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We provide an overview of recent research exploring the striking mathematical connections that ex-
ist between market maker mechanisms for prediction markets and no-regret learning. We describe
how these connections can be used in the design of efficient prediction markets over combinatorial
outcome spaces.
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1. INTRODUCTION

A prediction market is a financial market designed to aggregate information. In a
typical prediction market, the organizer (or market maker) trades a set of securities,
each corresponding to a potential outcome of an event. The market maker might
offer a security that will pay off $1 if and only if Sarah Palin becomes the U.S.
Republican Party presidential nominee in 2012. A risk neutral trader who believes
that the probability of Palin winning the nomination is p should be willing to buy a
share of this security at any price below $p. Similarly, he should be willing to sell at
any price above $p. For this reason, the current market price can be viewed as the
population’s collective estimate of how likely it is that Palin will be the nominee.

These market-based estimates have proved to be accurate in a variety of domains.
Election markets can be more accurate than polls, Oscar markets more accurate
than expert columnists, and internal corporate markets more accurate than pro-
fessional sales forecasts; see Ledyard et al. [2009] for an impressive assortment of
additional examples. The theory of rational expectations equilibria offers an ex-
planation of why prediction markets should yield accurate forecasts at equilibrium
(at least under strong assumptions about the traders’ beliefs and behavior), but
says nothing about why particular market mechanisms, such as Hanson’s popular
Logarithmic Market Scoring Rule [2003], might produce more accurate estimates
than others. This letter describes a first step toward developing stronger insight
into the learning power of particular market mechanisms by examining the deep
mathematical connections between prediction markets and no-regret learning. We
begin with a review of cost function based markets and the well-studied problem
of “learning from expert advice” before exploring these connections in more detail.
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2. COST FUNCTION BASED MARKETS

Consider a set of N mutually exclusive and exhaustive outcomes of a future event,
such as N competing horses winning a race. In a cost function based market,
an automated market maker offers a security corresponding to each outcome i ∈
{1, · · · , N}. The security associated with outcome i is guaranteed to pay off $1
if i happens, and $0 otherwise. Different mechanisms can be used to determine
how these securities are priced, each mechanism specified using a differentiable cost
function C : RN → R. This cost function can be viewed as a potential function
describing the amount of money currently wagered in the market as a function of
the quantity of shares purchased. If qi is the number of shares of security i currently
held by traders, and a trader would like to purchase ri shares of security i (where
ri could be zero or even negative, representing the sale of shares), the trader must
pay C(!q + !r) − C(!q) to the market maker. The instantaneous price of security i
(that is, the price per share of an infinitesimally small number of shares) is then
pi = ∂C(!q)/∂qi.

A few restrictions must be made on the cost function C to ensure that the
resulting market makes sense. In particular, we say that a cost function is valid if it
satisfies three simple properties: differentiability (to ensure that the instantaneous
prices are well-defined), increasing monotonicity (to ensure that the instantaneous
prices are never negative), and a simple “translation invariance” property that
guarantees that the cost of purchasing one share of all N outcomes is always $1 (to
protect against arbitrage). It turns out that for any valid cost function, the set of
instantaneous prices will always form a probability distribution over the outcome
space. As described above, the price of outcome i can then be viewed as representing
the market’s current estimate of the probability that i will occur.

Hanson introduced the class of market scoring rule (MSR) markets [2003], in
which traders sequentially change the market’s probability estimates and receive
payments according to their incremental improvements to the market’s predic-
tion evaluated by a proper scoring rule. Any market in this class can be imple-
mented as a cost function based market; we refer the interested reader to Chen and
Vaughan [2010] for the exact translation. The popular logarithmic market scoring

rule (LMSR) has a cost function C(!q) = b log
∑N

i=1 eqi/b and prices proportional to
eqi/b, where b is a positive free parameter controlling the market liquidity [Chen
and Pennock 2007]. The LMSR satisfies the nice property that the worst-case loss
of the market maker is bounded by b log N . Bounded market maker loss is clearly a
desirable property in practice. All MSR markets using regular proper scoring rules
(that is, scoring rules that are finite except when the reported probability of an
outcome is zero, in which case the score for the outcome can be negative infinity),
and hence the corresponding cost function based markets, have bounded market
maker loss.

3. LEARNING FROM EXPERT ADVICE

No-regret learning has been studied with great interest in many communities under
many different names since as early as the 1950s. We consider the basic “learning
from expert advice” framework, in which an algorithm makes a sequence of predic-
tions based on the advice of a set of N experts (which can be individual features,
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weak learners, human advisers, or any other forecasters) and receives a correspond-
ing sequence of losses. The goal of the algorithm is to achieve a cumulative loss that
is “almost as low” as the cumulative loss of the best performing expert in hindsight.
No statistical assumptions are made about these losses. Indeed, the algorithm must
perform well even if the sequence of losses is chosen by an adversary.

Formally, at every time step t ∈ {1, · · · , T}, every expert i ∈ {1, · · · , N} receives
a loss #i,t ∈ [0, 1]. The cumulative loss of expert i at time T is then defined as Li,T =
∑T

t=1 #i,t. An algorithm A maintains a weight wi,t for each expert i at time t, where
∑n

i=1 wi,t = 1. These weights can be viewed as a distribution over the experts. The
algorithm then receives its own instantaneous loss #A,t =

∑n
i=1 wi,t#i,t, which can

be interpreted as the expected loss the algorithm would receive if it always chose an
expert to follow according to the current distribution. The cumulative loss of A up
to time T is defined in the natural way as LA,T =

∑T
t=1 #A,t =

∑T
t=1

∑n
i=1 wi,t#i,t.

It is unreasonable to expect the algorithm to achieve a small cumulative loss
if none of the experts perform well. For this reason, it is typical to measure the
performance of an algorithm in terms of its regret, defined to be the difference
between the cumulative loss of the algorithm and the loss of the best performing
expert, that is, LA,T −mini∈{1,··· ,N} Li,T . An algorithm is said to have no regret if
the average per time step regret approaches 0 as T approaches infinity.

The popular Randomized Weighted Majority (WM) algorithm [Littlestone and
Warmuth 1994; Freund and Schapire 1997] is an example of a no-regret algorithm.
Weighted Majority uses weights wi,t proportional to e−ηLi,t , where η > 0 is a
tunable parameter known as the learning rate. It is well known that the regret of
WM after T trials can be bounded by ηT +log(N)/η. When T is known in advance,
setting η =

√

log N/T yields the standard no-regret bound of O(
√

T log N).

4. MAKING THE CONNECTION

A careful reader may have noticed that the weights employed by Weighted Majority
look very similar to the LMSR price function described in Section 2. Chen et
al. [2008] were the first to draw a formal connection between WM and LMSR. In
particular, they showed that the WM regret bound can be used as a starting point
to rederive the bound of b log N on the worst-case loss of the LMSR market maker.
In our recent work, we showed that the converse holds as well: the WM regret
bound can be derived as a consequence of the LMSR market maker’s bounded loss.
However, the connection goes much deeper.

In fact, any cost function based prediction market with bounded loss can be in-
terpreted as a no-regret learning algorithm. Furthermore, the bound on the market
maker’s loss can always be used to derive an O(

√
T ) regret bound for the corre-

sponding learning algorithm. The key idea is to equate outcomes in the market
setting with experts in the learning setting, and trades made in the market with
losses observed by the learning algorithm. (Note that it is not the traders in the
market that are analogous to the experts, as one might initially guess!) We can then
think of the market maker as learning a probability distribution over outcomes by
treating each observed trade as a training instance, just as the learning algorithm
learns a distribution over experts by observing losses.

More specifically, consider the following. A learning algorithm maintains weights
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wi,t for each of a set of N experts that depend on the total loss Li,t of each expert
i. The algorithm’s regret is measured as the difference between its own cumulative
loss and the cumulative loss of the best expert, mini∈{1,··· ,N} Li,t. Analogously, the
market maker maintains prices pi,t for each of a set of N outcomes that depend on
the total quantity of shares purchased for each outcome i (call this Qi,t). We are
interested in measuring the market maker’s maximum loss, which is the difference
between the quantity of money he has collected and the maximum number of shares
purchased on any outcome, maxi∈{1,··· ,N} Qi,t.

Suppose we have a particular cost function based market in mind. We can build
a no-regret learning algorithm by simulating this market, using the expert losses as
quantities of shares sold. It is straight-forward to relate the loss of the best expert
with the maximum number of shares purchased on any outcome in the simulated
market. To relate the learning algorithm’s regret to the market maker’s worst-
case loss, it is therefore only necessary to relate the loss of the learning algorithm
to the amount of money collected by the market. Luckily, if the market prices
change sufficiently slowly (i.e., if the market liquidity is sufficiently high), these two
quantities will be similar. Using these ideas, we can show that the regret of the
resulting learning algorithm is bounded by O(

√
BφT ), where B is the worst-case

market maker loss and φ is a measure of how fast the market prices change.

5. DIGGING DEEPER

It may seem surprising that any cost function based market with bounded loss
(and thus any market scoring rule) can be used to derive a learning algorithm that
satisfies the nice property of no regret. It is natural to wonder what the resulting
algorithms look like. It turns out that the set of expert learning algorithms derived
from valid convex cost functions share a common form. In particular, they are
precisely a recently discovered class of algorithms known as “Follow the Regularized
Leader” algorithms. (See, for example, Hazan and Kale [2008].) This class of
algorithms grew out of the following fundamental insight.

Consider first the aptly named Follow the Leader algorithm, which chooses weights
at time t to minimize the empirical loss

∑N
i=1 wi,tLi,t−1. This algorithm simply

places all of its weight on the single expert (or set of experts) with the best perfor-
mance on previous examples. For this reason, this algorithm can be highly unstable,
dramatically changing its weights from one time step to the next. It is easy to con-
struct examples in which the best expert changes frequently, causing Follow the
Leader to suffer Ω(T ) regret.

To overcome this instability, one can add a perturbation to the empirical loss
of each expert, and choose the expert that minimizes this perturbed loss. It is
possible to gain the necessary stability by adding what is called a regularizer R
and choosing weights to minimize

N
∑

i=1

wi,tLi,t−1 +
1

η
R(!wt) .

In general, choosing weights in this manner will prevent all of the algorithm’s weight
from being placed on a single expert. WM can be written in this form with an
entropy term as the regularizer.
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This Follow the Regularized Leader (FTRL) approach gets around the instabil-
ity of FTL and guarantees low regret for a wide variety of regularizers. In our
analogy between markets and learning, the choice of a cost function in the market
corresponds to the choice of a regularizer in the learning problem.

6. APPLYING THE CONNECTION

In this letter, we have hinted at the elegant mathematical connection between pre-
diction markets and no-regret learning. While this connection is thought-provoking
on its own, we believe that its true power lies in its potential to be of use in the de-
sign of new prediction market mechanisms and learning algorithms. In recent years
there has been a great interest in finding ways to tractably run market scoring
rules over combinatorial or infinite outcome spaces [Pennock and Sami 2007; Chen
et al. 2008; Chen et al. 2008]. For example, a market maker might wish to accept
bets over permutations (“horse A will finish the race ahead of horse B”), Boolean
spaces (“either a Democrat will win the 2010 senate race in Delaware or a Demo-
crat will win in North Dakota”), or real numbers (“Google’s revenue in the second
quarter of 2010 will be between $x and $y”), in which case simply running a naive
implementation of an LMSR (for example) would be infeasible. By exploiting the
connection between Weighted Majority and the LMSR, Chen et al. [2008] showed
that an extension of Weighted Majority could be used to approximate prices in an
LMSR over permutations, where computing prices exactly is #P-hard. Given our
new understanding of the connection between markets and learning and the grow-
ing literature on no-regret algorithms for large or infinite sets of experts, we are
hopeful that no-regret learning will provide the tools needed to design specialized
markets for many other scenarios in which the outcome space is large.
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