φ′(y′i, h
′(x′

i)) + φ(y′i, 0)

]

− 1

n

n
∑

i=1

φ′(yi, h
′(xi)) + φ(yi, 0)

)

.

When only one instance〈xi, yi〉 changes, thesup term can change by at most2/n. Thus we

105



can apply McDiarmid’s inequality (see Section A1.2) to see that with probability at least1 − δ/2,

e(h) ≤ ê(h) + E

[

sup
h′∈H

(

E

[

1

n

n
∑

i=1

φ′(y′i, h
′(x′

i))

]

− 1

n

n
∑

i=1

φ′(yi, h
′(xi))

)]

+

√

2 ln(2/δ)

n
,

where the outer expectation is with respect to set of training instances{〈xi, yi〉}n
i=1 and the inner

expectation is with respect to the set of random variables{〈x′
i, y

′
i〉}n

i=1. Now it suffices to show

that this middle term is bounded by2LRn(H). Using the fact that the supremum of an expectation

is less than or equal to the expectation of a supremum, we find that

E{〈xi,yi〉}n
i=1

[

sup
h′∈H

(

E{〈x′
i,y

′
i〉}

n
i=1

[

1

n

n
∑

i=1

φ′(y′i, h
′(x′

i))

]

− 1

n

n
∑

i=1

φ′(yi, h
′(xi))

)]

≤ E{〈xi,yi〉}n
i=1,{〈x′

i,y
′
i〉}

n
i=1

[

sup
h′∈H

1

n

n
∑

i=1

(

φ′(y′i, h
′(x′

i)) − φ′(yi, h
′(xi))

)

]

= E{〈xi,yi〉}n
i=1,{〈x′

i,y
′
i〉}

n
i=1,{σi}n

i=1

[

sup
h′∈H

1

n

n
∑

i=1

σi

(

φ′(y′i, h
′(x′

i)) − φ′(yi, h
′(xi))

)

]

≤ E{〈xi,yi〉}n
i=1,{σi}n

i=1

[

sup
h′∈H

2

n

n
∑

i=1

σiφ
′(yi, h

′(xi))

]

= Rn(φ′ ◦ H) .

Lemma 2 implies thatRn(φ′ ◦ H) ≤ 2LRn(H) sinceφ is Lipschitz with parameterL. The

result follows.

A2.2 Proof of Lemma 5

We cannot apply Lemma 3 directly using the squared loss function, since it mayoutput values

outside of the range[0, 1]. Instead, we apply the Lemma 3 using the alternate loss function

L′(h, 〈x, y〉) = φ(y, h(x)) where

φ(y, a) =



























1
4B2 (y + B)2 if a < −B,

1
4B2 (y − a)2 if −B ≤ a ≤ B,

1
4B2 (y + B)2 if a > B.

106



It is easy to see thatφ always outputs values in the range[0, 1]. Furthermore, for anyy ∈ [−B, B],

φ is Lipschitz in the second parameter with parameter1/B. For any[a, b] ∈ [−B, B],

|φ(y, a) − φ(y, b)| =
1

4B2

∣

∣(y − a)2 − (y − b)2
∣

∣ =
1

4B2

∣

∣a2 − b2 + 2y(b − a)
∣

∣

≤ 1

4B2

∣

∣a2 − b2
∣

∣+
1

2B2
|y(a − b)|

≤ 1

4B2
|a + b| |a − b| + 1

2B2
|y(a − b)| ≤ 1

B
|a − b| .

Applying Lemma 3 gives a uniform convergence bound of(2/B)Rn(H) +
√

2 ln(2/δ)/n for

L′. Scaling by4B2 yields the bound forL.

A2.3 Proof of Theorem 5

The proof first requires a uniform convergence bound for the empirical α-error, which is given in

the following lemma. Note that this bound is minimized whenαi is proportional toni. In other

words, convergence is fastest when all data instances are weighted equally.

Lemma 15 LetH be a hypothesis space of VC-dimensiond. If a random labeled sample is gener-

ated by drawingni points from each distribution fromDi, and labeling them according tofi, then

with probability at least1 − δ, for everyh ∈ H:

|êα(h) − eα(h)| ≤

√

√

√

√

K
∑

i=1

α2
i

2ni

(

d log(2n1:K) + log(1/δ)
)

.

Proof: For each sourcei, let Xi,1, . . . , Xi,ni
be random variables that take on the values

αin1:K

ni
|h(x) − fi(x)|

for theni instancesx ∈ Si. Note thatXi,1, . . . , Xi,ni
∈ [0, αin1:K/ni]. Then

êα(h) =

K
∑

i=1

αiêi(h) =

K
∑

i=1

αi
1

ni

∑

x∈Si

|h(x) − fi(x)| =
1

n1:K

K
∑

i=1

ni
∑

j=1

Xi,j .

107



By linearity of expectations, we have thatE[êα(h)] = eα(h), and so by Hoeffding’s inequality,

for everyh ∈ H,

Pr [|êα(h) − eα(h)| ≥ ε] ≤ 2 exp

(

−2n2
1:Kε2

∑K
i=1

∑ni

j=1 range2(Xi,j)

)

= 2 exp





−2ε2

∑K
i=1

α2
i

ni



 .

The remainder of the proof for hypothesis classes of finite VC dimension follows a standard

argument. In particular, the reduction to a finite hypothesis class using the growth function does

not change [125, 4]. This, combined with the union bound, gives us the probability that there exists

anyhypothesish ∈ H such that|êα(h)−eα(h)| ≥ ε. Substitutingδ for the probability and solving

for ε gives us the bound.

We are now ready to state the proof of Theorem 5.

Let h∗
i = argminh{eT (h) + ei(h)}. For each sourcei (and similarly for the targetT ), define

ei(h, h′) = Ex∼Di
[|h(x) − h′(x)|]. Then

|eα(h) − eT (h)| =

∣

∣

∣

∣

∣

K
∑

i=1

αiei(h) − eT (h)

∣

∣

∣

∣

∣

≤
K
∑

i=1

αi |ei(h) − eT (h)|

≤
K
∑

i=1

αi (|ei(h) − ei(h, h∗
i )| + |ei(h, h∗

i ) − eT (h, h∗
i )|

+ |eT (h, h∗
i ) − eT (h)|)

≤
K
∑

i=1

αi (ei(h
∗
i ) + |ei(h, h∗

i ) − eT (h, h∗
i )| + eT (h∗

i ))

≤
K
∑

i=1

αi

(

min
h∈H

{eT (h) + ei(h)} +
1

2
dH∆H(Di, DT )

)

.

The third line follows from the triangle inequality. The last line follows from the simple fact that

for any hypothesesh, h′ ∈ H, for any sourceSi,

|eS(h, h′) − eT (h, h′)| ≤ 1

2
dH∆H(Di,DT ) .

108



For notational convenience, letλi = minh∈H {eT (h) + ei(h)}. Putting this together with

Lemma 15, we find that for anyδ ∈ (0, 1), with probability1 − δ,

eT (ĥ) ≤ eα(ĥ) +
K
∑

i=1

αi

(

λi +
1

2
dH∆H(Di, DT )

)

≤ êα(ĥ) +

√

√

√

√

K
∑

i=1

α2
i

2ni

(

d log(2n1:K) + log(1/δ)
)

+
K
∑

i=1

αi

(

λi +
1

2
dH∆H(Di, DT )

)

≤ êα(h∗
T ) +

√

√

√

√

K
∑

i=1

α2
i

2ni

(

d log(2n1:K) + log(1/δ)
)

+
K
∑

i=1

αi

(

λi +
1

2
dH∆H(Di, DT )

)

≤ eα(h∗
T ) + 2

√

√

√

√

K
∑

i=1

α2
i

2ni

(

d log(2n1:K) + log(1/δ)
)

+
K
∑

i=1

αi

(

λi +
1

2
dH∆H(Di, DT )

)

≤ eT (h∗
T ) + 2

√

√

√

√

K
∑

i=1

α2
i

2ni

(

d log(2n1:K) + log(1/δ)
)

+
K
∑

i=1

αi(2λi+dH∆H(Di, DT )) .

A2.4 Proof of Theorem 6

The proof is almost identical to that of Theorem 5 with minor modifications to the derivation of

the bound on|eα(h) − eT (h)|. Let h∗ = argminh{eT (h) + eα(h)}. By the triangle inequality,

|eα(h) − eT (h)| ≤ |eα(h) − eα(h, h∗)| + |eα(h, h∗) − eT (h, h∗)| + |eT (h, h∗) − eT (h)|

≤ eα(h∗) + |eα(h, h∗) − eT (h, h∗)| + eT (h∗)

≤ min
h

{

eT (h) +
K
∑

i=1

αiei(h)

}

+
1

2
dH∆H(Dα, DT ) .

The remainder of the proof is unchanged.

A3 Additional Proofs from Chapter 3

A3.1 Proof Sketch of Theorem 7

We first sketch the hardness construction. LetH be any class of Boolean circuits (that is, with gates

in C) that is not polynomially learnable in the standard PAC model; under standardcryptographic

assumptions, such a class exists. LetD be a hard distribution for PAC learningH. Let h ∈ H

109



be a Boolean circuit withR inputs,S gates, and depthD. To embed the computation byh in a

collective problem, we letN = R+S andT = D. We introduce an agent for each of theR inputs

to h, whose value after the initial state is set according to an arbitraryAND, OR, or NOT gate. We

additionally introduce one agent for every gateg in h. If a gateg in h takes as its inputs the outputs

of gatesg′ andg′′, then at each time step the agent corresponding tog computes the corresponding

function of the states of the agents corresponding tog′ andg′′ at the previous time step. Finally, by

convention we always have theN th agent be the agent corresponding to the output gate ofh, and

define the output function asF (s) = sN . The distributionP over initial states of theN agents is

identical toD on theR agents corresponding to the inputs ofh, and arbitrary (e.g., independent

and uniform) on the remainingS agents.

Despite the fact that this construction introduces a great deal of spurious computation (for

instance, at the first time step, many or most gates may simply be computing Booleanfunctions

of the random bits assigned to non-input agents), it is clear that if gateg is at depthd in h, then

at timed in the collective simulation of the agents, the corresponding agent has exactly the value

computed byg under the inputs toh (which are distributed according toD). Because the outcome

function is the value of the agent corresponding to the output gate ofh at timeT = D, pairs of the

form
〈

s0, F (sT )
〉

provide exactly the same data as the PAC model forh underD, and thus must

be equally hard.

For the polynomial learnability ofC from collective behavior, we note thatC is clearly PAC

learnable, since it is just Boolean combinations of 1 or 2 inputs. In Section 3.4we give a general

reduction from collective learning of any agent strategy class to PAC learning the class, thus giving

the claimed result.

A3.2 Proof of Lemma 8

We bound the error of these estimations in two parts. First, since from Equation 3.6 we know that

for anyδ1 > 0, with probability1 − δ1,

∣

∣

∣

∣

∣

α̂
∑

m:Im∈M

fm,a − α
∑

m:Im∈M

fm,a

∣

∣

∣

∣

∣

≤ 1

Za∗

√

ln(4/δ1)

M

∑

m:Im∈M

fm,a ≤ 1

Za∗

√

M ln(4/δ1) ,

110



and

|(1 − α̂)M − (1 − α)M | ≤ 1

Za∗

√

M ln(4/δ1) ,

we have by Lemma 9 that for sufficiently largeM

∣

∣

∣

∣

α̂
∑

m:Im∈M fm,a

(1 − α̂)M
−

α
∑

m:Im∈M fm,a

(1 − α)M

∣

∣

∣

∣

≤
(1/Za∗)

√

M ln(4/δ1)
(

(1 − α̂)M + α̂
∑

m:Im∈M fm,a

)

(1 − α̂)2M2 − (1 − α̂)M
√

M ln(4/δ1)/Za∗

≤
√

M ln(4/δ1)((1 − α̂)M + α̂M)

Za∗(1 − α̂)2M2 − (1 − α̂)M
√

M ln(4/δ1)

=

√

ln(4/δ1)

Za∗(1 − α̂)2
√

M − (1 − α̂)
√

ln(4/δ1)
.

Now, by Hoeffding’s inequality and the union bound, for anyδ2 > 0, with probability1 − δ2,

for all a,

∣

∣

∣

∣

∣

∑

m:Im∈M

I(am = a) − E

[

∑

m:Im∈M

I(am = a)

]∣

∣

∣

∣

∣

≤
√

M ln(2K/δ2)/2 .

Settingδ2 = Kδ1/2, we can again apply Lemma 9 and see that for sufficiently largeM

∣

∣

∣

∣

∣

∑

m:Im∈M I(am = a)

(1 − α̂)M
−

E
[
∑

m:Im∈M I(am = a)
]

(1 − α)M

∣

∣

∣

∣

∣

≤
√

M ln(4/δ1)/2
(

(1 − α̂)Za∗M +
√

2M
)

Za∗(1 − α̂)2M2 − (1 − α̂)M
√

M ln(4/δ1)

≤
√

ln(4/δ1)/2
(

(1 − α̂)Za∗ +
√

2
)

Za∗(1 − α̂)2
√

M − (1 − α̂)
√

ln(4/δ1)
=

((1 − α̂)Za∗/
√

2 + 1)
√

ln(4/δ1)

Za∗(1 − α̂)2
√

M − (1 − α̂)
√

ln(4/δ1)
.

Settingδ1 = δ/(1 + K/2) and applying the union bound yields the lemma.

111



A3.3 Proof of Lemma 9

For the first direction,

u

v
− û

v̂
≤ u

v
− u − ε

v + kε
=

u

v
− uv − εv

v(v + kε)
=

u

v
− uv + ukε − εv − ukε

v(v + kε)

=
u

v
− u(v + kε) − ε(v + uk)

v(v + kε)
=

ε(v + uk)

v(v + εk)
≤ ε(v + uk)

v(v − εk)
.

Similarly,

û

v̂
− u

v
≤ u + ε

v − kε
− u

v
=

uv + εv

v(v − kε)
− u

v
=

uv − ukε + εv + ukε

v(v − kε)
− u

v

=
u(v − kε) + ε(v + uk)

v(v − kε)
− u

v
=

ε(v + uk)

v(v − εk)
.

A3.4 Proof of Lemma 10

As long asM is sufficiently large, for any fixedf ,

∑

a∈S

|(αfa + (1 − α)wa) − (α̂fa + (1 − α̂)ŵa)|

≤
∑

a∈S

|α − α̂|fa +
∑

a∈S

|(1 − α)wa − (1 − α̂)ŵa|

≤ |α − α̂| +
∑

a∈S

(|α − α̂|ŵa + |wa − ŵa|(1 − α̂) − |α − α̂| · |wa − ŵa|)

≤ 2|α − α̂| + (1 − α̂)
∑

a∈S

|wa − ŵa| − |α − α̂|
∑

a∈S

|wa − ŵa|

≤ 2
√

ln((4 + 2K)/δ)

Za∗
√

M
+ min

{

K(Za∗/
√

2 + 2)
√

ln((4 + 2K)/δ)

Za∗(1 − α̂)
√

M −
√

ln((4 + 2K)/δ)
, 2(1 − α̂)

}

.

Notice that this holds uniformly for allf , so the same bound holds when we take an expectation

overf .

A3.5 Handling the case whereZa∗ is small

Suppose that for an actiona, Za < ε. Let ηa andµa be the true median and mean respectively

of the distribution from which the random variablesfm,a are drawn. Letfhigh
a be the mean value

of the distribution overfm,a conditioned onfm,a > ηa, and similarly letf low
a be the mean value

112



conditioned onfm,a < ηa, so µa =
(

f low
a + fhigh

a

)

/2.1 Let f̄high
a be the empirical average

of fm,a conditioned onfm,a > ηa, and f̄ low
a be the empirical average offm,a conditioned on

fm,a < ηa. (Note that we cannot actually computēfhigh
a andf̄ low

a sinceηa is unknown.) Finally,

let f̂high
a = (2/M)

∑

m:Im∈Mhigh
a

fm,a andf̂ low
a = (2/M)

∑

m:Im∈Mlow
a

fm,a. Notice thatZa =

f̂high
a − f̂ low

a .

We show first thatfhigh
a andf low

a are close tōfhigh
a andf̄ low

a respectively. Next we show that

f̄high
a andf̄ low

a are close tof̂high
a andf̂ low

a respectively. Finally, we show that this implies that if

Za is small, then the probability that a random value offm,a is far fromηa is small. This in turn

implies a smallL1 distance between our estimated model and the real model for each agent.

To bound the difference betweenfhigh
a and f̄high

a , it is first necessary to lower bound the

number of points in the empirical samples withfm,a > ηa. Let zm be a random variable that is 1

if fm,a > ηa and 0 otherwise. ClearlyPr [zm = 1] = Pr [zm = 0] = 1/2. By a straightforward

application of Hoeffding’s inequality, for anyδ3, with probability1 − δ3,

∣

∣

∣

∣

∣

∑

m:Im∈M

zm − M

2

∣

∣

∣

∣

∣

≤
√

ln(2/δ3)M

2
,

and so the number of samples averaged to getf̄high
a is at least(M/2)−

√

ln(2/δ3)M/2. Applying

Hoeffding’s inequality again, with probability1 − δ4,

∣

∣

∣
fhigh

a − f̄high
a

∣

∣

∣
≤
√

ln(2/δ4)

M −
√

2 ln(2/δ3)M
.

Now, f̂high
a is an empirical average ofM/2 values in[0, 1], while f̄high

a is an empirical av-

erage of the same points, plus or minus up to
√

ln(2/δ3)M/2 points. In the worst case,̄fhigh
a

either includes an additional
√

ln(2/δ3)M/2 points with values lower than any point inMhigh
a , or

excludes the
√

ln(2/δ3)M/2 lowest values points inMhigh
a . This implies that in the worst case,

∣

∣

∣f̄high
a − f̂high

a

∣

∣

∣ ≤
√

ln(2/δ3)
√

M/2 −
√

ln(2/δ3)
.

1Assume for now that it is never the case thatfm,a = ηa. This simplifies the explanation, although everything still
holds iffm,a can beηa.

113



By the triangle inequality,

∣

∣

∣fhigh
a − f̂high

a

∣

∣

∣ ≤
√

ln(2/δ4)

M −
√

2 ln(2/δ3)M
+

√

ln(2/δ3)
√

M/2 −
√

ln(2/δ3)
.

The same can be show forf low
a andf̂ low

a . Hence ifZa ≤ ε, then

fhigh
a − f low

a ≤ ε + 2

√

ln(2/δ4)

M −
√

2 ln(2/δ3)M
+

2
√

ln(2/δ3)
√

M/2 −
√

ln(2/δ3)
.

Call this quantityε′. Clearly we have

µa − ε′ ≤ f low
a ≤ µa ≤ fhigh

a ≤ µa + ε′.

Sincefhigh
a is an average of points which are all higher thanf low

a , and similarlyf low
a is an average

of points all lower thanfhigh
a , this implies that for anyτ ≥ 0,

Pr
[

|fm,a − µa| ≥ ε′ + τ
]

≤ Pr
[

fm,a ≥ fhigh
a + τ

]

+ Pr
[

fm,a ≤ f low
a − τ

]

≤ ε′/(ε′ + τ) .

Recall that whenZa is small for alla, we setα̂ = 0 andŵa =
∑

m:Im∈M I(am = a). Let

w̄a = αµa + (1 − α)wa. Notice thatE [ŵa] = w̄a. Applying Hoeffding’s inequality yet again,

with probability1 − δ5, |ŵa − w̄a| ≤
√

ln(2/δ5)/2M . For anyτ > 0,

Ef∼Df

[

∑

a∈S

|(αfa + (1 − α)wa) − (α̂fa + (1 − α̂)ŵa)|
]

=
∑

a∈S

Ef∼Df [|αfa + (1 − α)wa − ŵa|]

≤
∑

a∈S

Ef∼Df [|αfa + (1 − α)wa − w̄a| + |w̄a − ŵa|]

≤ α
∑

a∈S

Ef∼Df [|fa − µa|] + K
√

ln(2/δ5)/2M

≤ K

((

1 − ε′

ε′ + τ

)

(

ε′ + τ
)

+
ε′

ε′ + τ

)

+ K
√

ln(2/δ5)/2M

= K

(

τ +
ε′

ε′ + τ
+
√

ln(2/δ5)/2M

)

.

114



A3.6 Proof of Lemma 12

By the union bound,

Prf∼Df [∃a, b ∈ S : fa > 0, fb > 0, |Ma,b| < M ]

≤
∑

a,b∈S

Prf∼Df [fa > 0, fb > 0, |Ma,b| < M ] ≤
∑

a,b∈S:|Ma,b|<M

Prf∼Df [fa > 0, fb > 0] .

For any fixed pair of actionsa, b such that|Ma,b| < M , it follows from Hoeffding’s inequality

that for anyδ ∈ (0, 1), with probability1 − δ,

Prf∼Df [fa > 0, fb > 0] ≤ M

|M| +

√

ln(1/δ)

2|M| .

Noting that the number of pairs is less thanK2/2 and settingδ = 2δ/K2 yields the lemma.

A3.7 Bounding theL1

Here we show that with high probability (over the choice ofM and the draw off ), if M is

sufficiently large,

∑

a∈S

∣

∣

∣

∣

wafa
∑

s∈S wsfs
− ŵafa
∑

s∈S ŵsfs

∣

∣

∣

∣

≤ 2(1 + β)KN
√

N ln(2K/δ)√
2M − (1 + β)K(N + 1)

√

N ln(2K/δ)
.

First note that we can rewrite the expression on the left-hand side of the inequality above as

∑

a∈S′

∣

∣

∣

∣

w′
afa

∑

s∈S′ w′
sfs

− ŵafa
∑

s∈S′ ŵsfs

∣

∣

∣

∣

,

where for alla, w′
a = wa/(

∑

s∈S′ ws). We know from Equation 3.9 that with high probability

(over the data set and the choice off ), for all a ∈ S ′,

|w′
afa − ŵafa| ≤

fa(1 + β)|S ′|
√

N ln(2K2/δ)√
2M − (1 + β)|S ′|

√

N ln(2K2/δ)
,

115



and

∣

∣

∣

∣

∣

∑

s∈S′

w′
sfs −

∑

s∈S′

wsfs

∣

∣

∣

∣

∣

≤
∑

s∈S′

fs|w′
s − ŵs|

≤ (1 + β)|S ′|
√

N ln(2K2/δ)√
2M − (1 + β)|S ′|

√

N ln(2K2/δ)
.

Thus, using the fact that
∑

s∈S′ ŵsfs ≥ 1/N , we can apply Lemma 9 once again to get that

∣

∣

∣

∣

w′
afa

∑

s∈S′ w′
sfs

− ŵafa
∑

s∈S′ ŵsfs

∣

∣

∣

∣

≤
(1 + β)KN

√

N ln(2K/δ)
(

fa + ŵafa
P

s∈S′ ŵsfs

)

√
2M − (1 + β)K(N + 1)

√

N ln(2K/δ)
,

and

∑

a∈S′

∣

∣

∣

∣

w′
afa

∑

s∈S′ w′
sfs

− ŵafa
∑

s∈S′ ŵsfs

∣

∣

∣

∣

≤ 2(1 + β)KN
√

N ln(2K/δ)√
2M − (1 + β)K(N + 1)

√

N ln(2K/δ)
.

A3.8 Learning Without Resets

Although the analyses in Section 3.5 are tailored to learnability in the sense of Definition 4, they

can easily be adapted to hold in the alternate setting in which the learner has access only to a

single, unbroken trajectory of states. In this alternate model, the learning algorithm observes a

polynomially long prefix of a trajectory of states for training, and then must produce a generative

model which results in a distribution over the values of the subsequentT states close to the true

distribution.

When learning individual crowd affinity models for each agent in this setting, we again assume

that we are presented with a set of samplesM, where each instanceIm ∈ M consists of a pair

〈fm, am〉. However, instead of assuming that the state distributionsfm are distributed according

to Df , we now assume that the state and action pairs represent a single trajectory. As previously

noted, the majority of the analysis for both the mixture and multiplicative variants ofthe crowd

affinity model does not depend on the particular way in which state distributionvectors are dis-

tributed, and thus carries over to this setting as is. Here we briefly discuss the few modifications

that are necessary.

The only change required in the analysis of the crowd affinity mixture model relates to handling

116



the case in whichZa is small for all a. Previously we argued that when this is the case, the

distributionDf must be concentrated so that for alla, fa falls within a very small range with high

probability. Thus it is not necessary to estimate the parameterα directly, and we can instead learn

a single probability for each action that is used regardless off . A similar argument holds in the

no-reset variant. If it is the case thatZa is small for alla, then it must be the case that for eacha,

the value offa has fallen into the same small range for the entire observed trajectory. A standard

uniform convergence argument says that the probability thatfa suddenly changes dramatically is

very small, and thus again it is sufficient to learn a single probability for eachaction that is used

regardless off .

To adapt the analysis of the crowd affinity multiplicative model, it is first necessary to replace

Lemma 12. Recall that the purpose of this lemma was to show that when the data set does not

contain sufficient samples in whichfa > 0 andfb > 0 for a pair of actionsa andb, the chance of

observing a new state distributionf with fa > 0 andfb > 0 is small. This argument is actually

much more straightforward in the no-reset case. By the definition of the model, it is easy to see

that if fa > 0 for some actiona at timet in a trajectory, then it must be the case thatfa > 0 at

all previous points in the trajectory. Thus iffa > 0 on any test instance, thenfa must have been

non-negative oneverytraining instance, and we do not have to worry about the case in which there

is insufficient data to compare the weights of a particular pair of actions.

One additional, possibly more subtle, modification is necessary in the analysis of the multi-

plicative model to handle the case in whichχa,b = χb,a = 0 for all “active” pairs of actions

a, b ∈ S ′. This can happen only if agenti has extremely small weights for every action inS ′,

and had previously been choosing an alternate action that is no longer available, i.e., an actions

for which fs had previously been non-negative but suddenly is not. However, in order for fs to

become0, it must be the case that agenti himself chooses an alternate action (say, actiona) instead

of s, which cannot happen since the estimated weight of actiona used by the model is0. Thus this

situation can never occur in the no-reset variant.

117



A4 Additional Proofs from Chapter 4

A4.1 Proof of Theorem 16

The details of the proof follow the general sketch given in Section 4.5. Thefirst step is to show

how the adversary can generate a “bad” sequence of gains for any algorithmA. The second step is

to show that in order to prove a general lower bound using this sequencegeneration procedure, it

is sufficient to restrict our attention only to algorithms that satisfy a certain setof properties, which

we call monotonef -compliant algorithms. In the third step, we break the sequence of gains into

“segments” and derive upper and lower bounds on the regret of anyf -compliant algorithm in each

segment. We next show that it is possible to bound the total number of segmentsusing the fact that

the algorithm we are considering has a worst case regret ofα
√

T to the best expert. Finally, we

show how to put these pieces together to achieve the main result.

Step 1: Generating the Sequence of Gains

Fix a constantα > 0. Figure A.1 shows a procedure that, given an algorithmA, generates a

sequence of expert gainsg of lengthT (for any T > (150α)2) such thatg is a “bad sequence”

for A. In this procedure, the variabledt keeps track of the difference between the gains of the

two experts at timet. At each time step, this difference either increases by one or decreasesby

one, since one expert receives a gain of one and the other zero. The variablelast(d) holds the

probability that the algorithm assigned to the leading expert the most recent timethat the distance

between expert gains wasd. The variableεt then represents the difference between the probability

that the algorithm assigned to the current best expert at the last time step atwhich the difference in

expert gains was smaller thandt−1 and the probability that the algorithm assigns to the best expert

for the upcoming time stept. This is used by the sequence generation algorithm to ensure that

the best expert will only do well when the algorithm does not have “too much” weight on it. The

functionf and parameterγ used in the procedure will be defined later in the analysis.

The sequence of gains generated by the procedure in Figure A.1 is specifically designed to

fool the algorithmA. In particular, whenever the algorithm updates its weights aggressively,the

procedure assigns a positive gain to the second-place expert, inducingmean reversion. On the

contrary, when the algorithm updates its weights conservatively, the procedure assigns a positive

118



Figure A.1 TheGenerateBadSeqprocedure for creating a “bad sequence” of gains.
// Input: An algorithm A, function f, and value γ

Sett = 1, Gavg,0 = GA,0 = d0 = 0
while (Gavg,t−1 − GA,t−1 ≤ 0.115

√
T/γ) do

p1,t = A(g), p2,t = 1 −A(g)
if (dt−1 = 0) then

if
(

p1,t ≤ 1
2

)

then
g1,t = 1, g2,t = 0, last(|dt−1|) = p1,t

else
g1,t = 0, g2,t = 1, last(|dt−1|) = p2,t

end if
else

it = argmaxi Gi,t−1, jt = argminj Gj,t−1

last(|dt−1|) = pit,t

εt = pit,t − last(|dt−1 − 1|)
if (εt ≤ f(|dt−1|)) then

git,t = 1, gjt,t = 0
else

git,t = 0, gjt,t = 1
end if

end if
GA,t = GA,t−1 + p1,tg1,t + p2,tg2,t

Gavg,t = Gavg,t−1 + (g1,t + g2,t)/2
dt = dt−1 + g1,t − g2,t

t = t + 1
end while
g1,t = g2,t = 1/2 for the rest of the sequence

gain to the best expert, causing added momentum. These competing issues of conservative versus

aggressive updates force the algorithm to have “bad” regret to either the best expert or the average

on some sequence of gains.

Step 2: Restricting Attention to Monotonef -Compliant Algorithms

We next show that in order to prove a lower bound using the sequence generation procedure defined

in Figure A.1, it is sufficient to consider only a specific class of algorithms. In particular, we first

show that for any arbitrary algorithm, there exists anf -compliantalgorithm (to be defined shortly)

with equivalent or betters gains for whichGenerateBadSeqproduces the same sequence. Thus

we may restrict our attention to onlyf -compliant algorithms. We then show that anyf -compliant

119



algorithm can be transformed into amonotonef -compliant algorithm (defined below) which has

performance at least as good, allowing us to further restrict our attentionto only monotonef -

compliant algorithms.

We begin with the definition off -compliant. We say that an algorithmA is f -compliant(for a

specific functionf which will be defined shortly) if at every timet we have (1)εt = f(dt−1) ± δ,

for an arbitrarily smallδ (for exampleδ = 1/T 2), and (2)p1,t = p2,t = 1/2 if dt−1 = 0. Since

δ can be arbitrarily small, we can think of this requirement as enforcing thatεt beexactlyequal to

f(dt−1), and allowing the algorithm to “choose” whether it should be considered larger or smaller.

The following lemma implies that given the sequence generation process in Figure A.1, we need

only to consider the class off -compliant algorithms, since for any other algorithm that does not

haveΩ(
√

T ) regret to the average, there exists anf -compliant algorithm with better gains for

which the same sequence is generated.

Lemma 16 Consider any algorithmA such that for allt < T , Gavg,t−1−GA,t−1 ≤ 0.115
√

T/γ,

and letg = GenerateBadSeq(A, f, γ). There exists anf -compliant algorithmA′ such that

GenerateBadSeq(A′, f, γ) = g and at every timet ≤ T , gA′,t ≥ gA,t.

Proof: First consider any timet at whichdt−1 = 0. When this is the case, the procedure will

always assign a gain of 1 to the expert with the lower probability. Thus ifA setsp1,t < p2,t or

p2,t < p1,t, it is possible to achieve a higher gain by settingp1,t = p2,t = 1/2 without altering the

sequenceg generated byGenerateBadSeq.

Supposedt−1 6= 0. We can assume without loss of generality thatdt−1 > 0. Note that when

εt ≤ f(|dt−1|) we have a gaing1,t = 1, so maximizingεt by setting it arbitrarily close tof(|dt−1|)
increases the gain without changingGenerateBadSeq(A′, f, γ). Similarly, whenεt > f(|dt−1|)
we haveg2,t = 1, so minimizingεt by setting it arbitrarily close tof(|dt−1|) maximizes the gain

of A without changingGenerateBadSeq(A′, f, γ). In both cases, lettingεt approachf(|dt−1|)
is better for the algorithm and thus the modified algorithmA′ will always have a higher payoff on

GenerateBadSeq(A′, f, γ).

Given anf -compliant algorithm, we can write its probabilities as a function of the difference

between expert gains. In particular, we define a functionF (d) = 1/2 +
∑|d|

i=1 f(i), whereF (0) =

1/2. It is easy to verify that an algorithmA that sets the probability of the best expert at time

120



t to F (dt−1) is anf -compliant algorithm. Furthermore, asδ approaches 0,everyf -compliant

algorithm will assign expert weights arbitrarily close to these weights. It is convenient to think of

the algorithm weights in this way for the next steps of the analysis.

We are now ready to define the functionf used in sequence generation. Let

f(d) =
2m(d)−1

γ
√

T
where m(d) =

⌈

16α√
T
|d|
⌉

.

It then follows that

F (d) =
1

2
+

|d|
∑

i=1

2m(i)−1

γ
√

T
≤ 1

2
+

m(d)
∑

j=1

2j−1

γ
√

T

(√
T

16α

)

≤ 1

2
+

2m(d)

16γα
. (1)

We next define the (possibly noncontiguous)m segmentTm to be the set of all timest for

whichm(dt) = m. More explicitly,

Tm = {t : (m − 1)(
√

T/(16α)) ≤ |dt| < m(
√

T/(16α))} .

Based on this, we define amonotonef -compliant algorithm to be anf -compliant algorithmA
such that whenGenerateBadSeq is applied toA it is the case that for allm andm′, for all t ∈ Tm

andt′ ∈ Tm′ , if m < m′ thent < t′. In other words, anf -compliant algorithm is monotone if

everym segment consists of a contiguous set of time steps. The following observation is useful

in simplifying the proof, allowing us to further restrict our attention to the class of monotonef -

compliant algorithms. It says that a lower bound on the performance of monotone algorithms will

imply the general lower bound.

Lemma 17 Consider any non-monotonef -compliant algorithm A, and let g =

GenerateBadSeq(A, f, γ). There exists a monotonef -compliant algorithm A′ with

g′ = GenerateBadSeq(A′, f, γ) such that

T
∑

t=1

g′A′,t >

T
∑

t=1

gA,t.

Proof: If A is not monotone, then there must be some time stept and some distanced > 0 such

thatm(d + 2) = m(d + 1) + 1 and|dt| = d, |dt+1| = d + 1, |dt+2| = d + 2, and|dt+3| = d + 1.

121



Here the first crossover into them(d + 2) segment occurs at timet + 2, and we cross back into the

m(d + 1) segment at timet + 3. SinceA is f -compliant,

gA,t+1 + gA,t+2 + gA,t+3 = F (d) + F (d + 1) + (1 − F (d + 2)) = F (d) + 1 − f(d + 2) .

Now, consider a modifiedf -compliant algorithmA′ that is the same asA everywhere except

it chooses to have the weight it places on the leading expert at timet+2 treated as arbitrarily close

to butgreater than1/2 + F (d + 1) instead of arbitrarily close to butless than1/2 + F (d + 1),

and sets the weight of this expert at timet + 3 arbitrarily close to but less than1/2 + F (d). This

has the effect of modifying the sequence of distances so that|dt+2| = d; the rest of the sequence

remains the same. On this modified sequence,

g′A′,t+1 + g′A′,t+2 + g′A′,t+3 = F (d) + (1 − F (d + 1)) + F (d) = F (d) + 1 − f(d + 1) .

Sincem(d + 2) > m(d + 1), it must be the case thatf(d + 2) > f(d + 1) and the total gain ofA′

is strictly higher than the total gain ofA.

If A′ is not monotone, this transformation process can be repeated until a monotone f -

compliant algorithm is found. Each time, the gain of the algorithm will strictly increase, yielding

the result.

The above lemma shows how we can change anf -compliant algorithm into a monotonef -

compliant algorithm whose performance is at least as good. Therefore,we can consider only

monotone algorithms.

Step 3: Bounding the Algorithm’s Regret from Above and Below in Each Segment

Now that we have established that it suffices to consider only the performance of f -compliant

algorithms on the sequence of gains generated by the procedure in FigureA.1, we are ready to

introduce the notion ofmatched timesandunmatched times. We define a pair of matched times as

two timest1 andt2 such that the difference between the cumulative gains the two experts changes

from d to d + 1 by timet1 and stays at least as high asd + 1 until changing fromd + 1 back tod at

time t2. More formally, for some differenced, dt1−1 = dt2 = d, and for allt such thatt1 ≤ t < t2,

dt > d. Clearly each pair of matched times consists of one time step in which the gain of one

122



expert is1 and the other0 while at the other time step the reverse holds. We refer to any time at

which one expert has gain1 while the other has gain0 that isnot part of a pair of matched times as

an unmatched time. If at any timet we havedt = d, then there must have beend unmatched times

at some point before timet.

We denote byMm andUMm the matched and unmatched times in them segmentTm, re-

spectively. These concepts will become important due to the fact that an algorithm will lose with

respect to the average for every pair of matched times, but will gain with respect to the average on

every unmatched time.

The following lemma quantifies the regret of the algorithm to the best expert and the average

of all experts for each pair of matched times.

Lemma 18 For anyf -compliant algorithmA and any pair of matched timest1 and t2 in them

segment, the gain of the algorithm from timest1 and t2 (i.e., gA,t1 + gA,t2) is 1 − 2m−1/(γ
√

T ),

while the gain of the average and the best expert is1.

Proof: Let d = dt1 − 1. Without loss of generality assume that the leading expert is expert

1, i.e., d ≥ 0. The gain of the algorithm at timet1 is p1,t1 = F (d), while the gain att2 is

p2,t2 = 1 − p1,t2 = 1 − F (d + 1) = 1 − (F (d) + f(d)). Thus the algorithm has a total gain of

1 − f(d) = 1 − 2m−1/(γ
√

T ) for these time steps.

On the other hand, the following lemma provides an upper bound on the gain ofthe algorithm

over the average expert from the unmatched times only.

Lemma 19 The gain of anyf -compliant algorithmA in only the unmatched times in them seg-

ment of the algorithm is at most2m
√

T/(256γα2) larger than the gain of the average expert in the

unmatched times in segmentm, i.e.,

∑

t∈UMm

(

gA,t −
1

2

)

≤ 2m
√

T

256γα2
.

Proof: Since the leading expert does not change in the unmatched times (in retrospect), we can

assume w.l.o.g. that it is expert1. From (1), it follows that

∑

t∈UMm

gA,t − 1/2 ≤

√
T

16α
−1

∑

i=0

(

F (d + i) − 1

2

)

≤ 2m

16γα

√
T

16α
≤ 2m

√
T

256γα2
.

123



Combining Lemmas 18 and 19, we can compute the number of matched times needed inthe

m segment in order for the loss of the algorithm to the average from matched timesto cancel the

gain of the algorithm over the average from unmatched times.

Lemma 20 For any fixed integerx, if there are at leastT/(128α2) + x pairs of matched times in

them segment, then the gain of anyf -compliant algorithmA in them segment is bounded by the

gain of the average expert in them segment minusx2m−1/(γ
√

T ), i.e.,

∑

t∈Tm

gA,t ≤
∑

t∈Tm

1

2
− 2m−1x

γ
√

T
.

Proof: From Lemma 19,A can not gain more than2m
√

T/(256α2γ) over the average in them

segment. From Lemma 18, the loss ofA with respect to the average for each pair of matched times

is 2m−1/(γ
√

T ). Since there are at leastT/(128α2) + x pairs of matched times, thetotal amount

the algorithm loses to the average in them segment is at least2m−1x/(γ
√

T ).

Step 4: Bounding the Number of Segments

The next lemma bounds the number of segments in the sequence using the factthatA is anα
√

T -

regret algorithm.

Lemma 21 For anyf -compliant algorithmA such thatRbest,A,T < α
√

T and forγ = 248α2
/α,

there are at most48α2 segments ing = GenerateBadSeq(A, f, γ).

Proof: Once again we assume that leading expert is expert1. Settingγ = 248α2
/α in (1), ensures

thatF (d) is bounded by2/3 as long asm remains below48α2. ThusF (d) is bounded by2/3 for all

unmatched times until we reach segment48α2. This implies that if the sequence reaches segment

48α2, then the regret with respect to the best expert will be at least48α2
√

T/(16α)(1/3) = α
√

T

which contradicts the fact thatA is a α
√

T -regret algorithm, so it cannot be the case that the

sequence has48α2 or more segments.

Step 5: Putting the Pieces Together

We are now ready to prove the main lower bound theorem.

124



First, consider the case in which the mainwhile loop of GenerateBadSeq(A, f, γ) termi-

nates before timeT . It must be the case thatGavg,t−1 − GA,t−1 > 0.115
√

T/γ = Ω(
√

T ) and

there is nothing more to prove.

Throughout the rest of the proof, assume that the mainwhile loop is never exited while

generating the sequenceg. From Lemma 20 we know that if there are at leastT/(128α2) pairs

of matched times in them segment, then the loss to the average from these times will cancel

the gain from unmatched times in this segment. By Lemma 21 there are at most48α2 segments.

If the algorithm hasexactlyT/(128α2) pairs of matched times at each segment, it will have at

most a total ofT/(128α2)(48α2) = (3/8)T pairs of matched times and will cancel all of its

gain over the average from the unmatched times in all segments. Note that thereare at most

48α2
√

T/(16α) = 3α
√

T unmatched times. Since we have chosenT such thatα <
√

T/150, we

can bound this by0.02T . This implies that there are at least0.49T pairs of matched times. We

define the following quantity for algorithmA: xm = |Mm|/2 − T/(128α2). We have that

48α2
∑

m=1

xm =





48α2
∑

m=1

|Mm|
2



− 3T

8
≥ 0.49T − (3/8)T = 0.115T .

Let m∗ be the first segment for which we have
∑m∗

i=1 xi ≥ 0.115T . Since we consider only

monotone algorithms we know that by that time no segments larger thanm∗ have been visited. For

everyk, 1 ≤ k ≤ m∗, we havezk =
∑m∗

i=k xi > 0 (otherwisem∗ would not be the first segment).

Note that we can bound the regret to the average from below as follows,

m∗
∑

i=1

xi
2i−1

γ
√

T
=

1

γ
√

T
x1 +

1

γ
√

T

m∗
∑

i=2

xi



1 +
i−1
∑

j=1

2j−1





=
1

γ
√

T

m∗
∑

i=1

xi +
1

γ
√

T

m∗
∑

i=2

i
∑

j=2

2j−2xi

=
1

γ
√

T
z1 +

1

γ
√

T

m∗
∑

j=2

2j−2zj ≥
0.115T

γ
√

T
=

0.115
√

T

γ
.

This shows that the regret to the average must be at least0.115
√

T/γ = β
√

T whereβ =

0.115α/248α2
, yielding the first result of the theorem.

Finally, for anyα′ ≤ 1/10, let α = α′
√

log T ≤ √
log T/10. From the previous result, this

125



implies that if the regret to the best expert is bounded byα′
√

T log T = α
√

T , then the regret to

the average must be at least(0.115α/2(48/100) log T )
√

T = 0.115αT 1/2−48/100 = Ω(T 1/50). This

proves the second part of the theorem.

A5 Additional Proofs from Chapter 5

A5.1 Proof of Theorem 18

Let P be a partial order over{1, . . . , n}. Recall that a linear (or total) orderT is a linear extension

of P if wheneverx ≤ y in P it also holds thatx ≤ y in T . We denote byN (P ) the number of

linear extensions ofP .

Recall that(i, j) is acovering pairof P if i ≤ j in P and there does not exist` 6= i, j such that

i ≤ ` ≤ j. Let {(i1, j1), (i2, j2), ... , (ik, jk)} be a set of covering pairs ofP . Note that covering

pairs of a partially ordered set withn elements can be easily obtained in polynomial time, and that

their number is less thann2.

We will show that we can design a sequence of trades that, given a list of covering pairs forP ,

providesN (P ) through a simple function of market prices.

We consider a pair betting market overn candidates. We construct a sequence ofk trading

periods, and denote byqt
i,j andpt

i,j respectively the outstanding quantity of security〈i > j〉 and its

instantaneous price at the end of periodt. At the beginning of the market,q0
i,j = 0 for anyi andj.

At each period t,0 < t ≤ k, b lnn! shares of security〈it > jt〉 are purchased.

Let

Nt(i, j) =
∑

σ∈Ω:σ(i)<σ(j)

∏

i′,j′:σ(i′)<σ(j′)

e
qt
i′,j′/b

,

and

Dt =
∑

σ∈Ω

∏

i′,j′:σ(i′)<σ(j′)

e
qt
i′,j′/b

.

Note that according to Equation 5.9,pt
it,jt

= Nt(it, jt)/Dt.

For the first period, as only the security〈i1 > j1〉 is purchased, we get

D1 =
∑

σ∈Ω:σ(i1)<σ(j1)

n! +
∑

σ:σ(i1)>σ(j1)

1 =
(n!)2 + n!

2
.

126



We now show thatDk can be calculated inductively fromD1 using successive prices given by

the market. During periodt, b lnn! shares of〈it > jt〉 are purchased. Note also that the securities

purchased are different at each period, so thatqs
it,jt

= 0 if s < t andqs
it,jt

= b lnn! if s ≥ t. We

have

Nt(it, jt) = Nt−1(it, jt)e
b ln(n!)/b = n!Nt−1(it, jt) .

Hence,
pt

it,jt

pt−1
it,jt

=
Nt(it, jt)/Dt

Nt−1(it, jt)/Dt−1
=

n!Dt−1

Dt
,

and therefore,

Dk = (n!)k−1

(

k
∏

`=2

p`−1
i`,j`

p`
i`,j`

)

D1 .

SoDk can be computed in polynomial time inn given the prices.

Alternately, since the cost function at the end of periodk can be written asC(Q) = b log Dk,

Dk can also be computed efficiently from the cost function in periodk.

We finally show that givenDk, we can computeN (P ) in polynomial time. Note that at the

end of thek trading periods, the securities purchased correspond to the covering pairs ofP , such

that eqk
i,j/b = n! if (i, j) is a covering pair ofP andeqk

i,j/b = 1 otherwise. Consequently, for a

permutationσ that satisfies the partial orderP , meaning thatσ(i) ≤ σ(j) wheneveri ≤ j in P, we

have
∏

i′,j′:σ(i′)<σ(j′)

e
qk
i′,j′/b

= (n!)k .

On the other hand, if a permutationσ does not satisfyP , it does not satisfy at least one covering

pair, meaning that there is a covering pair ofP , (i, j), such thatσ(i) > σ(j), so that

∏

i′,j′:σ(i′)<σ(j′)

e
qk
i′,j′/b ≤ (n!)k−1 .

Since the total number of permutations isn!, the total sum ofall terms in the sumDk corresponding

to permutations that do not satisfy the partial orderingP is less than or equal ton!(n!)k−1 = (n!)k,

and is strictly less than(n!)k unless the number of linear extensions is 0, while the total sum

of all the terms corresponding to permutations that do satisfyP is N (P )(n!)k. ThusN (P ) =
⌊

Dk/(n!)k
⌋

.

127



We know that computing the number of linear extensions of a partial orderingis #P-hard.

Therefore, both computing the prices and computing the value of the cost function in pair betting

are#P-hard.

A5.2 Proof of Theorem 19

Suppose we are given a 2-CNF (Conjunctive Normal Form) formula

(Xi1 ∨ Xj1) ∧ (Xi2 ∨ Xj2) ∧ · · · ∧ (Xik ∨ Xjk
) (2)

with k clauses, where each clause is a disjunction of two literals (i.e. events and their negations).

Assume any redundant terms have been removed.

The structure of the proof is similar to that of the pair betting case. We consider a Boolean

betting market withN events, and show how to construct a sequence of trades that provides,

through prices or the value of the cost function, the number of satisfiable assignments for the

2-CNF formula.

We createk trading periods. At periodt, a quantityb ln(2N ) of the security〈Xit ∨ Xjt〉 is

purchased. We denote bypt
i,j and qt

i,j respectively the price and outstanding quantities of the

security〈Xi ∨ Xj〉 at the end of periodt. Suppose the market starts with 0 share of every security.

Thenqs
it,jt

= 0 if s < t andqs
it,jt

= b ln(2N ) if s ≥ t. Let

Nt(i, j) =
∑

ω∈Ω:ω∈(Xi∨Xj)

∏

1≤i′<j′≤2N :ω∈(Xi′∨Xj′ )

e
qt
i′,j′/b

,

and

Dt =
∑

ω∈Ω

∏

1≤i′<j′≤2N :ω∈(Xi′∨Xj′ )

e
qt
i′,j′/b

.

Thus,pt
i,j = Nt(it, jt)/Dt.

Since only one security〈Xi1 ∨ Xj1〉 has been purchased in period 1, we get

D1 =
∑

ω∈Ω:ω∈(Xi1
∨Xj1

)

2N +
∑

ω∈Ω:ω 6∈(Xi1
∨Xj1

)

1 = 3 · 22N−2 + 2N−2.

We then show thatDk can be calculated inductively fromD1. As the only security purchased

128



in periodt is (Xit ∨ Xjt) in quantityb ln(2N ), we obtain

Nt(it, jt) = Nt−1(it, jt)e
b ln(2N )/b = Nt−1(it, jt)2

N .

Therefore,
pt

it,jt

pt−1
it,jt

=
Nt(it, jt)/Dt

Nt−1(it, jt)/Dt−1
=

2NDt−1

Dt
,

and we get

Dk = (2N )k−1

(

k
∏

`=2

p`−1
i`,j`

p`
i`,j`

)

D1 .

In addition, since the cost function at the end of periodk can be expressed as

C(Q) = b log Dk ,

Dk can also be computed efficiently from the cost function in periodk.

We now show that we can deduce fromDk the number of satisfiable assignments for the 2-CNF

formula (Equation 2). Indeed, each term in the sum

∑

ω∈Ω

∏

1≤i′<j′≤2N :ω∈(Xi′∨Xj′ )

e
qk
i′,j′/b

that corresponds to an outcomeω that satisfies the formula is exactly2kN , as exactlyk terms in

the product are2N and the rest are 1. On the contrary, each term in the sum that corresponds to an

outcomeω that doesnot satisfy the 2-CNF formula will be at most2(k−1)N since at mostk − 1

terms in the product will be2N and the rest will be 1. Since the total number of outcomes is2N , the

total sum ofall terms corresponding to outcomes that do not satisfy Equation 2 is less than or equal

to 2N (2(k−1)N ) = 2kN , and is strictly less than2kN unless the number of satisfying assignments

is 0. Thus the number of satisfying assignments is
⌊

Dk/2kN
⌋

.

We know that computing the number of satisfiable assignments of a 2-CNF formula is #P-hard.

We have shown how to compute it in polynomial time using prices or the value of thecost function

in a Boolean betting market ofN events. Therefore, both computing prices and computing the

value of the cost function in a Boolean betting market is #P-hard.

129



References

[1] P. Abbeel, D. Koller, and A. Ng. Learning factor graphs in polynomial time and sample

complexity.Journal of Machine Learning Research, 7:1743–1788, 2006.

[2] J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative filtering:

Operator estimation with spectral regularization.Journal of Machine Learning Research,

10:803–826, 2009.

[3] R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman, A. Tauman Kalai, V. Mirrokni,

and M. Tennenholtz. Trust-based recommendation systems: an axiomatic approach. In

Proceedings of the 17th International World Wide Web Conference, 2008.

[4] M. Anthony and P. Bartlett.Neural Network Learning: Theoretical Foundations. Cambridge

University Press, 1999.

[5] P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning

algorithms.Journal of Computer and System Sciences, 64:48–75, 2002.

[6] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis of data. InProceed-

ings of the 33rd ACM Symposium on Theory of Computing, pages 619–626, 2001.

[7] H. Balakrishnan, I. Hwang, and C. Tomlin. Polynomial approximation algorithms for belief

matrix maintenance in identity management. InProceedings of the 43rd IEEE Conference

on Decision and Control, pages 4874–4879, 2004.

[8] M.-F. Balcan, A. Blum, J. Hartline, and Yishay Mansour. Reducing mechanism design

to algorithm design via machine learning.Journal of Computer and System Sciences, 74:

1245–1270, 2008.

130



[9] M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning.

In Proceedings of the 21st Annual Conference on Learning Theory, 2008.

[10] P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and

structural results.Journal of Machine Learning Research, 3:463–482, 2002.

[11] P. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation.Machine

Learning, 48:85–113, 2002.

[12] J. Baxter. Learning internal representations. InProceedings of the Eighth Annual Confer-

ence on Computational Learning Theory, 1995.

[13] R. Bell and Y. Koren. Lessons from the Netflix prize challenge.SIGKDD Explorations, 9

(2), 2007.

[14] R. Bell, Y. Koren, and C. Volinsky. Chasing $1,000,000: How we won the Netflix progress

prize. ASA Statistical and Computing Graphics Newsletter, 18(2), 2007.

[15] S. Ben-David. Exploiting task relatedness for multiple task learning. InProceedings of the

Sixteenth Annual Conference on Computational Learning Theory, 2003.

[16] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain

adaptation. InAdvances in Neural Information Processing Systems 19, 2006.

[17] J. Berg and T. Rietz. Accuracy and forecast standard error of prediction markets. Technical

report, University of Iowa, College of Business Administration, 2002.

[18] N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. On the spread of viruses on the Internet.

In Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithm, 2005.

[19] J. Blitzer. Domain Adaptation of Natural Language Processing Systems. PhD thesis, Uni-

versity of Pennsylvania, 2007.

[20] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman. Learning bounds for domain

adaptation. InAdvances in Neural Information Processing Systems 20, 2007.

131



[21] J. Blitzer, M. Dredze, and F. Pereira. Biographies, Bollywood, boomboxes and blenders:

Domain adaptation for sentiment classification. InProceedings of the 45th Annual Meeting

of the Association for Computational Linguistics, 2007.

[22] G. Brightwell and P. Winkler. Counting linear extensions is #P-complete. In Proceedings of

the 23rd ACM Symposium on Theory of Computing, 1991.

[23] G. W. Brown. Iterative solutions of games by fictitious play. In T.C. Koopmans, editor,

Activity Analysis of Production and Allocation. Wiley, 1951.

[24] T. Bylander. Learning noisy linear threshold functions. Technical Report, 1998.

[25] N. Cesa-Bianchi and G. Lugosi.Prediction, Learning, and Games. Cambridge University

Press, 2006.

[26] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction

with expert advice.Machine Learning, 66(2/3):321–352, 2007.

[27] C. Chelba and A. Acero. Empirical methods in natural language processing. InProceedings

of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004.

[28] Y. Chen and D. M. Pennock. A utility framework for bounded-loss market makers. In

Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, pages 49–56,

2007.

[29] Y. Chen, L. Fortnow, E. V. Nikolova, and D. M. Pennock. Betting on permutations. In

Proceedings of the Eighth ACM Conference on Electronic Commerce, 2007.

[30] Y. Chen, D. Reeves, D. M. Pennock, R. Hanson, L. Fortnow, and R. Gonen. Bluffing and

strategic reticence in prediction markets. InProceedings of the 3rd International Workshop

on Internet and Network Economics, 2007.

[31] Y. Chen, L. Fortnow, N. Lambert, D. M. Pennock, and J. Wortman.Complexity of combi-

natorial market makers. InProceedings of the Ninth ACM Conference on Electronic Com-

merce, 2008.

132



[32] Y. Chen, S. Goel, and D. M. Pennock. Pricing combinatorial marketsfor tournaments. In

Proceedings of the 40th ACM Symposium on Theory of Computing, 2008.

[33] N. A. Christakis and J. H. Fowler. The spread of obesity in a large social network over 32

years.New England Journal of Medicine, 357:370–379, 2007.

[34] C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative multiagent

systems. InProceedings of the Fifteenth National Conference on Artificial Intelligence,

1998.

[35] E. Cohen. Learning noisy perceptrons by a perceptron in polynomial time. InProceedings

of the 38th IEEE Annual Symposium on Foundations of Computer Science, 1997.

[36] J. S. Coleman, E. Katz, and H. Menzel.Medical innovation: A Diffusion Study. Bobbs-

Merrill, Indianapolis, MN, 1966.

[37] T. Cover. Universal portfolios.Mathematical Finance, 1(1):1–19, 1991.

[38] T. Cover and J. Thomas.Elements of Information Theory. John Wiley & Sons, New York,

NY, 1991.

[39] K. Crammer, M. Kearns, and J. Wortman. Learning from data of variable quality. InAd-

vances in Neural Information Processing Systems 18, 2005.

[40] K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. Journal of Ma-

chine Learning Research, 9:1757–1774, 2008. Preliminary version appeared in Advances

in Neural Information Processing Systems 19.

[41] S. Dasgupta. Coarse sample complexity bounds for active learning.In Advances in Neural

Information Processing Systems 18, 2005.

[42] S. Dasgupta. The sample complexity of learning fixed-structure Bayesian networks.Ma-

chine Learning, 29(2–3):165–180, 1997.

[43] A. De Vany. Hollywood Economics: How Extreme Uncertainty Shapes the Film Industry.

Routledge, London, 2004.

133



[44] O. Dekel and O. Shamir. Good learners for evil teachers. InProceedings of the 26th Inter-

national Conference on Machine Learning, 2009.

[45] O. Dekel and O. Shamir. Vox populi: Collecting high-quality labels froma crowd. In

Proceedings of the 22nd Annual Conference on Learning Theory, 2009.

[46] P. Dodds and D. J. Watts. A generalized model of social and biological contagion.Journal

of Theoretical Biology, 232:587–604, 2005.

[47] P. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search in global social

networks.Science, 301:828–829, August 2003.

[48] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings

of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2001.

[49] M. Drehmann, J. Oechssler, and A. Roider. Herding and contrarian behavior in financial

markets: An Internet experiment.American Economic Review, 95(5):1403–1426, 2005.

[50] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertisingand the generalized second

price auction: Selling billions of dollars worth of keywords.American Economic Review,

97(1):242–259, 2007.

[51] E. Even-Dar, M. Kearns, and J. Wortman. Sponsored search with contexts. InProceedings

of the 3rd International Workshop on Internet and Network Economics, 2007.

[52] E. Even-Dar, M. Kearns, Y. Mansour, and J. Wortman. Regretto the best versus regret to the

average.Machine Learning Journal, 72(1–2):21–37, 2008. Preliminary version appeared in

the Proceedings of the Twentieth Annual Conference on Learning Theory.

[53] L. Fortnow, J. Kilian, D. M. Pennock, and M. Wellman. Betting Boolean-style: A framework

for trading securities based on logical formulas.Decision Support Systems, 39(1):87–104,

2004.

[54] D. Foster and R. Vohra. Regret in the on-line decision problem.Games and Economic

Behavior, 29:7–35, 1999.

134



[55] Y. Freund. Predicting a binary sequence almost as well as the optimalbiased coin.Informa-

tion and Computation, 182(2):73–94, 2003.

[56] Y. Freund and R. Schapire. A decision-theoretic generalization ofon-line learning and an

application to boosting.Journal of Computer and System Sciences, 55(1):119–139, 1997.

[57] Z. Ghahramani. Learning dynamic Bayesian networks. In C.L. Giles and M. Gori, editors,

Adaptive Processing of Sequences and Data Structures. Springer-Verlag, Berlin, 1998.

[58] M. Granovetter. Threshold models of collective behavior.American Journal of Sociology,

61:1420–1443, 1978.

[59] S. J. Grossman. An introduction to the theory of rational expectationsunder asymmetric

information.Review of Economic Studies, 48(4):541–559, 1981.

[60] D. Gruhl, R. V. Guha, D. Liben-Nowell, and A. Tomkins. Informationdiffusion through

blogspace.SIGKDD Explorations, 6(2):43–52, 2004.

[61] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. InAdvances

in Neural Information Processing Systems 14, 2001.

[62] R. Hanson. Combinatorial information market design.Information Systems Frontiers, 5(1):

105–119, 2003.

[63] R. Hanson. Logarithmic market scoring rules for modular combinatorial information aggre-

gation.Journal of Prediction Markets, 1(1):3–15, 2007.

[64] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.

Econometrica, 68(5):1127–1150, 2000.

[65] D. Haussler. Decision theoretic generalizations of the PAC model forneural net and other

learning applications.Information and Computation, 100(1):78–150, 1992.

[66] P. Hedstrom. Rational imitation. In P. Hedstrom and R. Swedberg, editors, Social Mecha-

nisms: An Analytical Approach to Social Theory. Cambridge University Press, 1998.

[67] D. Helmbold and M. Warmuth. Learning permutations with exponential weights. InPro-

ceedings of the 20th Annual Conference on Learning Theory, pages 469–483, 2007.

135



[68] D. Helmbold, R. Schapire, Y. Singer, and M. Warmuth. On-line portfolio selection using

multiplicative updates.Mathematical Finance, 8(4):325–347, 1998.

[69] W. Hoeffding. Probability inequalities for sums of bounded random variables.Journal of

the American Statistical Association, 58(301):13–30, 1963.

[70] J. Hu and M. Wellman. Multiagent reinforcement learning: Theoretical framework and an

algorithm. InProceedings of the 15th International Conference on Machine Learning, 1998.

[71] J. Jansen and T. Mullen. Sponsored search: An overview of theconcept, history, and tech-

nology. International Journal of Electronic Business, 6(2):114–131, 2008.

[72] A. Kalai and S. Vempala. Efficient algorithms for on-line optimization.Journal of Computer

and System Sciences, 71(3):291–307, 2005.

[73] B. Kalantari and L. Khachiyan. On the complexity of nonnegative-matrix scaling. Linear

Algebra and its applications, 240:87–103, 1996.

[74] M. Kearns and R. Schapire. Efficient distribution-free learning ofprobabilistic concepts.

Journal of Computer and System Sciences, 48(3):464–497, 1994.

[75] M. Kearns and S. Singh. Finite-sample rates of convergence for Q-learning and indirect

methods. InAdvances in Neural Information Processing Systems 11, 1998.

[76] M. Kearns and U. Vazirani.An Introduction to Computational Learning Theory. MIT Press,

1994.

[77] M. Kearns and J. Wortman. Learning from collective behavior. InProceedings of the 21st

Annual Conference on Learning Theory, 2008.

[78] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability

of discrete distributions. InProceedings of the 26th Annual ACM Symposium on Theory of

Computing, pages 273–282, 1994.

[79] M. Kearns, R. Schapire, and L. Sellie. Towards efficient agnostic learning.Machine Learn-

ing, 17:115–141, 1994.

136



[80] M. Kearns, S. Suri, and N. Montfort. A behavioral study of the coloring problem on human

subject networks.Science, 313(5788):824–827, 2006.

[81] M. Kearns, J. Tan, and J. Wortman. Privacy-preserving beliefpropagation and sampling. In

Advances in Neural Information Processing Systems 20, 2007.

[82] M. Kearns, J. Tan, and J. Wortman. Network-faithful secure computation. Working Draft,

2008.

[83] M. Kearns, J. S. Judd, J. Tan, and J. Wortman. Behavioral experiments on biased voting in

networks.Proceedings of the National Academy of Sciences, 106(5):1347–1352, 2009.

[84] D. Kempe, J. Kleinberg, and́E. Tardos. Maximizing the spread of influence in a social net-

work. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2003.

[85] D. Kempe, J. Kleinberg, and́E. Tardos. Influential nodes in a diffusion model for social

networks. InProceedings of the 32nd International Colloquium on Automata, Languages

and Programming, 2005.

[86] J. Kleinberg. Cascading behavior in networks: Algorithmic and economic issues. In

N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, editors,Algorithmic Game Theory.

Cambridge University Press, 2007.

[87] V. Koltchinskii. Rademacher penalties and structural risk minimization.IEEE Transactions

on Information Theory, 47(5):1902–1914, 2001.

[88] V. Koltchinskii and D. Panchenko. Rademacher processes and bounding the risk of function

learning.High Dimensional Probability, II:443–459, 2000.

[89] A. Krause and E. Horvitz. A utility-theoretic approach to privacy and personalization. In

Proceedings of the 23rd Conference on Artificial Intelligence, 2008.

[90] N. Lambert, J. Langford, J. Wortman, Y. Chen, D. Reeves, Y. Shoham, and D. M. Pennock.

Self-financed wagering mechanisms for forecasting. InProceedings of the Ninth ACM Con-

ference on Electronic Commerce, 2008.

137



[91] J. Ledyard, R. Hanson, and T. Ishikida. An experimental test ofcombinatorial information

markets.Journal of Economic Behavior and Organization, 69:182–189, 2009.

[92] C. Legetter and P. Woodland. Maximum likelihood linear regression for speaker adaptation

of continuous density hidden markov models.Computer Speech and Language, 9:171–185,

1995.

[93] J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging network. In

Proceedings of the 17th International World Wide Web Conference, 2008.

[94] J. Leskovec, L. Adamic, and B. Huberman. The dynamics of viral marketing. InProceedings

of the Seventh ACM Conference on Electronic Commerce, 2006.

[95] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-

effective outbreak detection in networks. InProceedings of the 13th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, 2007.

[96] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst. Cascading behavior in

large blog graphs. InProceedings of the SIAM International Conference on Data Mining,

2007.

[97] N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic stronglypolynomial al-

gorithm for matrix scaling and approximate permanents.Combinatorica, 20(4):545–568,

2000.

[98] N. Littlestone and M. Warmuth. The weighted majority algorithm.Information and Com-

putation, 108(2):212–261, 1994.

[99] A. Martinez. Recognition of partially occluded and/or imprecisely localized faces using

a probabilistic approach. InProceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2007.

[100] A. Mas-Collel, W. Whinston, and J. Green.Microeconomic Theory. Oxford University

Press, 1995.

[101] A. Maurer. Algorithmic stability and meta-learning.Journal of Machine Learning Research,

6:967–994, 2005.

138



[102] C. McDiarmid. On the method of bounded differences.Surveys in Combinatorics, pages

148–188, 1989.

[103] J. F. Muth. Rational expectations and the theory of price movements.Econometrica, 29(6):

315–335, 1961.

[104] N. Nisan. Algorithms for selfish agents. InProceedings of the 16th Annual Symposium on

Theoretical Aspects of Computer Science, 1999.

[105] D. M. Pennock and R. Sami. Computational aspects of prediction markets. In N. Nisan,

T. Roughgarden,́E. Tardos, and V. Vazirani, editors,Algorithmic Game Theory. Cambridge

University Press, 2007.

[106] D. M. Pennock, C. L. Giles, and F. A. Nielsen. The real power of artificial markets.Science,

291:987–988, 2001.

[107] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation systems.Communi-

cations of the ACM, 43(12):45–48, 2000.

[108] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In

Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, 2002.

[109] R. Roll. Orange juice and weather.American Economic Review, 74(5):861–880, 1984.

[110] B. Ryan and N. C. Gross. The diffusion of hybrid seed corn in two Iowa communities.Rural

Sociology, 8:15–24, 1943.

[111] M. Salganik and D. J. Watts. Social influence, manipulation, and self-fulfilling prophecies

in cultural markets. Preprint, 2007.

[112] M. Salganik, P. Dodds, and D. J. Watts. Experimental study of inequality and unpredictabil-

ity in an artificial cultural market.Science, 331(5762):854–856, 2006.

[113] T. Schelling.Micromotives and Macrobehavior. Norton, New York, NY, 1978.

[114] C. R. Shipan and C. Volden. Bottom-up federalism: The diffusion ofantismoking policies

from U.S. cities to states.American Journal of Political Science, 50(4):825–843, 2006.

139



[115] Y. Shoham, R. Powers, and T. Grenager. If multi-agent learningis the answer, what is the

question?Artificial Intelligence, 171(7):365–377, 2007.

[116] R. Sinkhorn. A relationship between arbitrary positive matrices anddoubly stochastic ma-

trices.The Annals of Mathematical Statistics, 35(2):876–879, 1964.

[117] N. Srebro and T. Jaakkola. Weighted low-rank approximations. In Proceedings of the 20th

International Conference on Machine Learning, 2003.

[118] N. Srebro, N. Alon, and T. Jaakkola. Generalization error bounds for collaborative predic-

tion with low-rank matrices. InAdvances in Neural Information Processing Systems 17,

2004.

[119] F. Stokes Berry and W. D. Berry. State lottery adoptions as policy innovations: An event

history analysis.The American Political Science Review, 84(2):395–415, 1990.

[120] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web search based on user profile

constructed without any effort from users. InProceedings of the 13th International World

Wide Web Conference, 2004.

[121] R. Sutton and A. Barto.Reinforcement Learning. MIT Press, 1998.

[122] S. Toda. PP is as hard as the polynomial-time hierarchy.SIAM Journal on Computing, 20

(5):865–877, 1991.

[123] L. Valiant. The complexity of computing the permanent.Theoretical Computer Science, 8:

189–201, 1979.

[124] L. Valiant. The complexity of enumeration and reliability problems.SIAM Journal of

Computing, 8(3):410–421, 1979.

[125] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[126] H. Varian. Position auctions.International Journal of Industrial Organization, 25(6):1163–

1178, 2007.

[127] H. Varian. Mechanism design for computerized agents. InProceedings of the USENIX

Workshop on Electronic Commerce, 1995.

140



[128] V. Vovk. A game of prediction with expert advice.Journal of Computer and System Sci-

ences, 56(2):153–173, 1998.

[129] T. Vu, R. Powers, and Y. Shoham. Learning in games with more than two players. InPro-

ceedings of the Fifth International Joint Conference on Autonomous Agentsand Multiagent

Systems, 2006.

[130] C. Watkins and P. Dayan. Q-learning.Machine Learning, 8(3):279–292, 1992.

[131] I. Welch. Herding among security analysts.Journal of Financial Economics, 58:369–396,

2000.

[132] J. Wortman. Viral marketing and the diffusion of trends on social networks. Technical Re-

port MS-CIS-08-19, University of Pennsylvania Department of Computer and Information

Science, 2008.

[133] P. Wu and T. Dietterich. Improving SVM accuracy by training on auxiliary data sources. In

Proceedings of the 21st International Conference on Machine Learning, 2004.

141


