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We observe that Lambert et al.’s [2008] family of weighted score wagering mechanisms admit arbitrage:

participants can extract a guaranteed positive payoff by betting on any prediction within a certain range.
In essence, participants leave free money on the table when they “agree to disagree,” and as a result,

rewards don’t necessarily go to the most informed and accurate participants. This observation suggests

that when participants have immutable beliefs, it may be possible to design alternative mechanisms in
which the center can make a profit by removing this arbitrage opportunity without sacrificing incentive

properties such as individual rationality, incentive compatibility, and sybilproofness. We introduce a new

family of wagering mechanisms called no-arbitrage wagering mechanisms that retain many of the positive
properties of weighted score wagering mechanisms, but with the arbitrage opportunity removed. We show

several structural results about the class of mechanisms that satisfy no-arbitrage in conjunction with other

properties, and provide examples of no-arbitrage wagering mechanisms with interesting properties.
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1. INTRODUCTION
Betting markets of various forms, including stock exchanges [Grossman 1976], futures
and options markets [Roll 1984], sports betting markets [Gandar et al. 1999], race-
track pari-mutuel systems [Thaler and Ziemba 1988; Plott et al. 1997], and modern
prediction markets [Forsythe and Lundholm 1990; Forsythe et al. 1991; Berg et al.
2001; Wolfers and Zitzewitz 2004], have demonstrated their ability to incentivize par-
ticipants to reveal their information about underlying events. Market prices have a
history of equaling or beating other forecasts of events in domains from politics to
product launches.

However, betting markets can induce complicated strategic play and obfuscate
individual-level information. While the dynamics of betting markets may facilitate in-
formation aggregation [Ostrovsky 2012], it has been shown, both theoretically [Allen
and Gale 1992; Kumar and Seppi 1992; Chakraborty and Yilmaz 2004; Chen et al.
2010; Gao et al. 2013] and empirically [Hansen et al. 2001], that market participants
may misrepresent their private information to mislead other participants and profit
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later. If the price is too high, some traders will opt out, revealing nothing. Others may
not reveal their full information due to budget constraints.

In many settings, a one-shot interaction is preferable to a continuous market. Par-
ticipants have a simple, truthful dominant strategy and the center does not need to
wait for equilibrium. The center obtains all participants’ private beliefs and can then
post-process the beliefs in one or more ways. For example, the average or weighted av-
erage of private beliefs can provide a robust prediction, with accuracy improving in the
number and diversity of individual beliefs [Jacobs 1995; Surowiecki 2004; Chen et al.
2005; Dani et al. 2006; Page 2007; Ungar et al. 2012]. Researchers have developed
one-shot betting mechanisms with various theoretical properties [Kilgour and Ger-
chak 2004; Johnstone 2007; Lambert et al. 2008, 2014]. In particular, Lambert et al.
[2008] proposed a class of weighted score wagering mechanisms (WSWMs), where each
participant makes a prediction about an uncertain event and wagers some amount of
money. The total amount wagered is redistributed among the participants after the
event outcome is revealed. These mechanisms satisfy a set of desirable properties, in-
cluding (1) budget balance: the sum of participants’ payoffs is zero and the center does
not need to subsidize the betting; (2) individual rationality: each participant prefers
participating to not participating; (3) incentive compatibility: each participant maxi-
mizes his expected payoff by predicting his true belief, and (4) sybilproofness: no par-
ticipant can benefit from splitting his wager and participating under multiple identi-
ties. Conversely, Lambert et al. [2008] showed that any one-shot wagering mechanism
satisfying this set of properties must be a WSWM.

Kilgour and Gerchak [2004], Johnstone [2007], and Lambert et al. [2008, 2014]
designed their mechanisms for participants with immutable beliefs. While Bayesian
agents sharing a common prior can never “agree to disagree”, immutable agents per-
sist in their disagreement, never wavering from their prior beliefs even upon observing
other players’ actions. Both extremes are abstractions, but the latter matches reality
more closely—disagreement is rampant on trading and wagering platforms of all types.
The immutable beliefs model does not suffer from the perverse conclusions of the no-
trade theorem [Milgrom and Stokey 1982] that rational risk-neutral participants won’t
engage in any zero-sum wager. As a concrete example of a scenario in which the as-
sumption of immutable beliefs is reasonable, consider an online ad exchange that en-
gages companies like BlueKai, who possess a large amount of behavioral data, to bet on
an arriving user’s conversion rate for each of several competing ads. In order to inform
ad placement, betting must happen in milliseconds and companies will use machine
learning algorithms to form their predictions. In this setting, one-shot mechanisms
seem all but necessary—a continuous market would be too slow for the exchange and
too complex for strategic automated traders.

In this paper, we continue focusing on one-shot betting mechanisms for participants
with immutable beliefs. We show that, in the WSWMs, participants leave free money
on the table whenever they disagree. In other words, there exist arbitrage opportuni-
ties in the WSWMs — a participant can obtain a guaranteed positive payoff by betting
on any prediction within certain range. This observation suggests that when partici-
pants have immutable beliefs, the center may be able to design mechanisms to make a
profit by exploiting the arbitrage opportunities without sacrificing incentive properties
such as individual rationality, incentive compatibility, and sybilproofness. This paper
designs and analyzes such arbitrage-free wagering mechanisms.

Our main contributions are the following:
(1) We characterize the arbitrage opportunities in the WSWMs and define the arbi-

trage interval (Theorem 3.3).
(2) We show that this arbitrage property is not unique to the WSWMs and provide a

sufficient condition for it to exist (Theorem 3.4).



(3) We propose a new class of mechanisms called no-arbitrage wagering mechanisms
(NAWMs) (Definition 4.2) that are arbitrage-free, individually rational, incentive
compatible, and anonymous, and give sufficient conditions for these mechanisms to
be weakly budget balanced (i.e., the center always breaks even or profits, Theorem
4.4) and neutral (i.e., it is invariant to relabeling outcomes, Theorem 4.6).

(4) For a subclass of NAWMs with payoff functions of a particular functional form
(Definition 5.1), we characterize the necessary and sufficient conditions for these
mechanisms to be weakly budget balanced and neutral (Theorem 5.3), and prove
that these mechanisms are sybilproof (Theorem 5.8).

(5) We provide specific examples of such mechanisms with certain interesting prop-
erties. For instance, we give a mechanism that makes the same profit for all out-
comes, which can be interpreted as spreading the profit equally over all outcomes
or maximizing the minimum profit. We give another mechanism that has the prop-
erty that if everyone predicts that outcome 0 is more likely than outcome 1, and
outcome 0 occurs, then the mechanism is exactly budget balanced (Theorem 5.6).
In some sense, the center doesn’t make a profit when all agents “correctly” predict
the outcome.

Due to lack of space, some proofs are omitted. They appear in the full version of the
paper available on the authors’ websites.

1.1. Other Related Work
Proper scoring rules have been widely studied for one-shot information elicitation from
individuals [Brier 1950; Good 1952; Winkler 1969; Savage 1971; Matheson and Win-
kler 1976; Gneiting and Raftery 2007]. Using a proper scoring rule, the center inter-
acts with each individual independently and in general needs to pay the individu-
als for their predictions. Proper scoring rules are the building blocks for the budget-
balanced mechanisms of Kilgour and Gerchak [2004], Johnstone [2007], and Lambert
et al. [2008, 2014], as well as for our no-arbitrage wagering mechanisms in this paper.
We discuss some basics of proper scoring rules in Section 2.3.

In addition to the WSWMs, the competitive scoring rules [Kilgour and Gerchak 2004]
and the parimutuel Kelly probability scoring rule [Johnstone 2007] are also one-shot
budget-balanced betting mechanisms. The competitive scoring rules are incentive com-
patible but require that all participants wager the same amount of money. While the
parimutuel Kelly probability scoring rule can account for different wagers, it loses in-
centive compatibility.

In spirit, our observation that there are arbitrage opportunities in the WSWMs is
analogous to the results of Chun and Shachter [2011]. They showed that when a group
of agents is facing a proper scoring rule or participating in a WSWM, they can make
an identical prediction and as a coalition obtain a total payoff that is higher than the
total payoff they can obtain when each is predicting according to their true beliefs.
Their results have the same intuition as ours that participants with immutable beliefs
leave free money on the table. In this work, we provide a precise characterization of
the arbitrage opportunities in the WSWMs and propose new mechanisms to eliminate
the arbitrage and make a profit.

2. PRELIMINARIES
In this section, we introduce preliminaries that are essential for our later analysis.
Section 2.1 describes the model that was introduced by Lambert et al. [2008] that this
paper adopts. In Section 2.2, we define a set of desirable properties for wagering mech-
anisms. In Section 2.3, we discuss basics of proper scoring rules that are necessary for
understanding prior results and our results on wagering mechanisms, and describe the



WSWMs. Finally, in Section 2.4, we introduce an (f,µ)-norm function which is used
throughout the paper.

2.1. Wagering Mechanisms
A center is interested in eliciting information on a given random variable X taking
value in {0, 1}. For example, the random variable could represent the outcome of the
Super Bowl or whether a user will click on an ad if shown. We focus on binary random
variables for this paper because they are common for betting mechanisms and they
simplify the analysis, allowing for better insights and intuitions. However, many of
our results naturally generalize to any finite discrete random variable.

Consider any finite set of agents, denoted N = {1, 2, . . . , n}. Each agent i forms a
subjective belief pi about the realization of X, where pi is the probability that agent i
assigns to X = 1 and hence 1− pi is his belief on X = 0. We use p to denote the beliefs
of all agents and p−i the beliefs of all agents except agent i. We make no assumption
about how agents form their beliefs, and only assume that their beliefs are immutable.

The center uses a wagering mechanism to elicit the private beliefs of agents. In a
wagering mechanism, each agent makes a prediction p̂i ∈ [0, 1] and wagers some non-
negative amount of money wi ∈ R+, where R+ is the set of non-negative reals. We
use p̂ and w to represent the predictions and wagers of all agents and p̂−i and w−i to
represent the predictions and wagers of all agents except agent i. After the outcome
of the random experiment, x ∈ {0, 1}, is revealed, the mechanism determines the net
payoff of each agent, Πi(p̂,w, x) ∈ R, with Πi(p̂,w, x) = 0 whenever wi = 0.1 We
emphasize that in this paper we will always talk about the net payoff of an agent,
that is, the payment received by the agent minus his wager, although all wagering
mechanisms can be equivalently defined by describing just the payments that agents
receive. It is natural to require that an agent cannot lose more than his wager, that is,
Πi(p̂,w, x) ≥ −wi for all p̂ ∈ [0, 1]n, w ∈ Rn

+, and x ∈ {0, 1}.
The wagers of agents are decided up-front before they participate in the mecha-

nism. For example, an agent may allocate a budget, which depends on his confidence
about his information, for wagering on the random experiment. We further assume
that agents are risk neutral and maximize the expected net payoff with respect to
their belief. Risk neutrality is often observed when the wager of an agent is relatively
small with respect to his wealth [Ali 1977].

2.2. Properties of Wagering Mechanisms
Designers of wagering mechanisms often want their mechanisms to satisfy some desir-
able properties. We introduce and define the set of properties that we consider in this
paper below. The first six properties are satisfied by all WSWMs [Lambert et al. 2008],
which we review in the next subsection; some, but not all, also obey neutrality. We use
X ∼ p to represent that the random variable X follows a distribution P(X = 1) = p
and P(X = 0) = 1− p.

(a ) Anonymity: The identities of agents do not affect their net payoff in the mecha-
nism. Formally, for any permutation σ of N ,

Πi(p1, . . . , pn, w1, . . . , wn, x) = Πσ−1(i)(pσ(1), . . . , pσ(n), wσ(1), . . . , wσ(n), x),

∀ i ∈ N ,p ∈ [0, 1]n,w ∈ Rn
+, and x ∈ {0, 1}.

1Strictly speaking, the net payoff Πi also depends on the total number of agents who participate, n. We omit
this dependency in our notation as it is clear in the context.



(b ) Budget balance: The mechanism does not make or lose money. That is, ∀ p ∈
[0, 1]n,w ∈ Rn

+, and x ∈ {0, 1}, ∑
i∈N

Πi(p,w, x) = 0.

(b’) Weak budget balance: The mechanism does not lose money but can (optionally)
make a profit. That is, ∀ p ∈ [0, 1]n,w ∈ Rn

+, and x ∈ {0, 1},∑
i∈N

Πi(p,w, x) ≤ 0.

(c ) Individual rationality: Every agent prefers participating in the mechanism to not
participating. Formally, ∀ i ∈ N , pi ∈ [0, 1], and wi ∈ R+, there exists some p̂i ∈ [0, 1]
such that for all p̂−i ∈ [0, 1]n−1, and w−i ∈ Rn−1

+ ,

EX∼pi [Πi(p̂i, p̂−i), wi,w−i, X)] ≥ 0.

(d ) Incentive compatibility: Every agent strictly maximizes his expected net payoff
by predicting his true belief. Formally, ∀ i ∈ N , pi ∈ [0, 1], p̂i ∈ [0, 1], p̂−i ∈ [0, 1]n−1,
and w ∈ Rn

+,

EX∼pi [Πi(pi, p̂−i,w, X)] ≥ EX∼pi [Πi(p̂i, p̂−i,w, X)],

and the inequality is strict when pi 6= p̂i.
(e ) Normality:2 If from agent i’s perspective the prediction of another agent j improves,

then agent i’s expected net payoff decreases. Formally, ∀i 6= j and i, j ∈ N , pi ∈ [0, 1],
p̂ ∈ [0, 1]n, and w ∈ Rn

+, define another prediction vector p̂′ where p̂′j = pi and
p̂′k = p̂k for all k ∈ N and k 6= j. Then,

EX∼pi [Πi(p̂,w, X)] ≥ EX∼pi [Πi(p̂
′,w, X)].

The inequality is strict when p̂j 6= pi.
(f ) Sybilproofness:3 It is not beneficial for any agent to create fake identities and

participate in the mechanism under these identities. Formally, ∀ i ∈ N , integer k >
1, pi ∈ [0, 1], p̂−i ∈ [0, 1]n−1, wi ∈ R+ and w−i ∈ Rn−1

+ , if agent i participates under
k identities and pij and wij are the j-th identity’s prediction and wager respectively,
where

∑k
j=1 wij = wi and pij ∈ [0, 1],∀j, 1 ≤ j ≤ k, there exists a p̂i ∈ [0, 1] such that

EX∼pi [Πi(p̂i, p̂−i, wi,w−i, X)] ≥
k∑
j=1

EX∼pi [Πij (pi1 , . . . , pik , p̂−i, wi1 , . . . , wik ,w−i, X)].

(g ) Neutrality: The net payoff of any agent is invariant under relabeling of the out-
comes. Formally, ∀i ∈ N , p ∈ [0, 1]n, w ∈ Rn

+ and x ∈ {0, 1},

Πi(p,w, x) = Πi(1− p,w, 1− x),

where 1− p is a vector with elements 1− pi, i ∈ N .

2Lambert et al. [2008] define an alternative notion of normality: if an agent’s expected net payoff increases
according to a belief p, the expected net payoff of each other player according to this belief decreases. The
property we define here is used in Lambert et al. [2014].
3This definition is weaker than the definition given in Lambert et al. [2008] which requires that an agent
receives exactly the same payoff if he splits or merges a bet.



2.3. Proper Scoring Rules and Weighted Score Wagering Mechanisms
Existing wagering mechanisms [Kilgour and Gerchak 2004; Johnstone 2007; Lambert
et al. 2008, 2014] use proper scoring rules as building blocks. Thus, before introducing
the WSWMs, we first define proper scoring rules and discuss some of their properties.

2.3.1. Proper Scoring Rules. Scoring rules are developed to reward individuals for their
predictions on a random variable. They are defined for any discrete or continuous ran-
dom variable. But for consistency with our settings, we introduce them for binary ran-
dom variables. A scoring rule s(p, x) maps a prediction and an outcome to a value in
R ∪ {−∞}. Here p represents an individual’s prediction on the probability of outcome
1. For notational convenience, we use sx(p) to denote s(p, x). In order to avoid an indi-
vidual’s expected score going to −∞, a regularity condition is often required. A scoring
rule is regular if it takes value −∞ only if the prediction for the corresponding out-
come is 0. For binary outcomes, this means that it is only possible for s1(0) and s0(1) to
have value −∞. A strictly proper scoring rule, as defined below, strictly incentivizes a
risk-neutral individual to predict according to his true belief.

Definition 2.1. A regular scoring rule s is strictly proper if and only if for all p, q ∈
[0, 1] and p 6= q, EX∼p[sX(p)] > EX∼p[sX(q)].

A widely used strictly proper scoring rule is the Brier scoring rule [Brier 1950]:

sBx (p) = 1− (p− x)2, (1)

for x ∈ {0, 1}.
Strictly proper scoring rules are closely related to strictly convex functions. In fact,

Savage [1971] and Gneiting and Raftery [2007] characterized all scoring rules in terms
of subdifferentials of convex functions. The version for binary random variables is
stated below.

THEOREM 2.2. (Savage [1971] and Gneiting and Raftery [2007]) Every strictly
proper scoring rule s can be represented as

sx(p) = G(p) + (x− p)G′(p), ∀x ∈ {0, 1}

for some strictly convex function G, where G′(p) is a subgradient of G at p. Moreover,
G(p) = EX∼p[sX(p)].

It is easy to show that s1(p) monotonically increases and s0(p) monotonically decreases
with p if s is strictly proper and differentiable.

COROLLARY 2.3. If a strictly proper scoring rule sx(p) is differentiable for all x ∈
{0, 1}, then s1(p) is a strictly increasing function of p and s0(p) is a strictly decreasing
function of p.

2.3.2. Weighted Score Wagering Mechanisms. Equipped with an understanding of proper
scoring rules, we are ready to define weighted score wagering mechanisms. A weighted
score wagering mechanism uses a strictly proper scoring rule s. A participant’s net
payoff in the mechanism depends on how his score compares with the wager-weighted
average score of all agents. Let WA denote the total wager of participants in set A. The
net payoff function of weighted score wagering mechanisms is defined as follows.

Definition 2.4. A weighted score wagering mechanism (WSWM) with strictly proper
scoring rule s, where sx(p) ∈ [0, 1] ∀p ∈ [0, 1] and x ∈ {0, 1}, determines the net payoffs



of participants according to function

ΠWS
i (p,w, x) = wi

sx(pi)−
∑
j∈N

wj
WN

sx(pj)


=
wiWN\{i}

WN

sx(pi)−
∑

j∈N\{i}

wj
WN\{i}

sx(pj)

 . (2)

The proper scoring rules used in WSWMs are restricted to have range [0, 1]. This guar-
antees that no agent can lose more than what he wagers in the mechanism, that is,
ΠWS
i (p,w, x) ≥ −wi. We also often assume that s is differentiable; in such cases we

refer to the mechanism as differentiable WSWMs.
WSWMs have been shown to satisfy anonymity, budget balance, individual rational-

ity, incentive compatibility, normality, and a stronger version of sybilproofness [Lam-
bert et al. 2008].4 Lambert et al. [2008] also proved that the WSWMs are the unique
set of mechanisms that satisfy the above six properties as well as another homogeneity
property, which requires that multiplying all wagers by a positive constant α results
in the net payoffs of all agents being multiplied by α. Depending on the choice of the
scoring rule, some but not all WSWMs satisfy neutrality.

2.4. f -norm
Finally, we introduce an (f,µ)-norm function and derive its properties. These are im-
portant technical tools that we will use throughout the paper to understand incentive
properties of wagering mechanisms and design new mechanisms.

Let f : [0, 1] → R be a continuous, strictly monotone function, and let f−1 denote
the inverse function of f , which is well defined in the range of f . Define the “average”
function for a vector p ∈ [0, 1]n with respect to a vector of weights µ, with

∑
i µi = 1

and µi ≥ 0 ∀i, as

µ−avg(p) :=

n∑
i=1

µipi.

We abuse notation to let f(p) denote the vector whose i-th component is f(pi). Define
the (f,µ)-norm of a vector p ∈ [0, 1]n with respect to µ as follows:

‖p‖f,µ := f−1 (µ−avg(f(p))) .

We will call it f -norm for convenience. We now note some properties of the f -norm.

LEMMA 2.5. For any continuous, strictly monotone function f : [0, 1] → R, any
vector of weights µ and any constants a and b,

(1) If g(x) = af(x) + b, then ‖p‖g,µ = ‖p‖f,µ.
(2) If g(x) = f(ax+ b), then ‖p‖g,µ =

‖ap+b‖f,µ−b
a .

LEMMA 2.6. Let f and g be continuous, strictly monotone functions.

‖p‖f,µ ≤ ‖p‖g,µ ∀ µ⇔
{
g(f−1(·)) is convex if g is increasing
g(f−1(·)) is concave if g is decreasing.

4While the sybilproofness property in Section 2.2 ensures that a participant won’t find splitting his wager
and betting under multiple identities profitable ex ante, WSWMs guarantee it even ex post because the
net payoff of each participant remains the same for all x. For the same reason, WSWMs also ensure that
participants with the same prediction do not find it profitable to pool their wagers and participate under a
single identity.



3. ARBITRAGE IN WEIGHTED SCORE WAGERING MECHANISMS
We show in this section that the appealing WSWMs leave free money on the table. In
other words, there exist arbitrage opportunities in these mechanisms. We formalize
this notion of an arbitrage, characterize the arbitrage interval for WSWMs and give
sufficient conditions for any wagering mechanism to have an arbitrage opportunity.

We first demonstrate the existence of an arbitrage opportunity in the Brier wagering
mechanism, the WSWM with the Brier scoring rule. In the Brier wagering mechanism,
given prediction vector p and wager vector w, participant i receives net payoff, as
defined in (2),

ΠWS
i (p,w, x) =

wiWN\{i}

WN

−(x− pi)2 +
∑

j∈N\{i}

wj
WN\{i}

(x− pj)2


under outcome x. Now suppose participant i instead makes a prediction

p̂i =
∑

j∈N\{i}

wj
WN\{i}

pj .

Then, his net payoff is nonnegative due to the convexity of the function f(p) = (x−p)2,
and is strictly positive if not all pj , j ∈ N\{i}, take the same value. Further, it is easy
to see that the value of ΠWS

i (p̂i,p−i,w, x) is the same for any outcome x. This means
that by predicting p̂i, participant i makes a strictly positive and outcome-independent
net payoff whenever there exists disagreement among other participants.

The opportunity for a participant to risklessly make a profit is what we call an arbi-
trage opportunity. We now formally define what risklessly making a profit means in a
wagering mechanism.

Definition 3.1. A participant i risklessly makes a profit at predictions p and wagers
w in a wagering mechanism if and only if both Πi(p,w, 1) and Πi(p,w, 0) are nonneg-
ative and at least one of Πi(p,w, 1) and Πi(p,w, 0) is strictly positive.

The existence of arbitrage opportunities does not contradict the incentive compati-
bility of the mechanism. This is because participant i still maximizes his expected net
payoff by predicting his true belief pi but he may receive a negative net payoff for one
outcome with this prediction. In addition, given the one-shot nature of the mechanism,
participants seeking arbitrage have no way of knowing p̂i.

3.1. Characterization of Arbitrage Interval for WSWMs
The demonstrated arbitrage opportunity is not unique to the Brier wagering mecha-
nism and can be generalized to any WSWM. For this, it’s useful to restate the above
observation in terms of f -norms. Notice that we set p̂i = ‖p−i‖f,µ where f(x) = x is
the identity function and µj = wj/WN\{i} for all j 6= i. For an arbitrary scoring rule s,
let G be the corresponding convex function in Theorem 2.2. Then the following lemma
gives the corresponding equal arbitrage prediction point for a participant. The proof of
the lemma is very similar to that of Theorem 1 in Chun and Shachter [2011], where
they show that a group of agents can “collude” by all making a prediction at this point
and, as a coalition, make more profit under every outcome than everyone predicting
his true belief. We omit the proof here.

LEMMA 3.2. For any differentiable WSWM with scoring rule s, a participant i
risklessly makes a profit at prediction p̂i = ‖p−i‖G′,µ, where G′ is the gradient of
G(p) = EX∼p[sX(p)] and µj = wj/WN\{i} for all j ∈ N\{i}, as long as not all elements



in p−i are the same (in which case his payoff is 0). Further, his payoff is the same for
all outcomes.

We can further characterize the entire interval that allows a participant to risklessly
make a profit.

THEOREM 3.3. For any differentiable WSWM with scoring rule s, a participant i
risklessly makes a profit at predictions p and wagers w if and only if

(1) pi ∈ [‖p−i‖s1,µ, ‖p−i‖s0,µ] where µj = wj/WN\{i} for all j ∈ N\{i}, and
(2) not all elements in p−i are the same.

PROOF. We first prove the “if part.” Suppose that not all elements in p−i are the
same. Since the scoring rule s is strictly proper and differentiable, according to Corol-
lary 2.3, s1(p) is a strictly increasing function and s0(p) is a strictly decreasing function.
From (2), one can see that participant i’s net payoff ΠWS

i (p,w, 1) strictly increases with
pi and ΠWS

i (p,w, 0) strictly decreases with pi. From Lemma 3.2, there exists a point p̂i
for which both payments are positive. Suppose participant i predicts

‖p−i‖s1,µ = s−11

 ∑
j∈N\{i}

wj
WN\{i}

s1(pj)

 .

Then

ΠWS
i (‖p−i‖s1,µ,p−i,w, 1) = s1(‖p−i‖s1,µ)−

∑
j∈N\{i}

wj
WN\{i}

s1(pj) = 0.

Since ΠWS
i (p,w, 1) strictly increases with pi, we must have ‖p−i‖s1,µ < p̂i. Similarly,

we can show that ΠWS
i (‖p−i‖s0,µ,p−i,w, 0) = 0 and ‖p−i‖s0,µ > p̂i. Again using the

monotonicity of payoffs, it is easy to see that the payoff for any prediction in the non-
empty range [‖p−i‖s1,µ, ‖p−i‖s0,µ] results in a nonnegative payoff for trader i for both
outcomes and a strictly positive payoff for at least one.

Now for the “only if” part, when not all elements in p−i are the same, the above
analysis already shows that if pi 6∈ [‖p−i‖s1,µ, ‖p−i‖s0,µ], then either ΠWS

i (pi,p−i,w, 0)

or ΠWS
i (pi,p−i,w, 1) is strictly negative, and hence participant i cannot risklessly make

a profit. Suppose that all elements in p−i are the same, and are equal to p. Then

ΠWS
i (p,w, x) =

wiWN\{i}

WN
(sx(pi)− sx(p)) .

Participant i can then never risklessly make a profit, due to the strict monotonicity of
s1 and s0. If pi > p, then s0(pi) < s0(p) and if pi < p, then s1(pi) < s1(p), so in either
case participant i could make a loss for one of the outcomes. If pi = p then she makes
0 for both outcomes.

3.2. Sufficient Conditions for Existence of Arbitrage
Finally, we show that the existence of arbitrage opportunities seems to be quite gen-
eral for wagering mechanisms by providing some mild sufficient conditions. We make
no assumptions about the wagering mechanisms aside from the three conditions listed
in the theorem statement; in particular, we do not assume weak budget balance, indi-
vidual rationality, or even incentive compatibility.

THEOREM 3.4. If a wagering mechanism satisfies the following three conditions:

(1) ∀ i ∈ N , x ∈ {0, 1}, p−i ∈ [0, 1]n−1, and w ∈ Rn, Πi(pi,p−i,w, x) is continuous in pi.



(2) If pi = pj for all i, j ∈ N , then Πi(p,w, x) ≥ 0 for all i ∈ N , w ∈ Rn, and x ∈ {0, 1}.
(3) The normality condition (as defined in Section 2.2).

then for all i ∈ N , w ∈ Rn
+, and p̂−i ∈ [0, 1]n−1 where not all elements of p̂−i are the

same, there exists an interval [ai, bi], where 0 ≤ ai < bi ≤ 1, such that agent i risklessly
makes a profit by predicting some p̂i ∈ [ai, bi].

PROOF. Normality says that for all pi ∈ [0, 1] and w ∈ Rn
+, holding any p̂−j ∈

[0, 1]n−1 fixed, j 6= i, the expected payoff of agent i with belief pi is strictly minimized
when agent j predicts p̂j = pi, that is, pi = arg minp̂j EX∼pi [Πi(p̂j , p̂−j ,w, X)].

We first prove that conditions (2) and (3) together imply the following:

(*) For all i ∈ N , belief pi ∈ [0, 1], predictions p̂−i ∈ [0, 1]n−1 such that not all elements
of p̂−i are the same, and wagers w ∈ Rn

+, the expected net payoff of agent i is strictly
positive if he predicts pi, that is, EX∼pi [Πi(pi, p̂−i,w, X)] > 0.

To show this, considerEX∼pi [Πi(pi, p̂−i,w, X)] andEX∼pi [Πi(pi, p̄−i,w, X)] where ev-
ery element of p̄−i equals pi. According to condition (2), EX∼pi [Πi(pi, p̄−i,w, X)] ≥ 0.
Because not all elements of p̂−i are the same, there are predictions in p̂−i that
are different from pi. Now, change those predictions to pi one at a time until we
have p̄−i. At each step, according to condition (3), the expected net payoff of agent
i strictly decreases. Combining with EX∼pi [Πi(pi, p̄−i,w, X)] ≥ 0, this means that
EX∼pi [Πi(pi, p̂−i,w, X)] > 0.

Next, we prove that (1) and (*) imply the existence of arbitrage opportunities.
For all w ∈ Rn

+ and p̂−i ∈ [0, 1]n−1 such that not all elements of p̂−i are the same, (*)
requires that

piΠi(pi, p̂−i,w, 1) + (1− pi)Πi(pi, p̂−i,w, 0) > 0

for all pi ∈ [0, 1]. Considering the cases in which pi = 1 and pi = 0, this gives us
Πi(1, p̂−i,w, 1) > 0 and Πi(0, p̂−i,w, 0) > 0.

According to condition (1), both Πi(pi, p̂−i,w, 1) and Πi(pi, p̂−i,w, 0) are continuous
functions of pi. If Πi(1, p̂−i,w, 0) > 0, then the net payoff of agent i is strictly positive
under both outcomes when he predicts 1. By continuity of Πi(pi, p̂−i,w, 1), there exists
a positive ε such that when agent i’s prediction is in [1 − ε, 1], he risklessly makes a
profit. By a similar argument, if Πi(0, p̂−i,w, 1) > 0, there exists an interval of predic-
tions where agent i risklessly makes a profit by making a prediction in the interval.

The only case left is both Πi(1, p̂−i,w, 0) ≤ 0 and Πi(0, p̂−i,w, 1) ≤ 0. For this case,
define h(pi) = Πi(pi, p̂−i,w, 1)− Πi(pi, p̂−i,w, 0). h(pi) is a continuous function defined
on [0, 1], with h(1) > 0 and h(0) < 0. By the intermediate value theorem of continuous
functions, there exists a p′i ∈ (0, 1) such that h(p′i) = 0. Because we must have either
Πi(p

′
i, p̂−i,w, 1) > 0 or Πi(p

′
i, p̂−i,w, 0) > 0, h(p′i) = 0 means that Πi(p

′
i, p̂−i,w, 1) =

Πi(p
′
i, p̂−i,w, 0) > 0. Agent i makes a strictly positive profit under both outcomes when

predicting p′i. By continuity of the net payoff functions, this implies that there exists
ε > 0 such that when agent i predicts p̂i ∈ [p′i−ε, p′i+ε], he risklessly makes a profit.

The WSWMs, which are normal, satisfy condition (2) in Theorem 3.4 because every-
one receives zero net payoff when all agents make the same prediction. It is interesting
to note that any wagering mechanism that is anonymous, individually rational, and
weakly budget balanced necessarily assigns zero net payoff to all agents when they
have the same prediction and wager, that is, condition (2) is satisfied whenever w has
identical elements. Therefore, it is not practical to relax this condition. In the next two
sections, we show that it is possible to relax the normality condition and design mech-
anisms that do not admit arbitrage opportunities yet still satisfy anonymity, weak
budget balance, individual rationality, incentive compatibility, and sybilproofness.



4. NO-ARBITRAGE WAGERING MECHANISMS
In this section, we consider mechanisms that plug the arbitrage hole in WSWMs and
allow the center to make a profit. We formally define the no arbitrage property, and
give necessary and/or sufficient conditions for a mechanism to satisfy no arbitrage
and/or weak budget balance. In particular, we define a class of mechanisms called no-
arbitrage wagering mechanisms that are closely related to WSWMs, but with the no
arbitrage property.

No Arbitrage: For all i ∈ N , p ∈ [0, 1]n, and w ∈ Rn
+, participant i cannot risklessly

make a profit at p and w.

We first provide a characterization theorem on the common form of wagering mecha-
nisms that satisfy individual rationality, incentive compatibility, and no arbitrage. We
continue the convention and call a wagering mechanism differentiable if its net payoff
function is differentiable with respect to the predictions of the agents.

THEOREM 4.1. A differentiable wagering mechanism satisfies individual rational-
ity, incentive compatibility, and no arbitrage if and only if its net payoff function is of
the form

Πi(p,w, x) = ci(p−i,w)[sx(pi)− sx(p̄i(p−i,w))], (3)
where s is a strictly proper scoring rule, ci and p̄i are functions of only p−i and w, and
ci(p−i,w) > 0 and p̄i(p−i,w) ∈ [0, 1] for all p−i ∈ [0, 1]n−1 and w ∈ Rn

+.

PROOF. We first prove the sufficiency of (3). Because s is a strictly proper scoring
rule and c is a strictly positive function that doesn’t not depend on pi, by definition of
strictly proper scoring rules, a wagering mechanism with a net payoff function of (3) is
incentive compatible. It’s easy to see that it is also individually rational because strict
properness of s implies EX pi [sX(pi)] ≥ EX pi [sX(p̄i(p−i,w))]. The proof of no arbitrage
follows essentially the same argument in the “only if” part of the proof of Theorem 3.3.
Basically, if pi 6= p̄i(p−i,w), then either s1(pi) < s1(p̄i(p−i,w)) or s0(pi) < s0(p̄i(p−i,w))
by monotonicity of the scoring functions.

Next, we prove the necessity of (3).
Incentive compatibility requires that, when fixing p−i and w, the net payoff of agent

i is a strictly proper scoring rule of the prediction of i. Hence, it can be written as
Πi(pi,p−i,w, x) = ci(p−i,w)sx(pi) + hi(p−i,w, x) (4)

where s is some strictly proper scoring rule and ci is a strictly positive function. That
is, p−i and w only affect the affine transformation of some strictly proper scoring rule.
Since s is a strictly proper scoring rule and Πi is differentiable, according to Corollary
2.3, s1(pi) is strictly increasing with pi and s0(pi) is strictly decreasing with pi. This
implies that Πi(pi,p−i,w, 1) is strictly increasing with pi and Πi(pi,p−i,w, 0) is strictly
decreasing with pi.

No arbitrage implies that for all pi, p−i and w, either Πi(pi,p−i,w, 1) =
Πi(pi,p−i,w, 0) = 0 or at least one of Πi(pi,p−i,w, 1) and Πi(pi,p−i,w, 0) is strictly
negative. By individual rationality and incentive compatibility, we know that for any
pi, EX∼pi [Πi(pi,p−i,w, X)] ≥ 0. This means that for all pi either Πi(pi,p−i,w, 1) =
Πi(pi,p−i,w, 0) = 0 or one of Πi(pi,p−i,w, 1) and Πi(pi,p−i,w, 0) is at least 0 and the
other is strictly negative. Moreover, because EX∼1[Πi(1,p−i,w, X)] = Πi(1,p−i,w, 1)
and EX∼0[Πi(0,p−i,w, X)] = Πi(0,p−i,w, 0), we know that Πi(1,p−i,w, 1) ≥ 0
and Πi(0,p−i,w, 0) ≥ 0. Together with the monotonicity of Πi(pi,p−i,w, 1) and
Πi(pi,p−i,w, 0), all of these imply that there exists some p̄i(p−i,w) ∈ [0, 1] such that
Πi(p̄i(p−i,w),p−i,w, 1) = Πi(p̄i(p−i,w),p−i,w, 0) = 0. Applying (4), this implies

ci(p−i,w)sx(p̄i(p−i,w)) + hi(p−i,w, x) = 0.



This gives that hi(p−i, x) = −ci(p−i,w)sx(p̄i(p−i,w)). Plugging this to (4) gives (3).

4.1. No-Arbitrage Wagering Mechanisms and Weak Budget Balance
Theorem 4.1 gives quite some flexibility in selecting ci and p̄i. In this section, we hope
to design wagering mechanisms that not only satisfy the incentive properties but also
allow the center to make a profit. This means that we would like to have wagering
mechanisms satisfying weak budget balance. Intuitively, we’d like to remove arbitrage
opportunities from WSWMs, but in a way that benefits the center. It is interesting to
note that wagering mechanisms with net payoff functions in (3) may not necessarily
allow the center to make a profit even if they don’t admit arbitrage opportunities.

We choose to focus on a subset of the mechanisms characterized by Theorem 4.1 be-
cause, as it will become evident soon, this subset of wagering mechanisms connects to
WSWMs in a natural way. We call this family of wagering mechanisms the no-arbitrage
wagering mechanisms (NAWM) and define it formally below. Given a permutation σ of
agents in N\{i}, we use pσ−i and wσ

−i to denote the vectors achieved by permuting
elements of p−i and w−i according to σ respectively.

Definition 4.2. A no-arbitrage wagering mechanism (NAWM) determines the net
payoffs of agents according to function

ΠNA
i (p,w, x) =

wiWN\{i}

WN
[sx(pi)− sx (p̄(p−i,w−i))] , (5)

where s is any strictly proper scoring rule such that sx(p) ∈ [0, 1] for all p ∈ [0, 1] and x ∈
{0, 1}, and p̄ is any function such that p̄(p−i,w−i) ∈ [0, 1] and p̄(p−i,w−i) = p̄(pσ−i,w

σ
−i)

for all p−i ∈ [0, 1]n−1, w−i ∈ Rn−1
+ , and all permutations σ of N\{i}.

NAWMs restrict that ci in (3) is the same function for all agents and depends on
neither the predictions of other agents nor the identities of agents. It is the same
multiplier that appears in the net payoff functions of WSWMs. The definition also
requires that p̄i in (3) is the same function for all agents and doesn’t depend on the
identities of the agents or the wager of agent i. Thus, by definition, NAWMs satisfy
anonymity, and if differentiable, by Theorem 4.1, they satisfy individual rationality,
incentive compatibility, and no arbitrage.

COROLLARY 4.3. Any differentiable NAWM satisfies individual rationality, incen-
tive compatibility, anonymity, and no arbitrage.

We sometimes use p̄i to denote p̄(p−i,w−i) when the vectors of predictions and wa-
gers are clear in the context. It is easy to check that the net payoff functions of NAWMs
can be written as

ΠNA
i (p,w, x) = ΠWS

i (p,w, x)−ΠWS
i (p̄i,p−i,w, x). (6)

This means that an NAWM works by subtracting some value that is independent of the
prediction of agent i from agent i’s net payoff in the corresponding WSWM. Since the
subtracted value doesn’t depend on agent i’s prediction, NAWMs preserve the incentive
compatibility of WSWMs. If we interpret p̄i as a prediction that an arbitrager makes
when wagering wi against all agents except i, we observe below that the conditions
in Theorem 3.3 are sufficient for an NAWM to satisfy weak budget balance. The proof
follows from the observation in (6) and the budget balance of WSWMs.

THEOREM 4.4. A differentiable NAWM satisfies weak budget balance (in addition
to the properties in Corollary 4.3) if for all i ∈ N , p ∈ [0, 1]n, and w ∈ Rn

+, it satisfies
p̄(p−i,w−i) ∈ [‖p−i‖s1,µ, ‖p−i‖s0,µ] where µj = wj/WN\{i} for all j ∈ N\{i}.



We note that NAWMs violate the normality property. Normality requires that, fix-
ing everything else, if agent j changes his prediction to agent i’s true belief, then agent
i’s expected net payoff is minimized. In NAWMs, depending on the prediction of other
agents, agent i’s expected net payoff can increase with such a move. To see this, con-
sider an NAWM using the Brier scoring rule (1) and p̄(p−i,w−i) =

∑
j

wj

WN\{i}
pj . As we

showed at the beginning of Section 3, this p̄(p−i,w−i) satisfies the condition in Theo-
rem 4.4. Suppose there are only three agents who predict 0.1, 0.4 and 0.7 respectively
and have the same wager. The true belief of agent 2 is also 0.4. With these predictions,
p̄2 = 0.4, the same as agent 2’s prediction, which leads to a zero net payoff for agent 2
in the NAWM. However, if agent 1 changes her report to 0.4, p̄2 becomes 0.55. Agent 2
now in expectation makes a positive net payoff.

4.2. Adding Neutrality
At this point, we are equipped with a class of wagering mechanisms, characterized
by Theorem 4.4, that satisfy anonymity, individual rationality, incentive compatibility,
no arbitrage, and weak budget balance. Just as not all WSWMs are neutral, not all
NAWMs satisfy neutrality. Next we provide conditions that are necessary and suffi-
cient for an NAWM to satisfy neutrality. In addition to being a desirable property for
scenarios in which it would be unnatural for the wagering mechanism to treat out-
comes asymmetrically (e.g., when wagering over which of two candidates will win an
election), in the next section we will see that neutrality helps us to focus on a smaller
set of NAWMs for which we can obtain the explicit functional forms of the payoff func-
tions and analyze the property of sybilproofness.

We extend the definition of neutrality for a wagering mechanism to scoring rules
as well as the function p̄(p−i,w−i). We say that a scoring rule s is neutral if for all
x ∈ {0, 1} and pi ∈ [0, 1], sx(pi) = s1−x(1 − pi). We say that the function p̄(p−i,w−i) is
neutral if p̄(1− p−i,w−i) = 1− p̄(p−i,w−i) for all p−i ∈ [0, 1]n−1 and w−i ∈ Rn−1

+ .

LEMMA 4.5. An NAWM satisfies neutrality if and only if

(1) its net payoff function (5) can be represented with a neutral scoring rule, and
(2) p̄(p−i,w−i) is neutral.

PROOF. Conditions (1) and (2) imply

ΠNA
i (1− p,w, 1− x) =

wiWN\{i}

WN
[s1−x(1− pi)− s1−x(p̄(1− p−i,w−i))]

=
wiWN\{i}

WN
[sx(pi)− sx(p̄(p−i,w−i))] = ΠNA

i (p,w, x).

Hence the mechanism is neutral.
Next we prove that conditions (1) and (2) are necessary for an NAWM to satisfy

neutrality. Neutrality of an NAWM requires

sx(pi)− sx(p̄(p−i,w−i)) = s1−x(1− pi)− s1−x(p̄(1− p−i,w−i)) (7)

for all p, w, and x.
We use 0.5 to represent a vector whose elements are 0.5. Now consider the case

where p−i = 0.5. Clearly, p̄(p−i,w−i) = p̄(1− p−i,w−i) for p−i = 0.5. (7) implies that

sx(pi)− sx(p̄(0.5,w−i)) = s1−x(1− pi)− s1−x(p̄(0.5,w−i))

for all pi, w−i, and x. Pick an arbitrary w∗−i and define s′x(pi) = sx(pi)−sx(p̄(0.5,w∗−i)).
The above expression implies that s′ is neutral. It’s also easy to check that s′x(pi) −
s′x(p̄(p−i,w−i)) = sx(pi) − sx(p̄(p−i,w−i)) for all p, w−i and x, which means that the



original net payoff function can be written as

ΠNA
i (p,w, x) =

wiWN\{i}

WN
[s′x(pi)− s′x (p̄(p−i,w−i))] .

This proves that (1) is necessary.
Letting pi = 0.5 in (7), the neutrality of s′ implies that s′x(p̄(p−i,w−i)) = s′1−x(p̄(1 −

p−i,w−i)) for all p−i and w−i. Applying the neutrality of s′ again, we have p̄(p−i,w) =
1− p̄(1− p−i,w), which shows the necessity of (2).

Since the payoff function of any neutral NAWM can be represented using a neutral
scoring rule, we assume without loss of generality that the scoring rule used in any
neutral NAWM is also neutral. If an NAWM satisfies neutrality, the conditions in The-
orem 4.4 can be slightly weakened, to only require p̄i to be bounded above by ‖p−i‖s0,µ
for weak budget balance to be satisfied, as shown in the following theorem.

THEOREM 4.6. A differentiable and neutral NAWM satisfies weak budget balance
(in addition to the properties in Corollary 4.3) if for all i ∈ N , w ∈ Rn

+, and p ∈ [0, 1]n,
p̄(p−i,w−i) ≤ ‖p−i‖s0,µ where µj = wj/WN\{i} for all j ∈ N\{i}.

In the next section we will see that considering neutrality allows us to restrict our
attention to a smaller set of NAWMS that we can analyze more deeply.

5. NO-ARBITRAGE WAGERING MECHANISMS USING f -NORMS
In the previous section we showed that if an NAWM mechanism uses a neutral scoring
rule s and a neutral p̄(p−i,w−i) function, then if p̄(p−i,w−i) ≤ ‖p−i‖s0,µ is satisfied,
the mechanism satisfies neutrality and weak budget balance, in addition to anonymity,
individual rationality, incentive compatibility, and no arbitrage. However, we haven’t
shown what functional forms of p̄(p−i,w−i) satisfy these conditions. Moreover, we don’t
know whether any of these mechanisms satisfy sybilproofness.

In this section, we propose a generic way of defining p̄(p−i,w−i) that satisfies these
conditions, using f -norms. We consider the class of NAWMs that use an f -norm to
define p̄(p−i,w−i). By Corollary 4.3, any differentiable NAWM in this class satisfies
anonymity, individual rationality, incentive compatibility, and no arbitrage. We char-
acterize the functions f for which these mechanisms also satisfy weak budget balance
and neutrality. We then give specific examples of f -norms that satisfy these properties,
and show that these mechanisms also satisfy sybilproofness.

Definition 5.1. For any continuous, strictly monotone function f : [0, 1] → [0, 1], an
f -NAWM is a NAWM with

p̄(p−i,w−i) = ‖p−i‖f,µ,
where µj = wj/WN\{i} for all j ∈ N\{i}.

We first give necessary and sufficient conditions on f for p̄(p−i,w−i) to be neutral,
which will allow us to apply the results from Section 4.2.

LEMMA 5.2. Let µj = wj/WN\{i} for all j ∈ N\{i}. Then p̄(p−i,w−i) = ‖p−i‖f,µ is
neutral if and only if

f(p) + f(1− p) = 2f(1/2), ∀p ∈ [0, 1]. (8)

We further abuse notation and say that f is neutral if it satisfies (8). When both f
and s are neutral, we know that f -NAWM satisfies neutrality by Lemma 4.5. We now
give a precise characterization of when an f -NAWM satisfies weak budget balance,
which is essentially when s0(f−1(·)) is concave.



THEOREM 5.3. The necessary and sufficient conditions for a differentiable
f -NAWM to satisfy weak budget balance are respectively:

(1) A differentiable f -NAWM is weakly budget balanced if f and s are neutral and
s0(f−1(·)) is concave.

(2) If a differentiable f -NAWM is weakly budget balanced then s0(f−1(·)) is concave.

The proof relies on the following lemma, which gives a necessary condition for gen-
eral NAWMs that is a partial converse of Theorem 4.6, in the sense that the inequality
p̄i ≤ ‖p−i‖s0,µ is required to hold for only certain vectors.

LEMMA 5.4. Let p, q be any two numbers in [0, 1]. Consider a differentiable NAWM
that is weakly budget balanced. Fix all the wagers to be equal to 1 and let p̄i = p̄(p−i)
for some function p̄ : [0, 1]n−1 → [0, 1]. Let 1n−2 be the vector of 1’s in n − 2 dimensions.
Then

p̄(p, q1n−2) ≤ ‖(p, q1n−2)‖s0,µ ,where µj = 1/(n− 1) for all j.

PROOF OF THEOREM 5.3. The first part follows easily from Theorem 4.6 and
Lemma 2.6.

For the second part, first observe that applying Lemma 5.4 to an f -NAWM implies
that for any p and q, letting µ = (1/k, 1 − 1/k) for any integer k ≥ 2 and µ′ be a
k-dimensional vector with µ′j = 1/k for all j, we have

‖(p, q)‖f,µ = ‖(p, q1k−1)‖f,µ′ ≤ ‖(p, q1k−1)‖s0,µ′ = ‖(p, q)‖s0,µ.

The above inequality gives that for h(x) = s0(f−1(x)), αh(x) + (1−α)h(y) ≤ h(αx+ (1−
α)y), for all x, y, and for all α = 1/k for some integer k ≥ 2. To see this, for any x and y,
let p = f−1(x) and q = f−1(y). Then,

‖(p, q)‖s0,(α,1−α) ≥ ‖(p, q)‖f,(α,1−α)
⇔ s−10 (αs0(p) + (1− α)s0(q)) ≥ f−1(αf(p) + (1− α)f(q))

⇔ αs0(p) + (1− α)s0(q) ≤ s0(f−1(αf(p) + (1− α)f(q)))

⇔ αs0(f−1(x)) + (1− α)s0(f−1(y)) ≤ s0(f−1(αx+ (1− α)y))

⇔ αh(x) + (1− α)h(y) ≤ h(αx+ (1− α)y),

where the inequality changes direction because s0 is a decreasing function.
We need to show that this inequality holds for all α ∈ [0, 1]. We show this for a dense

subset of [0, 1], and since h is continuous, it follows that it holds for any α ∈ [0, 1]. The
dense set that we show it for is the set of all rational numbers where the denominator
is a power of 2. This follows from the following recursive construction, where we show
that if the above inequality holds for α1 and α2, then it also holds for (α1 + α2)/2.

h

(
α1 + α2

2
x+

(
1− α1 + α2

2

)
y

)
= h

(
1

2
(α1x+ (1− α1)y) +

1

2
(α2x+ (1− α2)y)

)
≥ 1

2
h (α1x+ (1− α1)y) +

1

2
h (α2x+ (1− α2)y)

≥ α1

2
h(x) +

1− α1

2
h(y) +

α2

2
h(x) +

1− α2

2
h(y)

=
α1 + α2

2
h(x) +

(
1− α1 + α2

2

)
h(y).

In the first inequality, we used αh(x) + (1−α)h(y) ≤ h(αx+ (1−α)y),with α = 1/2 and
in the second inequality we used it with α1 and α2. This completes the proof.



5.1. Example f -NAWMs
Next, we give specific examples of f -NAWMs that are neutral and weakly budget bal-
anced. The first follows easily from Lemma 3.2 and our original motivation.

LEMMA 5.5. Let s be a neutral, differentiable, proper scoring rule and G be the
corresponding convex function as in Theorem 2.2. Then the f -NAWM with f = G′ us-
ing scoring rule s is weakly budget balanced and neutral. Further, the surplus of the
mechanism is the same for both outcomes.

The class of f -NAWMs described in Lemma 5.5 is the most balanced in the sense
that the surplus is the same no matter what the outcome is. We now present two other
choices that are in that sense the most extreme mechanisms.

For any f defined on [0, 1] that satisfies (8), its value on [0, 1/2] completely determines
its value on (1/2, 1]. Hence, we now define an operation that takes any continuous
strictly monotone function defined on [0, 1/2] and extends it to a continuous, strictly
monotone function on [0, 1] that satisfies (8). Given any function h : [0, 1] → R, define
the symmetrization of the function, denoted sym(h), as

sym(h)(p) =

{
h(p) if p ∈ [0, 1/2],
2h(1/2)− h(1− p) if p ∈ (1/2, 1].

(9)

It is easy to verify that for any function h defined on [0, 1/2], the new function sym(h)
is defined on [0, 1] and satisfies (8). We will use the notation sym(p2) to denote the sym-
metrization sym(h) of the function h(p) = p2 and similarly for other common functions.

THEOREM 5.6. Let s be a neutral, differentiable, proper scoring rule. The f -NAWM
with f = sym(s0) or f = sym(s1) using scoring rule s is weakly budget balanced and
neutral. When the outcome is x, the surplus of the mechanism with f = sym(s0) is 0
when all of the predictions are closer to x than to 1 − x; the surplus of the mechanism
with f = sym(s1) is 0 when all of the predictions are closer to 1− x than to x.

The profit of the f -NAWM with f = sym(s0) has the following nice interpretation:
if everyone predicted that 0 was more likely than 1 and 0 is the outcome (i.e. all
agents make “correct” predictions), then the mechanism is exactly budget balanced and
doesn’t make a profit. This may be seen as being closer to the property of exact budget
balanced than the f -NAWM with f = G′, which will always have a positive profit un-
less all predictions are the same. On the other hand, the f -NAWM with f = sym(s1)
obtains a profit in a less natural scenario, in that it makes a positive profit when all
agents predicted 0 as more likely than 1 and the outcome is 0 (i.e. all agents make
“correct” predictions), but makes zero profit when everyone predicted 0 as more likely
than 1 and the outcome is 1 (i.e. all agents make “wrong” predictions)!

We next turn our attention to the Brier scoring rule, sB , which is defined in (1)
and satisfies neutrality. We give a whole range of functions f for which an f -NAWM
using the Brier scoring rule is weakly budget balanced and neutral. This range is an
interpolation between the two extremes, sym(s0) and sym(s1).

LEMMA 5.7. If either f = sym(pa) or f = sym((1 − p)a) for some constant a ∈ [1, 2],
then the f -NAWM with s = sB is weakly budget balanced and neutral.

5.2. Sybilproofness
We now show that the class of neutral and weakly budget balanced f -NAWMs also
satisfies sybilproofness.

THEOREM 5.8. Any neutral and weakly budget balanced f -NAWM is sybilproof.



Neutrality and weak budget balance of an f -NAWM mean that s and p̄(p−i,w−i) are
neutral (or an equivalent mechanism can be written with a neutral s) and s0(f−1(·))
is concave. Our proof first shows that we only need to prove sybilproofness for the
case of two agents, i and j. Then, using the neutrality of p̄(p−i,w−i) and concavity of
s0(f−1(·)), we can show that agent i’s expected net payoff is higher when he predicts
pi and wagers wi than when he participates under any number k > 1 of identities
and predicts pi` and wagers wi` for his identity `, where pi` and wi` can be arbitrary
predictions and wagers as long as

∑k
`=1 wi` = wi.

6. CONCLUSION
We establish a method to construct wagering mechanisms that satisfy anonymity, indi-
vidual rationality, incentive compatibility, no arbitrage, weak budget balance, neutral-
ity, and sybilproofness, and provide structural characterizations for wagering mecha-
nisms satisfying no arbitrage and some subsets of the other properties. These mecha-
nisms allow the center to make a guaranteed profit from the disagreement of agents
with immutable beliefs, without sacrificing major incentives properties. An intriguing
future direction is to characterize all one-shot wagering mechanisms that satisfy all
seven properties.

While we present our analysis in a setting for predicting binary random variables,
some of our results naturally generalize to predicting finite discrete random variables.
In particular, the “arbitrage interval” characterized in Theorem 3.3 easily generalizes
to an arbitrage set of probability vectors, and this condition can be used to generalize
Theorem 4.4 for NAWMs to satisfy weak budget balance.
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A. MISSING PROOFS
A.1. Missing Proofs in Section 2

PROOF OF COROLLARY 2.3. Since sx(p) is differentiable, by Theorem 2.2, G(p) is
twice differentiable. Then, s′1(p) = (1 − p)G′′(p) and s′0(p) = −pG′′(p). Because s is
strictly proper, G(p) is strictly convex and G′′(p) > 0. Hence, s′1(p) > 0 for p ∈ [0, 1) and
s′0(p) < 0 for p ∈ (0, 1]. Thus, s1(p) strictly increases and s0(p) strictly decreases with
p.

PROOF OF LEMMA 2.5. Let g(x) = af(x) + b. For any particular x with y = g(x), we
have f(x) = y−b

a and g−1(y) = x = f−1(y−ba ). Then

‖p‖g,µ = g−1 (µ−avg(g(p)))

= f−1
(
µ−avg(g(p))− b

a

)
= f−1

(
µ−avg(af(p) + b)− b

a

)
= f−1

(
a · µ−avg(f(p)) + b− b

a

)
= f−1 (µ−avg(f(p)))

= ‖p‖f,µ.

Now let g(x) = f(ax + b). For any particular x with y = g(x), ax + b = f−1(y) and
f−1(y)−b

a = x = g−1(y). Then

‖p‖g,µ = g−1 (µ−avg(g(p)))

=
f−1 (µ−avg(g(p)))− b

a

f−1 (µ−avg(g(p))) = f−1 (µ−avg(f(ap + b)))

= ‖ap + b‖f,µ.

PROOF OF LEMMA 2.6. For any convex function h, by definition of convexity, we
have that for any x and vector of weights µ,

h(µ−avg(x)) ≤ µ−avg(h(x)).

First we show the ⇐ direction. Assume that g is increasing and h(x) = g(f−1(x)) is
convex. Given some p ∈ [0, 1]n, let xi = f(pi). Applying the convexity inequality above,
we get that for any vector of weights µ,

g
(
f−1 (µ−avg(f(p)))

)
≤ µ−avg

(
g
(
f−1(f(p))

))
= µ−avg(g(p)) = g(g−1 (µ−avg(g(p))))

⇔ f−1 (µ−avg(f(p))) ≤ g−1 (µ−avg(g(p))) ,

since g is strictly increasing.
If g is decreasing and h is concave, then −g is increasing and −h is convex. Further,

by Lemma 2.5, ‖p‖g,µ = ‖p‖−g,µ, so we may use the first part.
Now for the ⇒ direction, once again assume that g is increasing, and assume that

‖p‖f,µ ≤ ‖p‖g,µ ∀ µ. We wish to show that h(x) = g(f−1(x)) is convex. Let x = f(p) and



y = f(q) for any p, q ∈ [0, 1]. For any α ∈ [0, 1], we want to show that

αh(x) + (1− α)h(y) ≥ h(αx+ (1− α)y)

⇔ αg(f−1(x)) + (1− α)g(f−1(y)) ≥ g(f−1(αx+ (1− α)y))

⇔ αg(p) + (1− α)g(q) ≥ g(f−1(αf(p) + (1− α)f(q)))

⇔ g−1(αg(p) + (1− α)g(q)) ≥ f−1(αf(p) + (1− α)f(q))

⇔ ‖(p, q)‖g,(α,1−α) ≥ ‖(p, q)‖f,(α,1−α)
The case where g is decreasing can be handled similarly, except that the inequality is
reversed when applying g−1 to both sides.

A.2. Missing Proofs in Section 4
PROOF OF THEOREM 4.4. The proof follows from the observation in (6) and the

budget balance of WSWMs. Because p̄i ∈ [‖p−i‖s1,µ, ‖p−i‖s0,µ], according to Theorem
3.3, when not all elements of p−i are the same,

ΠWS
i (p̄i,p−i,w, x) ≥ 0,

for all x ∈ {0, 1}. When all elements of p−i are the same and equal to p, we
have ‖p−i‖s1,µ = ‖p−i‖s0,µ = p. Hence, p̄i must also equal to p and in this case
ΠWS
i (p̄i,p−i,w, x) = 0 for all x ∈ {0, 1}. Since the WSWM is budget balanced, by (6),∑

i∈N
ΠNA
i (p,w, x) =

∑
i∈N

ΠWS
i (p,w, x)−

∑
i∈N

ΠWS
i (p̄i,p−i,w, x) = −

∑
i∈N

ΠWS
i (p̄i,p−i,w, x) ≤ 0.

PROOF OF THEOREM 4.6. Because the NAWM satisfies neutrality, both s and
p̄(p−i,w−i) are neutral. Since s is neutral, s1(p) = s0(1 − p). Using this in Lemma2.5,
we get that

‖p−i‖s1,µ = 1− ‖1− p−i‖s0,µ.
If p̄(p−i,w−i) ≤ ‖p−i‖s0,µ for all p, and w and p̄(p−i,w−i) is neutral, then

p̄(p−i,w−i) = 1− p̄(1− p−i,w−i) ≥ 1− ‖1− p−i‖s0,µ = ‖p−i‖s1,µ.

By Theorem 4.4, the NAWM satisfies weak budget balance.

A.3. Missing Proofs in Section 5
Two lemmas will be used in the proofs given in this section. We state them first.

LEMMA A.1. Let f and g be twice differentiable, strictly monotone functions.

f ′′

f ′
≤ g′′

g′
⇔
{
g(f−1(·)) is convex if g is increasing
g(f−1(·)) is concave if g is decreasing.

PROOF. Let h(x) = g(f−1(x)). Since f and g are twice differentiable, so is h, and

h′(x) = g′(f−1(x))(f−1)′(x) and

h′′(x) = g′(f−1(x))(f−1)′′(x) + ((f−1)′(x))2g′′(f−1(x)).

Let y = f−1(x). Then

(f−1)′(x) =
1

f ′(y)
and (f−1)′′(x) =

−f ′′(y)

f ′(y)3
.



Substituting these, we get

h′′(x) =
−g′(y)f ′′(y)

f ′(y)3
+
g′′(y)

f ′(y)2
.

It is easy to check that

f ′′

f ′
≤ g′′

g′
⇔
{
h′′(x) ≥ 0 if g′(y) ≥ 0
h′′(x) ≤ 0 if g′(y) ≤ 0.

LEMMA A.2. Fix a function h : [0, 1] → R, and let f = sym(h). Then for p ∈ ( 1
2 , 1],

f ′(p) = h′(1− p) and f ′′(p) = −h′′(1− p).
The proof of Lemma A.2 is immediate using the definition of symmetrization in (9).

PROOF OF LEMMA 5.2 . If f is strictly monotone and continuous, its inverse f−1 is
well defined. If f satisfies (8), then for any p, letting y = f(p) gives us

f−1
(
2f( 1

2 )− y
)

= 1− f−1(y).

Using this and (8), we have

‖1− p‖f,µ = f−1 (µ−avg(f(1− p)))

= f−1
(
2f( 1

2 )− µ−avg(f(p))
)

= 1− f−1 (µ−avg(f(p)))

= 1− ‖p‖f,µ.
For the other direction, assume that ‖1 − p‖f,µ = 1 − ‖p‖f,µ. Let p = (p, 1 − p) and
µ = (1/2, 1/2). We have

f−1
(
f(p) + f(1− p)

2

)
= 1− f−1

(
f(p) + f(1− p)

2

)
⇒ 2f−1

(
f(p) + f(1− p)

2

)
= 1

⇒ f(p) + f(1− p) = 2f
(
1
2

)
.

PROOF OF LEMMA 5.4. Suppose that the prediction vector p is (p, q1n−1), i.e., par-
ticipant 1 predicts p and everyone else predicts q. Then using anonymity and weak
budget balance, it can be argued that p̄1 = q, and we have p̄j = p̄(p, q1n−2) for all j 6= 1.
Now using the weak budget balance condition, we get that

s0(p)− s0(q) + (n− 1)s0(q)− (n− 1)s0(p̄(p, q1n−2)) ≤ 0

⇒ s0(p) + (n− 2)s0(q) ≤ (n− 1)s0(p̄(p, q1n−2))

⇒ 1

n− 1
(s0(p) + (n− 2)s0(q)) ≤ s0(p̄(p, q1n−2))

⇒ s−10

(
1

n− 1
(s0(p) + (n− 2)s0(q))

)
≥ p̄(p, q1n−2)

⇒ ‖(p, q1n−2)‖s0,µ ≥ p̄(p, q1n−2).

Most of the inequalities are self-explanatory. The reversal of the inequality is because
s0 is decreasing.



PROOF OF LEMMA 5.5. That this mechanism satisfies weak budget balance follows
essentially from Theorem 4.4 using Lemma 3.2 and Theorem 3.3. The fact that the
surplus is independent of the outcome follows from the fact that the arbitrage profit is
independent of the outcome in Lemma 3.2.

By Lemma 4.5 and Lemma 5.2, to show neutrality, we must simply show that G′ is
neutral assuming neutrality of s. From Theorem 2.2,

G(p) = ps1(p) + (1− p)s0(p) = ps0(1− p) + (1− p)s0(p).

G′(p) = s0(1− p)− ps′0(1− p)− s0(p) + (1− p)s′0(p).

G′(1− p) = s0(p)− (1− p)s′0(p)− s0(1− p) + ps′0(1− p).
Adding, we get that G′(p) +G′(1− p) = 0 = G′(1/2) as desired.

PROOF OF LEMMA 5.7. It is easy to check that sB is neutral. Therefore from
Lemma A.1 and Theorem 5.3, it is sufficient to show that f ′′/f ′ ≤ s′′0/s

′
0. We first

consider f = sym(pa).
Case 1: p ∈ [0, 1/2]

We calculate, s′0(p) = −2p, s′′0(p) = −2 and s′′0/s
′
0 = 1/p. Similarly, f ′(p) = apa−1,

f ′′(p) = a(a− 1)pa−2 and f ′′/f ′ = (a− 1)/p. Since a ≤ 2, we have that f ′′/f ′ ≤ s′′0/s′0.
Case 2: p ∈ (1/2, 1]
s′′0/s

′
0 is, as before, 1/p ≥ 0. We now use Lemma A.2 to calculate f ′(p) = a(1 − p)a−1,

f ′′(p) = −a(a− 1)(1− p)a−2 and f ′′/f ′ = −(a− 1)/(1− p) ≤ 0 since a ≥ 1, so once again
we have that f ′′/f ′ ≤ s′′0/s′0.

Note that this is tight. If a > 2, then Case 1 fails. If a < 1, then Case 2 fails since
−(a − 1)/(1 − p) would be greater than 1/p for p sufficiently close to 1, for any given
a < 1.

We now consider f = sym((1− p)a).
Case 1: p ∈ [0, 1/2]
f ′(p) = −a(1−p)a−1, f ′′(p) = a(a−1)(1−p)a−2 and f ′′/f ′ = −(a−1)/(1−p) ≤ 0 ≤ s′′0/s′0.

Case 2: p ∈ (1/2, 1]
Using Lemma A.2, f ′(p) = −apa−1, f ′′(p) = −a(a − 1)pa−2 and f ′′/f ′ = (a − 1)/p, so

once again since a ≤ 2, we have that f ′′/f ′ ≤ s′′0/s′0.

PROOF OF THEOREM 5.6. For weak budget balance, from Theorem 5.3 it is suffi-
cient to show that s0(f−1) is concave. First consider f = sym(s0). Since f = s0 on
[0, 1/2], it follows that s0(f−1) is identity on [0, 1/2]. Therefore, the non-trivial part is
to show that s0(f−1) is concave on (1/2, 1], where f(p) = 2s0(1/2)− s0(1− p).

Using Lemma 2.5 we get that when p ∈ (1/2, 1]n, ‖p‖f,µ = 1 − ‖p‖s0,µ. It is easy to
see that ‖p‖s0,µ > 1/2 when p ∈ (1/2, 1]n, and therefore 1− ‖p‖s0,µ ≤ ‖p‖s0,µ. Now we
use Lemma 2.6 in the⇒ direction to conclude that s0(f−1) is concave on (1/2, 1].

We have shown that s0(f−1) is concave on [0, 1/2] and (1/2, 1] separately. But then f
is differentiable at 1/2, which implies so is s0(f−1), and the derivative is continuous at
1/2. Therefore s0(f−1) is concave on the entire [0, 1].

One can easily verify that when all of the predictions are at most 1/2 and the outcome
is 0, ‖p‖f,µ = ‖p‖s0,µ, and the sum of payments to the agents is 0. Since this is a
neutral NAWM, the same is true when predictions are at least 1/2 and the outcome is
1.

The proof for f = sym(s1) is similar.

PROOF OF THEOREM 5.8. The neutrality and weak budget balance of a f -NAWM
imply that s and p̄(p−i,w−i) are neutral and s0(f−1(·)) is concave. Let s(r, q) =



qs1(r) + (1− q)s0(r) be the expected score for prediction r under belief q. We first prove
a condition that we will use later, that for any p, q, and µ,

s(‖p‖f,µ, q) ≥
∑
i

µis(pi, q). (10)

We have

s(‖p‖f,µ, q) = q s1(‖p‖f,µ) + (1− q)s0(‖p‖f,µ)

= q s0(1− ‖p‖f,µ) + (1− q)s0(‖p‖f,µ)

= q s0(‖1− p‖f,µ) + (1− q)s0(‖p‖f,µ)

= q s0(f−1(
∑
i

µif(1− pi))) + (1− q)s0(f−1(
∑
i

µif(pi)))

≥ q
∑
i

µis0(f−1(f(1− pi))) + (1− q)
∑
i

µis0(f−1(f(pi)))

= q
∑
i

µis0(1− pi) + (1− q)
∑
i

µis0(pi)

= q
∑
i

µis1(pi) + (1− q)
∑
i

µis0(pi)

=
∑
i

µis(pi, q).

The second equality is due to the neutrality of s. The third equality is because the
neutrality of p̄(p−i,w−i) implies that 1− ‖p‖f,µ = ‖1− p‖f,µ. The inequality is due to
the concavity of s0(f−1(·)).

Now we are ready to prove sybilproofness. We first show that it is sufficient to prove
sybilproofness for two-agent wagering. In other words, we show that if an agent would
not want to create false identities when wagering against any single agent, she would
also not want to create false identities when wagering against any group of agents.

From the definition of a NAWM, it is clear that when agent i participates using
her own identity, she receives the same payoff she would receive if she were play-
ing against a single other agent with prediction and wager pair (p̄i,WN\{i}). Suppose
agent i participates under K identities, i1 . . . iK , and they make predictions and wa-
gers (pi1 , wi1) . . . (pik , wiK ) respectively, where

∑K
k=1 wik = wi and wik ≥ 0, ∀k. Then p̄ik

for identity ik satisfies the following condition:

p̄ik = f−1

 ∑
j∈N∪{i1,...,iK}\{i,ik}

wj
WN\{i} + wi − wik

f(pj)


= f−1

 WN\{i}

WN\{i} + wi − wik

∑
j∈N\{i}

wj
WN\{i}

f(pj) +
∑

j∈{1,...K}\{k}

wij
WN\{i} + wi − wik

f(pij )


= f−1

 WN\{i}

WN\{i} + wi − wik
f(p̄i) +

∑
j∈{1,...K}\{k}

wij
WN\{i} + wi − wik

f(pij )

 .

For each identity, the reference report p̄ik is calculated in the same way it would be
if the identity were playing against a single agent with prediction and wager pair
(p̄i,WN\{i}) plus the other identities of agent i. Thus, to prove sybilproofness, we only
need to consider the case where player i plays against a single other player.



Now consider player iwith prediction and wager (pi, wi) and another player with pre-
diction and wager (p, w). If player i participates using her true identity, her expected
net payoff is

Ex∼pi [Πi((pi, p), (wi, w), x)] =
w

w + wi
wi(s(pi, pi)− s(p, pi)). (11)

If agent i participates under identities i1, . . . , iK and they make predictions and wa-
gers (pi1 , wi1), . . . , (piK , wiK ) respectively, where wik ≥ 0 and

∑K
k=1 wik = wi, then the

expected payoff of identity k is

Ex∼pi [Πik((pi1 , . . . , piK , p), (wi1 , . . . , wiK , w), x)] =
w + wi − wik

w + wi
wik(s(pik , pi)− s(p̄ik , pi)).

(12)
To show sybilproofness, we’ll show that for any (p, w), K, (pi, wi), and
(pi1 , wi1), . . . , (piK , wiK ), the right hand side of (11) is at least as big as the right hand
side of (12).

For identity ik, we know that

p̄ik = f−1

 w

w + wi − wik
f(p) +

∑
j∈{1,...K}\{k}

wij
w + wi − wik

f(pij )

 .

The expected total payoff of the K identities is
K∑
k=1

w + wi − wik
w + wi

wik(s(pik , pi)− s(p̄ik , pi))

≤
K∑
k=1

w + wi − wik
w + wi

wik

s(pik , pi)− w

w + wi − wik
s(p, pi)−

∑
j∈{1,...K}\{k}

wij
w + wi − wik

s(pij , pi)


=

K∑
k=1

w + wi − wik
w + wi

wik

 w + wi
w + wi − wik

s(pik , pi)−
w

w + wi − wik
s(p, pi)−

∑
j∈{1,...K}

wij
w + wi − wik

s(pij , pi)


=

K∑
k=1

wiks(pik , p) −
w

w + wi
wiks(p, pi)−

wik
w + wi

K∑
j=1

wijs(pij , pi)

=
w

w + wi
wi

(
K∑
k=1

wik
wi

s(pik , pi)− s(p, pi)

)

≤ w

w + wi
wi

(
s(f−1(

K∑
k=1

wik
wi

f(pik)), pi)− s(p, pi)

)
≤ w

w + wi
wi (s(pi, pi)− s(p, pi))

which matches the right hand side of (12), as desired. The first two inequalities are
due to (10). The last inequality is due to the fact that s is a proper scoring rule.
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