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Abstract. We introduce an exploration scheme aimed at learning ad-
vertiser click-through rates in sponsored search auctions with minimal
effect on advertiser incentives. The scheme preserves both the current
ranking and pricing policies of the search engine and only introduces one
parameter which controls the rate of exploration. This parameter can be
set so as to allow enough exploration to learn advertiser click-through
rates over time, but also eliminate incentives for advertisers to alter their
currently submitted bids. When advertisers have much more information
than the search engine, we show that although this goal is not achievable,
incentives to deviate can be made arbitrarily small by appropriately set-
ting the exploration rate. Given that advertisers do not alter their bids,
we bound revenue loss due to exploration.

1 Introduction

Recent years have seen an explosion of interest in sponsored search auctions,
due in large part to the unique opportunity for targeted advertising and the
resulting billions of dollars in revenue. Most sponsored search auctions display
a list of advertisements on the sidebar or other sections of a search engine’s
results page, ranked by some function of advertisers’ revealed willingness-to-pay
for every click on their ad. The advertisers in turn pay the search engine for
every click their ad receives. While several pricing schemes have been circulated
in the literature [7], by far the most popular is a generalization of second-price
auctions, under which each advertiser pays the lowest bid that is sufficient to
ensure that the ad remain in its current slot. Typically the number of available
slots for advertisements on the first search page is fixed, and thus only high
ranking advertisements are displayed.

?? This work was done while J. Wortman, Y. Vorobeychik, and L. Li were at Yahoo!
Research, New York.



An essential part of both designing sponsored search auction mechanisms and
bidding in them is the knowledge of the probability that a given ad is clicked
each time it is displayed in a particular slot for a particular search query or
keyword. This probability is known as the click-through rate or CTR of the
ad. Knowledge of these click-through rates helps advertisers determine optimal
bidding behavior. CTRs can also be an integral part of the ad ranking policy.
For example, it is common for policies to rank bidders by the product of their
bid and some function of their relevance, a slot-independent measure of CTR.
Throughout the paper, we assume that CTRs do not change over time.

Most of the existing literature on sponsored search auctions treats CTRs as
known. When advertisers first enter the system, however, their CTRs are not
yet known either by the search engine or even by the advertisers themselves, and
can only be estimated over time based on the observed clicks. Observations are
inherently limited to slots in which ads appear, and estimates are generally poor
for advertisers with low rank that do not usually appear at all. Furthermore,
without the assumption of factorable CTRs, little can be said about CTRs of
an ad in slots in which it has not previously appeared (or has appeared only a
small number of times). Thus there is a need for an exploration policy that pe-
riodically perturbs the current slate of displayed ads, showing some in alternate
slots and occasionally displaying those ads that are ranked below the last slot.
Ideally, this exploration policy should not be difficult to incorporate into the
current sponsored search mechanisms. Additionally, if the advertisers’ bids have
reached an equilibrium, the exploration policy should, when possible, eliminate
the incentives for bidders to change their bids, thereby destabilizing the auction.
Such destabilization can result in negative user and advertiser experience, as well
as unnecessary loss in revenue to the search engine, and can make exploration
harder to control.

In this paper, we address the problem of learning the click-through rates
for each ad in every slot. Our primary goal is to maintain an equilibrium bid
configuration if the bidders did indeed play according to an equilibrium prior
to exploration. When this is not possible, we provide bounds on the amount
that any advertiser could gain by deviating. This incentive to deviate can be
minimized by reducing exploration, at the cost of slowing down the process of
learning the CTRs. Additionally, we bound the revenue loss that the search
engine incurs due to exploration, as compared to maintaining a policy based on
current estimates of CTRs.

A similar problem has been addressed by Pandey and Olston [9] and Gonen
and Pavlov [5]. The former work addresses the learning problem without con-
sidering advertiser incentives. The latter addresses both. Our model differs from
existing ones in three primary ways:

1. We avoid imposing a particular ranking policy or introducing a new pricing
scheme so that changes to existing systems are minimal.

2. The data gathered by our approach can be incorporated into general learning
algorithms using sample selection debiasing techniques.[6]



3. We avoid the standard but unrealistic assumption that click-through rates
can be factored into advertiser- and slot-specific components.

2 Notation and Definitions

We consider an auction for a particular keyword in which there are N advertisers
(alternately called bidders or players) placing bids.5 We assume that the search
engine has K slots with non-negligible CTRs. Throughout the discussion on
incentives, we assume that the CTRs depend only on the ad being displayed and
the slot in which it is shown. Thus, we use cs

i to denote the true CTR of player i
in slot s. We assume that for each player i, cs

i > ct
i whenever 1 ≤ s < t ≤ K. For

convenience, we define cs
i = 0 for s > K and s < 1. In most of our analysis we

deal explicitly with estimated click-through rates; the search engine estimates
are denoted by ĉs

i , whereas the advertiser i’s estimates are denoted by c̃s
i . Finally,

we let vi denote the value of a click to player i.
For now we assume that throughout the exploration process, advertisers are

ranked according to their bid bi multiplied by a weight wi which is an increasing
function of their estimated relevance scores for the particular keyword. Setting
this weight equal to relevance recovers the standard rank-by-revenue model.
Without loss of generality, assume that advertisers are indexed in the order in
which they are ranked when playing equilibrium, i.e. advertiser i is in slot i
in the ranking. Each advertiser pays a price per click equal to the lowest bid
that maintains his current position; thus the price paid by bidder i in rank s is
ps

i = ws+1bs+1/wi.
The relevance score of an advertiser, which we denote by ei, can be thought

of as an average CTR over all slots for the given keyword. We might choose to
define this relevance as

∑K
s=1 cs

i or alternately as
∑K

s=1 cs
i /cs where cs is the

“average” CTR that any ad might expect to receive on slot s.6 We can fix the
weights for each advertiser prior to (each phase of) exploration and reveal the
new estimates of CTRs at the end of the exploration period only, allowing greater
control of exploration.

We assume that prior to exploration the advertisers converge to a symmetric
Nash equilibrium, a variant of Nash equilibrium introduced simultaneously by
Varian [10] and Edelman et al.[3]. We slightly alter the standard definition to
take into account CTR estimates as follows.

Definition 1. A symmetric Nash equilibrium (SNE) is an ordering and a set of
bids such that for every player i and for every slot s, c̃i

i

(

vi − pi
i

)

≥ c̃s
i (vi − ps

i ) ,
where c̃s

i denotes advertiser i’s CTR estimate at slot s.

5 Since our analysis can be repeated for each keyword, the restriction to a single
keyword is without loss of generality. Indeed, the analysis can even be generalized
to incorporate arbitrary context information, as long as the number of contexts is
finite and advertisers may submit separate bids for each. [4]

6 Observe that when cs

i is factorable into the product eics, both of these relevance
scores are proportional to ei.



Existence of at least one symmetric Nash Equilibrium was proved in a slightly
different setting than ours by Börgers et al. [1]. Their proof applies essentially
without change to our setting.

3 An Algorithm for Exploration

We begin by describing a simple algorithm for learning click-through rates. Below
(in Section 4) we show that we can set parameters of this algorithm in such a
way as to minimize or entirely eliminate incentives for advertisers to deviate
from a pre-exploration SNE. Our key condition will be that throughout the
entire run of the algorithm the prices which the advertisers pay are fixed to their
pre-exploration equilibrium prices.

The algorithm, which we call k-swap (Algorithm 1), starts by ranking ads by
the product of bid and weight as usual, and repeatedly chooses pairs of ads to
swap in order to explore. In particular, each time the given keyword receives an
impression (i.e. each time a query is made on the keyword), a swapping distance
k ∈ {1, · · · ,K} is chosen from some distribution (e.g. uniformly at random).
The algorithm calculates or looks up a swapping probability for each pair of
slots s and s + k that are a distance k apart. (The method for choosing these
probabilities will be discussed in Section 4.) Finally, the algorithm uses this set
of swapping probabilities to decide which (if any) pair of ads to swap.

We must be careful about how pairs of ads are chosen to be swapped so we
can avoid swapping the same ad more than once on a single query. Let Si denote
the event that the ads in slots i and i + k are swapped and let rk

i = Pr(Si) be
the probability that this event occurs. We have

Pr(Si) = Pr(Si|Si−k) Pr(Si−k) + Pr(Si|¬Si−k) Pr(¬Si−k).

To avoid conflicting swaps, we can set Pr(Si|Si−k) = 0, which implies that
Pr(Si|¬Si−k) = Pr(Si)/Pr(¬Si−k) = rk

i /(1 − rk
i−k), which is no greater than

one as long as we enforce that rk
i−1 + rk

i ≤ 1.
For the sake of this algorithm, all ads with rank K +1, · · · , N can be thought

of as sharing slot K + 1. Thus whenever an ad in slot s ≤ K is chosen to swap
with slot K + 1, any ad with rank K + 1, · · · , N could be displayed in slot s.
Due to lack of space, we do not discuss how the algorithm might decide which
losing ad to display, but one could imagine giving preference to ads that have
not often been displayed in the past.

4 Maintaining Equilibrium During Pairwise Swapping

In this section, we consider the effect on advertiser incentives of implementing
an exploration policy that occasionally chooses pairs of ads that are k slots apart
to swap or moves an undisplayed ad into slot K−k+1 for some fixed value of k.
By ensuring that advertisers do not have incentives to deviate from equilibrium



Algorithm 1 The k-swap algorithm.

Calculate all swapping probabilities rk

i

for all queries on the given keyword do

Randomly select a k ∈ {1, · · · , K}
for i = 1 to min{k, K − k + 1} do

Set Si ← 1 with probability rk

i , Si ← 0 otherwise
end for

for i = k + 1 to K − k + 1 do {Note that this statement is null if 2k > K}
if Si−k = 1 then

Set Si ← 0
else

Set Si ← 1 with probability rk

i /(1− rk

i−k), Si ← 0 otherwise
end if

end for

for i = 1 to K − k do

Swap the ads in slots i and i + k if Si = 1
end for

if SK−k+1 = 1 then

Choose an i ∈ {K + 1, · · · , N} to display in slot K − k + 1
end if

end for

bids for any fixed k, we ensure that the advertisers do not deviate throughout
the entire run of k-swap.

We assume that the search engine bases the weights wi on the CTR estimates
ĉs
i , and fix the prices paid by the advertisers through the entire run of k-swap.

The updated CTR estimates obtained during exploration are only reported to
advertisers after the algorithm completes. In practice, the algorithm may need
to be run in multiple phases, interleaving exploration with updates of CTR
estimates, and allowing sufficient time for advertisers to reach a new equilibrium
after each phase.

Our assumptions raise a conceptual question: if the advertisers care about the
real CTRs, how can we maintain incentives given only estimates? We posit that
often advertisers do not know the CTRs any better than the search engine and
formulate their own optimization problem (at least approximately) in terms of
the estimates provided by the search engine; that is, we assume that c̃s

i = ĉs
i ∀i, s.

We consider the case in which advertisers have additional information about their
CTRs in Section 6.

For the analysis that follows, we assume that the search engine knows (or can
obtain good estimates of) each advertiser’s value per click. If we assume that a
SNE is played prior to exploration, we can derive bounds on advertiser values [10]
and base our estimates on these bounds. In practice, this assumption will not
be necessary; we do not actually advocate setting the swapping probabilities
separately for each individual auction, but rather fixing probabilities in such a
way that the guarantees will hold for most typical auctions.



Since all analysis in this section is for a fixed value of k, we drop the su-
perscript and use ri in place of rk

i to denote be the probability that ads i and
i + k are swapped. These probabilities can be represented as multiples of r1,
i.e. ri = αir1. Then, if αi are set exogenously (for example, αi = 1 for all
1 ≤ i ≤ K), k-swap has only one tunable parameter, r1, for a fixed value of k.
For convenience of notation, we define αi = 0 for all i < 1 and i > K − k + 1. In
order to allow exploration of CTRs of all bidders, we let rK−k+1 designate the
total probability that any losing bidder is swapped into slot K − k + 1. Let qs

denote the probability that a losing bidder with rank K +1 ≤ s ≤ N is displayed
conditional on some losing ad being displayed.7 We have that

∑N
s=K+1 qs = 1.

Finally, define qmax = maxK+1≤s≤N qs.

Once we add exploration, the effective estimate of CTR for advertiser i in
slot s is no longer ĉs

i . Rather, now with some probability rs−k the ad in slot
s is moved to slot s − k, and with some probability rs the ad is moved to
slot s + k. Then the new effective estimate of CTR of player i for rank s is
ĉ
′s
i = (1− rs−k − rs)ĉ

s
i + rs−k ĉs−k

i + rsĉ
s+k
i .8

Let Di,s = αs(ĉ
s
i−ĉs+k

i )−αs−k(ĉs−k
i −ĉs

i ). Observe that r1Di,s is the marginal
CTR loss of advertiser i in slot s when exploration is allowed. We now define
the quantities Ji,j and Zi which are used in Theorem 1:

Ji,j = (vi − pi
i)Di,i − (vi − pj

i )Di,j (1)

Zi = (vi − pi
i)Di,i + αK−k+1qmaxĉK−k+1

i vi. (2)

To get some intuition about what these mean, note that r1Ji,j is the differ-
ence between the marginal loss in expected payoff due to exploration that the
advertiser i receives in slot j and the marginal loss in expected payoff due to
exploration in slot i. Similarly, r1Zi is the difference between the marginal loss
in payoff due to exploration that the advertiser i receives by switching to rank
above K + 1 (and thereby not occupying any slot) and the marginal loss due to
exploration in slot i.

The following result gives the conditions under which exploration does not
incent advertisers to change their bids and characterizes the settings in which
this is not possible. The proof of this theorem and others can be found in the
appendix.

Theorem 1. Assume that each advertiser i ∈ {1, · · · ,K} strictly prefers his
current slot to all others in equilibrium, i.e. the condition (vi−pi

i)ĉ
i
i > (vi−pj

i )ĉ
j
i

holds for all 1 ≤ i, j ≤ K, i 6= j whenever Ji,j > 0 and vi − pi
i > 0 ∀i whenever

Zi > 0. Then for generic valuations and relevances there exists an r1 > 0 such
that no advertiser has incentive to deviate from the pre-exploration SNE bids
once exploration is added. In particular, any r1 satisfying the following set of

7 Thus, the probability that a particular losing bidder s gets selected is qsrK−k+1.
8 Recall that rs = 0 and ĉs

i = 0 for s < 1 and s > K − k + 1. We can replace CTR
with effective CTR because the prices paid by all advertisers remain fixed for the
duration of exploration.



conditions is sufficient:

r1 ≤ min

{

min
2≤i≤K

1

αi + αi−k

, min
1≤i≤K;Zi>0

1

Zi

(vi − pi
i)ĉ

i
i,

min
1≤i,j≤K;i6=j;Ji,j>0

1

Ji,j

(

(vi − pi
i)ĉ

i
i − (vi − pj

i )ĉ
j
i

)

}

.

To get some intuition about how the theorem can be applied and about the
magnitude of r1, consider the following example.

Example 1. Suppose that there are 3 advertisers bidding on 2 slots. Let ĉj
i = ĉj

for all players i ∈ {1, 2, 3} and slots j ∈ {1, 2} where ĉ1 = 1 and ĉ2 = 0.5. Let
v1 = v2 = 3, and v3 = 1. Suppose that prior to exploration each advertiser bids
his value per click and pays the next highest bid. One can easily verify that this
configuration constitutes a SNE in which player 1 gets slot 1, player 2 gets slot
2, and player 3 gets no slot, and that in this equilibrium, player 1 is indifferent
between slots 1 and 2.

Let us fix α2 = 3/2. Now we can determine the setting of r1 that allows
us to swap neighboring ads (k = 1) without introducing incentives to deviate
during exploration. Applying the first constraint, we find the condition that
r1 ≤ 1/(1 + 3/2) = 2/5 must hold. By the second constraint, since Z1 = 11/4,
we must have r1 ≤ 4/11, and since Z2 = 7/4, we must have r1 ≤ 2/7. With our
setting of α2, J1,2 = 0 and J2,1 = −1/4 < 0. Consequently, the third constraint
on r1 has no effect. Combining the effects of these constraints, we see that we
can set the swapping probabilities as high as r1 = 2/7 and r2 = 3/7 without
giving any of the advertisers incentive to deviate during exploration.

Suppose we want to increase r1 to 2/7+ε and thereby learn a little bit faster.
Consider the incentives of the second bidder to switch to rank 3 (i.e., receive no
slot). The utility from being ranked third is 3/7 + 3ε/2 > 3/7, while the utility
from remaining in slot two is 3/7− ε/4 < 3/7. Consequently, for any ε > 0 (and,
thus, for any r1 > 2/7) the second bidder wants to deviate from his equilibrium
bid.

A similar analysis of constraints and incentives shows that we cannot increase
α2 without decreasing r1 or altering advertiser incentives. Similarly, any attempt
to decrease α2 can destabilize the equilibrium.

As the example suggests, the bounds in Theorem 1 are close to tight. In fact,
the bounds can be made tight simply by replacing qmax with the conditional
probability with which ad i would be selected if it were not in one of the top K
ranks.

Note that we would not expect a search engine to calculate a distinct set of
swapping probabilities using Theorem 1 for each individual auction in practice.
Indeed it may not be possible for the search engine to estimate advertiser values
accurately in all cases. We instead advocate using the theorem to find a single
fixed set of swapping probabilities such that advertisers will not wish to deviate
when k-swap is run for most or all typical auctions.



5 Learning Bounds

In this section, we bound the error of our estimated click-through rates for each
advertiser in each slot after Q queries have been made on the given keyword.
Let ni,s denote the number of times we have observed advertiser i in slot s, and
let zi,s,j be the indicator random variable which is 1 if ad i is clicked the jth
time it appears in slot s, and 0 otherwise. Finally, let πk

i,s be the probability that
ad i is displayed at slot s when we are swapping ads that are k slots apart, as
discussed in Section 4.

To simplify the presentation of results, we assume that the swapping dis-
tance k is drawn uniformly at random from {1, · · · ,K} for each query, but the
extension to arbitrary distributions is straight-forward.

Theorem 2. Suppose the k-swap algorithm has been run for Q queries with a
fixed set of broadcasted CTR estimates. Let ĉs

i be our new estimate of CTR,
defined as ĉs

i = (1/ni,s)
∑ni,s

j=1 zi,s,j for all advertisers i and slots s such that
ni,s ≥ 1. Then for any δ ∈ (0, 1), with probability 1 − δ, the following holds for
all i and s for which we have made at least one observation:

|ĉs
i − cs

i | ≤
√

ln(2KN/δ)

2ni,s

.

Furthermore, with probability 1 − δ, for all i and s, we have that ni,s ≥
max{(Q/K)

∑K
k=1 πk

i,s −
√

Q ln(2KN/δ)/2, 0}.

Thus as the number of queries Q grows, our estimates of the CTR vectors
for each advertiser grow arbitrarily close to the true CTR vectors.

6 Bounds on the Incentives of “Omniscient” Advertisers

If players have much more information about the actual click-through rates than
the search engine, it is unlikely that we can entirely eliminate incentives of
advertisers to change their bids during exploration. However, if we can bound
the error in our estimates of the click-through rates, we can also bound how
much advertisers can gain by deviating. When incentives to deviate are small,
we may reasonably expect advertisers to maintain their equilibrium bids, since
computing the new optimal bids may be costly. The search engine may further
dull benefits from deviation by charging a small fee to advertisers when they
change their bids.

From this point on, we assume that the error in search engine estimates of
the CTRs is uniformly bounded by ε; that is, |cs

i − ĉs
i | ≤ ε for every i and s.

Assume that rk
1 were set such that the bidders have no incentive to change

their bids if they use ĉs
i as their CTR estimates. We now establish how much

incentive they have to deviate if they know their actual CTR cs
i , that is, c̃s

i = cs
i ;

we call such advertisers “omniscient”.



Theorem 3. The most that any omniscient advertiser can gain by deviating in
expectation per impression is max1≤i≤K 2ε(vi − pK

i ).

This bound has the intuitive property that as our CTR estimates improve, the
bound on incentives to deviate from equilibrium bids improves as well.9 It is also
intuitive, however, that incentives diminish if the exploration probabilities fall.
This motivates the following alternate bound which shows that we can make
the incentives to deviate arbitrarily small even for omniscient advertisers by
appropriately setting rk

1 .

Theorem 4. The most that any omniscient advertiser can gain by deviating in
expectation per impression is

max
1≤i,j,k≤K

{

rk
1

(

αi(ĉ
i
i − ĉi+k

i ) + αj−k(ĉj−k
i − ĉj

i ) + 2ε(αi + αj−k)
)

(

vi − pK
i

)

}

.

7 Bounds on Revenue Loss Due to Exploration

We now assume that the advertisers play according to the symmetric Nash equi-
librium that was played prior to exploration and, as in the previous section,
assume that the errors of the search engine’s estimates of CTRs are uniformly
bounded by ε with high probability. Given these assumptions, the theorem that
follows bounds the loss in revenue due entirely to exploration.

Theorem 5. The maximum expected loss to the search engine revenue per im-
pression due to exploration is bounded by

max
1≤k≤K

{

rk
1

K
∑

i=2

pi
i

(

αi(ĉ
i
i − ĉi+k

i )− αi−k(ĉi−k
i − ĉi

i) + 2ε
)

}

.

8 Special Cases

In this section we study the problem of exploration while maintaining a pre-
exploration symmetric Nash equilibrium in two special cases. In both cases, it
is only necessary to swap adjacent pairs of ads in order to learn reasonable
estimates of advertiser CTRs.

9 Note that given rk

1 the actual payoffs to deviation are not affected as we learn unless
we also publicize the learned information.



8.1 Factorable Click-Through Rates

The first special case we consider is the commonly studied setting where cs
i =

eics; that is, CTRs are factored into a product of advertiser relevance and slot-
specific factors. Since there are far more data for estimating cs than ei, we assume
cs is known and ei is to be learned for all advertisers. Under these assumptions,
using k-swap may seem strange; after all, we can learn ei for all advertisers
i ≤ K just as well by leaving them in their current slots! The only problem to
be addressed then is to learn CTRs of losing bidders. Consequently, if we truly
believe that CTRs are factorable, we need only do adjacent-ad swapping (k = 1)
and can set r1 = · · · = rK−1 = 0 and only allow rK > 0. In this case, we need
not worry about deviations by advertisers in slots 1, . . . ,K − 1 to alternative
slots 1, . . . ,K − 1, since the effective CTRs for these deviations are unchanged.
Additionally, no advertiser wants to deviate to slot K, since the CTR in this
slot is strictly lower than it was before exploration, and no advertiser ranked
K + 1, . . . , N wants a higher slot, since their effective CTRs increase. Thus we
need only consider the incentives of the advertiser in slot K. It is not difficult to
verify that the condition under which exploration does not affect advertiser K’s
incentives is

rK ≤ min

{

min
1≤j≤K−1

cK

(

vK − pK
K

)

− cj

(

vK − pj
K

)

cK(vK − pK
K)

,
vK − pK

K

vK(qmax + 1)− pK
K

}

,

and we can find an rK > 0 when cK(vK − pK
K) > cj(vK − pj

K) for j < K.
There is, however, another possible scenario in which exploration might be

useful under the factorable CTR assumption. Suppose that we initially posit the
factorable CTR model, but want to verify whether this is really the case. To
do so, we can use adjacent-ad swapping to form multiple estimates of ei using
data from multiple adjacent slots. By comparing these estimates, we can vet our
current model while also improving our CTR estimates for losing bidders.

Since CTR is factorable, our analysis need only consider the effective slot-
specific CTRs, which we assume are known, c′s = (1− rs−1 − rs)cs + rs−1cs−1 +

rscs+1. Set αi =
∏i

j=2[(cj−1 − cj)/(cj − cj+1)]. By setting the swapping proba-
bilities in this manner, the effective CTRs in slots 2, · · · ,K − 1 are unchanged
when exploration is added. We can now simplify the bounds and characteriza-
tion of Theorem 1. In particular, the precondition of the theorem and the second
bound on r1 need only to hold for i = 1. Furthermore, it can be shown that in
the factorable setting, the necessary precondition (v1 − p1

1)c1 > (v1 − pj
1)cj al-

ways holds in the minimum revenue SNE [10, 8, 2] for generic valuations and
relevances. Formal statements and proofs of these results are in the appendix.

As in the general setting, it is possible to derive learning bounds that show
that as the number of observed queries grow, our estimates of the advertiser
CTR vectors grow arbitrarily close to the true CTRs with high probability. Here
our estimates of CTR are simply ĉs

i = (cs/csi
ni,si

)
∑ni,si

j=1 zi,si,j for all i and s,
where si = arg maxs cs

√
ni,s. We once again defer the theorem statement and

proof to the appendix.



8.2 Click-through Rates with Constant Slot Ratios

In this section, we consider adjacent-ad swapping (k = 1) for the case in which
for each player i, the click-through rates have constant ratios for adjacent slots.
That is, for all i and all 1 ≤ s ≤ K−1, we assume that cs+1

i /cs
i = γi ≤ 1 where γi

is advertiser-dependent and unknown. Let γ̂i denote the search engine estimate
of γi and suppose as before that advertisers use these as their own estimates.
Let αj = 1 for every j ∈ {2, . . . ,K − 1}, so r1 = r2 = · · · = rK−1. Additionally,
let αK = min{(γ̂i − 1)2/qmax, 1}.

As in the previous section, we can considerably simplify the bounds and
characterization of Theorem 1 in this special case. In particular, the first and
second bounds on r1 must hold, but the third bound on r1 and the precondition
need only to hold for i = 1 and i = K.

We can also prove analogous learning bounds in this setting that show that
it is only necessary to explore via adjacent-ad swapping in order to obtain CTR
estimates for all advertisers at all slots. This can be accomplished by estimating
γi for each i as

γ̂i =
(1/ni,si+1)

∑ni,si+1

j=1 zi,si+1,j

(1/ni,si
)
∑ni,si

j=1 zi,si,j

for a chosen slot si at which there is a sufficient amount of data available. The
CTR at each slot is then estimated using γ̂i and the estimate of the CTR at the
designated slot si.

Formal theorems describing the conditions on r1 necessary to maintain equi-
librium in this setting and the corresponding learning bounds can be found in
the appendix along with their proofs.

9 Conclusion

We have introduced an exploration scheme which allows search engines to learn
click-through rates for advertisements. We showed how, when possible, to set
the exploration parameters in order to eliminate the incentives for advertisers
to deviate from a pre-exploration symmetric Nash equilibrium. In situations
in which we cannot entirely eliminate incentives to change bids, we can make
returns to changing bids arbitrarily small. Particularly, we can make these small
enough to ensure that bid manipulation is hardly worth advertisers’ time. Finally,
we derived a bound on worst-case expected per-impression revenue loss due to
exploration. Since this loss is zero in the limit of no exploration, we can set
exploration parameters in order to make it arbitrarily small, while still ensuring
that we eventually learn click-through rates.
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Appendix

A Proofs

A.1 Proof of Existence of SNE

In the existence proof of SNE by Börgers et al. [1], define the mapping v′i = wivi

and b′i = wibi for every player i. Then, if v′i are used as valuations and b′i as
corresponding bids, Walrasian equilibrium prices p′s of each slot exist in our
setting by the same argument. Since for each advertiser i, vi is independent of
slot s and c̃s

i > c̃s+1
i , p′1 ≥ p′2 ≥ · · · ≥ p′K , also by the same argument as in

[1]. Now, index each bidder by the slot they won and define the bids of players
2 ≤ i ≤ K to be the price paid for slot i − 1: b′i = p′i−1. Define the bids b′i of
advertisers who do not receive a slot to be p′K . The first bidder can bid anything
above p′1. By the argument presented in [1], this configuration constitutes a
symmetric Nash equilibrium.

The inequalities c̃i
i(v

′
i − p′i) ≥ c̃s

i (v
′
i − p′s) characterize SNE in the above

construction. Dividing both sides by wi does not change the direction of in-
equality. Consequently, if we define ps

i = ps/wi, we recover the inequalities
c̃i
i(vi − pi

i) ≥ c̃s
i (vi − ps

i ) that characterize SNE in our setting.



A.2 Proof of Theorem 1

In order to prove Theorem 1, we must make sure that when the conditions stated
in the theorem hold, no advertiser is happier changing his bid and moving to
a different position in the ranking. We break this proof into multiple parts,
summarized by the following series of lemmas. Combining the pieces yields a
set of conditions that show that no advertiser has incentive to deviate when
exploration is added.

The first condition,

r1 ≤ min
2≤i≤K

1

αi + αi−k

,

ensures that ri + ri−k ≤ 1 for all i. The other two conditions are the subject of
Lemmas 1 and 2 below.

Incentives of 1, · · · , K to Switch to Alternate Ranks in 1, · · · , K We
first verify that players i ∈ {1, · · · ,K} do not want to switch to alternate ranks
j ∈ {1, · · · ,K}. The following lemma gives conditions to guarantee this. Recall
that we define c0

1 = 0 and α0 = 0.

Lemma 1. Assume that the condition

(vi − pi
i)ĉ

i
i > (vi − pj

i )ĉ
j
i ,

holds for every i, j ∈ {1, · · · ,K} in equilibrium. Suppose that prior to exploration
advertisers’ bids are in a symmetric Nash equilibrium. Then there is r1 > 0 such
that players in slots 1, · · · ,K do not wish to switch to other slots in 1, · · · ,K as
long as

r1 ≤ min
1≤i,j≤K;Ji,j>0

1

Ji,j

(

(vi − pi
i)ĉ

i
i − (vi − pj

i )ĉ
j
i

)

where Ji,j is as defined in Equation 1.

Proof. To ensure that players in slots 1, · · · ,K do not have incentive to switch
to other slots within this range, we need the condition

(

(1− ri−k − ri)ĉ
i
i + ri−k ĉi−k

i + riĉ
i+k
i

)

(vi − pi
i)

≥
(

(1− rj−k − rj)ĉ
j
i + rj−k ĉj−k

i + rj ĉ
j+k
i

)

(vi − pj
i )

to be satisfied for any i, j ∈ {1, · · · ,K}. Using the definition ri = αir1 and
rearranging terms, we obtain the equivalent condition

r1Ji,j ≤ (vi − pi
i)ĉ

i
i − (vi − pj

i )ĉ
j
i . (3)

Under our assumption, the right hand side of Equation 3 is always strictly posi-
tive. When Ji,j ≤ 0, any r1 ∈ [0, 1] satisfies the condition we need. When Ji,j > 0,
we need to guarantee

r1 ≤
(vi − pi

i)ĉ
i
i − (vi − pj

i )ĉ
j
i

Ji,j

.



Therefore, we must have for all i, j ∈ {1, · · · ,K} such that Ji,j > 0

r1 ≤
1

Ji,j

(

(vi − pi
i)ĉ

i
i − (vi − pj

i )ĉ
j
i

)

.

Incentive of Players 1, . . . , K to Move to Ranks K +1, . . . , N The pre-
vious lemma showed that the K highest ranked advertisers do not have incentive
to deviate to another rank between 1 and K when exploration is added under
certain conditions. We now consider the conditions that guarantee that these
advertisers do not want to move to a rank greater than K.

Lemma 2. If the players are in a symmetric Nash equilibrium with vi > pi
i

whenever Zi > 0 before exploration and if

r1 ≤ min
1≤i≤K;Zi>0

1

Zi

(

ĉi
i(vi − pi

i)
)

where Zi is defined as in Equation 2, then the K highest ranking advertisers have
no incentive to switch to any slot below K for generic valuations and relevances.
Furthermore, it is always possible to set r1 in such a way such that the above
holds and r1 > 0.

Proof. We show that any player i ∈ {1, · · · ,K} has no incentive to deviate to
any slot j ∈ {K +1, · · · , N}. For any j ∈ {K +1, · · · , N}, in order to guarantee
that player i does not want to switch to slot j, the following condition must
hold:

(

(1− ri−k − ri)ĉ
i
i + ri−k ĉi−k

i + riĉ
i+k
i

)

(vi − pi
i) ≥ rKqj ĉ

K−k+1
i vi.

As we require that this condition hold simultaneously for all j, it becomes equiv-
alent to

r1Zi ≤ ĉi
i(vi − pi

i) (4)

Since vi − pi
i > 0, the right hand side of Equation 4 is strictly positive. When

Zi ≤ 0, the constraint is satisfied trivially. Thus we need only that when Zi > 0,

r1 ≤
1

Zi

(

ĉi
i(vi − pi

i)
)

Incentives of Players K + 1, . . . , N to Move to Slots 1, . . . , K

Lemma 3. No advertiser in slots K + 1, · · · , N prefers to deviate and move to
any slot in 1, · · · ,K when exploration is added.

Proof. Since the set of advertisers K + 1, · · · , N received no clicks in the pre-
exploration symmetric Nash equilibrium, we know that it must be the case that
for all i and j such that K + 1 ≤ i ≤ N and 1 ≤ j ≤ K,

vi − pj
i ≤ 0.



In other words, these advertisers have a value per click that is lower than the
equilibrium price per click of any slot between 1 and K. When exploration is
added, the CTRs of these slots might change, but the price is still higher than
these advertisers’ values. Thus the advertisers still are not interested in these
slots when exploration is added.

Note that we have not addressed the incentives for players K + 1, · · · , N to
deviate to other ranks K + 1 or higher. This case will depend on the way in
which the distribution qi is chosen. There are many possible choices for which
players K + 1, · · · , N will not have incentive to swap ranks among themselves.

A.3 Proof of Theorem 2

The proof of this theorem relies on several applications of a version of Hoeffding’s
inequality which is stated here for completeness.

Lemma 4. (Hoeffding’s Inequality) Let x1, · · · , xn be independent random vari-
ables bounded in the range [0, 1]. Let x̂ = (1/n)

∑n
i=1 xi denote the mean of these

variables. Then for any δ ∈ (0, 1), with probability 1− δ,

|x̂− E[x̂]| ≤
√

ln(2/δ)

2n
.

We apply Hoeffding’s inequality first to bound the error of our estimation of
the click-through rate of ad i in slot s given that we have observed the ad in this
slot ni,s times. The following holds with probability 1− δ.

|ĉs
i − cs

i | ≤
√

ln(2/δ)

2ni,s

To prove the final piece of the theorem, we can apply Hoeffding’s inequality
once again to bound the deviation of ni,s from its expectation with probably
1− δ as follows.

|ni,s − E[ni,s]| ≤
√

Q ln(2/δ)/2

Dividing δ by NK and applying the union bound completes the proof.

A.4 Proof of Theorem 3

First, we need a useful lemma that bounds the effective CTRs.

Lemma 5. |c′s
i − ĉ

′s
i | ≤ ε.

Proof.
∣

∣

∣
c
′s
i − ĉ

′s
i

∣

∣

∣
=
∣

∣(1− rs−k − rs)(c
s
i − ĉs

i ) + rs−k(cs−k
i − ĉs−k

i ) + rs(c
s+k
i − ĉs+k

i )
∣

∣

≤ (1− rs−k − rs)δ + rs−kδ + rsδ = δ.



Now consider a player i deviating to slot (or rank) j:

c
′i
i (vi − pi

i) ≥ ĉ
′i
i (vi − pi

i)− ε(vi − pi
i)

≥ ĉ
′j
i (vi − pj

i )− ε(vi − pi
i) ≥ c

′j
i (vi − pj

i )− ε(vi − pi
i)− ε(vi − pj

i )

≥ c
′j
i (vi − pj

i )− 2ε(vi − pK
i ).

Recall that if j ≥ K + 1, cj
i = 0.

A.5 Proof of Theorem 4

Consider incentives for some player i for deviating to slot j and let

µ = r1(αi(ĉ
i
i − ĉi+k

i ) + αj−k(ĉj−k
i − ĉj

i ) + 2ε(αi + αj−k))(vi − pK
i ).

Then,

[(1− ri−k − ri)c
i
i + ri−kci−k

i + ric
i+k
i ](vi − pi

i) + µ

≥ [(1− ri−k − ri)c
i
i + ri−kci−k

i + ric
i+k
i ](vi − pi

i)+

ri(c
i
i − ci+k

i )(vi − pK
i ) + rj−k(cj−k

i − cj
i )(vi − pK

i )

≥ [(1− ri−k − ri)c
i
i(vi − pi

i) + ri−kci−k
i (vi − pi

i)+

ric
i
i(vi − pi

i) + rj−k(cj−k
i − cj

i )(vi − pj
i )

= ci
i(vi − pi

i) + ri−k(ci−k
i − ci

i)(vi − pi
i) + rj−k(cj−k

i − cj
i )(vi − pj

i )

≥ cj
i (vi − pj

i ) + rj−k(cj−k
i − cj

i )(vi − pj
i )

≥ cj
i (vi − pj

i ) + rj−k(cj−k
i − cj

i )(vi − pj
i )− rj(c

j
i − cj+k

i )(vi − pj
i )

= [(1− rj−k − rj)c
j
i + rj−kcj−k

i + rjc
j+k
i ](vi − pj

i ),

where the inequalities follow from the assumption that ci
i(vi − pi

i) ≥ cj
i (vi − pj

i )
and the fact that ps

i ≥ pK
i for any slot s.

A.6 Proof of Theorem 5

∆Revenue =
K
∑

i=1

ci
ip

i
i −

K
∑

i=1

c
′i
i pi

i =
K
∑

i=1

pi
i(c

i
i − c

′i
i )

=

K
∑

i=1

pi
i(ri(ĉ

i
i − ĉi+k

i )− ri−k(ĉi−k
i − ĉi

i) + 2ε)

= r1

K
∑

i=1

pi
i

(

αi(ĉ
i
i − ĉi+k

i )− αi−k(ĉi−k
i − ĉi

i) + 2ε
)

.



A.7 Theorem Statement and Proof for the Factorable Case

Theorem 6 below is mentioned briefly in Section 8.1. For completeness, we state
it formally here and provide its proof. Before diving into the proof of the main
theorem, note that by defining αi to be

αi =

i
∏

j=2

(

cj−1 − cj

cj − cj+1

)

,

we obtain the following recursive expression for ri:

ri = ri−1

(

ci−1 − ci

ci − ck+1

)

. (5)

for all i ∈ {2, · · · ,K}. This setting of probabilities is convenient because the
CTRs of an ad in slots 2, · · · ,K do not change when exploration is added if bids
do not change, as shown in the following useful lemma .

Lemma 6. When ri are computed recursively by (5), then c′i = ci for all i ∈
{2, · · · ,K}.
Proof. For any i ∈ {2, · · · ,K},

c′i = (1− ri−1 − ri)ci + ri−1ci−1 + rici+1

= ci + ri−1(ci−1 − ci)− ri(ci − ci+1)

= ci + ri−1(ci−1 − ci)− ri−1

(

ci−1 − ci

ci − ci+1

)

(ci − ci+1) = ci.

Now we are ready to state and prove the main theorem.

Theorem 6. Consider the setting in which CTRs are factorable into the product
of advertiser relevance and a slot-specific CTR factor. Let ri be defined as in
Equation 5 for all i ∈ {2, · · · ,K}. Assume that advertiser 1 strictly prefers
his current slot to all others in equilibrium, i.e. the condition

(

v1 − p1
1

)

c1 >
(

v1 − pj
1

)

cj holds for all 2 ≤ j ≤ K whenever J1,j > 0. Then for generic

valuations and relevances there exists an r1 > 0 such that no advertiser has an
incentive to deviate from the pre-exploration SNE bids once exploration is added.
Any r1 for which the following conditions hold is sufficient:

r1 ≤ min

{

min
2≤i≤K

1

αi + αi−1
, min

1≤i≤K;Zi>0

1

Zi

(vi − pi
i)c

i
i

min
2≤j≤K;J1,j>0

1

J1,j

((v1 − p1
1)c1 − (v1 − pj

1)cj).

}

where

J1,j =
(

v1 − p1
1

)

(c1 − c2) +
(

v1 − pj
1

)

(αj−1(cj−1 − cj)− αj(cj − cj+1))

and Zi is defined according to Equation 2.



First, we demonstrate a simple and intuitive result that wivi > wi+1bi+1 for
1 ≤ i ≤ K for generic valuations and relevances.

Lemma 7. In a symmetric Nash equilibrium with wivi ≥ wi+1vi+1, wivi >
wi+1bi+1 for 1 ≤ i ≤ K for generic valuations and relevances.

Proof. Suppose wivi ≤ wi+1bi+1 for some i ∈ {1, 2, · · · ,K}.
For j > 1, the following upper bound on wjbj holds in a symmetric Nash

equilibrium (a simple extension of Varian [10, 8]):

wjbj ≤ wj−1vj−1(1− βj) + wj+1bj+1βj (6)

where βj = cj/cj−1 < 1. From the above bound with j = i + 1 and the assump-
tion that wivi ≤ wi+1bi+1, it follows that wivi ≤ wivi(1− βi+1) + wi+2bi+2βi+1

and, therefore wivi ≤ wi+2bi+2.

Applying the bound in Equation 6 again with j = i + 2, we see that
wi+2bi+2 ≤ wi+1vi+1(1 − βi+2) + wi+3bi+3βi+2. When CTRs are factorable,
wivi ≥ wi+1vi+1 [1, 3, 10]. Since for generic values and relevances, wi+1vi+1 <
wivi, we have wiviβi+2 < wi+3bi+3βi+2 and, consequently, wivi < wi+3bi+3 ≤
wi+1bi+1. Thus, wivi < wi+1bi+1 and vi − wi+1bi+1

wi
< 0. But this is a contradic-

tion, since player i would then want to switch to slot K +1, whereas we assumed
that all bidders were in a Nash equilibrium.

Thus, vi > pi
i for all players i when CTRs are factorable.

Given Lemma 6, note that if none of the bidders in slots 2, · · · , N wanted
to move up to slot 1 in equilibrium before exploration, they have even less
incentive to do so once exploration is added since the effective CTR for slot 1 is
now lower and the effective CTR of their own slots is the same by our definition
of αi. Furthermore, none of the bidders in slots 2, · · · , N want to to switch to
alternate slots in 2, · · · ,K since the effective CTRs are now the same for all of
these slots and do not depend on the bidder’s identity due to the factorization
assumption. Consequently, we need only examine whether or not the top bidder
wants to move down, or whether any bidder might like to move into a slot below
K. The analysis of these cases is directly analogous to the analysis in the proof of
Theorem 1, and the sufficient conditions on r1 are derived in the same manner.

A.8 Proof of Player 1’s Strict Preference at SNE

Below is a formal statement and proof of the theorem mentioned in Section 8.1.

Theorem 7. Suppose that the players are playing a minimum symmetric Nash
equilibrium. Then for generic valuations and relevances (v1−p1

1)c1 > (v1−pj
1)cj .



c1w2b2 − cjwj+1bj+1 =

K
∑

t=1

(ct − ct+1)wt+1vt+1 −
K
∑

t=j

(ct − ct+1)wt+1vt+1

=

j−1
∑

t=1

(ct − ct+1)wt+1vt+1

≤ w2v2

j−1
∑

t=1

(ct − ct+1) = w2v2(c1 − cj).

For generic valuations and relevances, w2v2(c1 − cs) < w1v1(c1 − cs) and, conse-
quently, c1w2b2−cjwj+1bj+1 < w1v1c1−w1v1cj for every 2 ≤ j ≤ K. Rewriting,
we get c1(w1v1 −w2b2) > cj(w1v1 −wj+1bj+1) and we recover the desired strict
inequality.

A.9 Learning Bounds in the Factorable Case

The proof of the following theorem, which is mentioned in Section 8.1, is given
below. As before, let ni,s denote the number of times we have observed advertiser
i in slot s at the current fixed CTR estimates, and let zi,s,j be a random variable
indicating whether or not the ad i was clicked on the jth time it appeared in
slot s.

Theorem 8. Suppose that CTRs can be factored into advertiser-dependent and
slot-dependent components. In other words, for all i and s, cs

i = eics where cs is
known. Suppose we have observed ni,s instances of ad i at slot s with a fixed set
of broadcasted CTR estimates. Let ĉs

i be our new estimate of CTR, defined as:

ĉs
i =

cs

csi
ni,si

ni,si
∑

j=1

zi,si,j

for all advertisers i and slots s; let si = arg maxs cs
√

ni,s. Then for any δ ∈
(0, 1), with probability 1− δ, the following holds for all i and s:

|ĉs
i − cs

i | ≤
cs

csi

√

ln(2N/δ)

2ni,si

Now, for each advertiser i, we base our estimate of click-through rate on data
from the slot si maximizing cs

√
ns. Let

ĉsi

i =
1

ni,si

ni,si
∑

j=1

zi,si,j



be the estimate of click-through rate in this slot. By Hoeffding’s inequality, for
any δ′ ∈ (0, 1), with probability 1− δ′,

|ĉsi

i − csi

i | ≤
√

ln(2/δ′)

2ni,si

.

Since for any s, cs
i = cs−i

i (cs/csi
) and ĉs

i = ĉs−i
i (cs/csi

), we thus have for all s

|ĉs
i − cs

i | ≤
cs

csi

√

ln(2/δ′)

2ni,si

.

We want this claim to hold for all N advertisers. Setting δ′ = δ/N and
applying the union bound completes the proof.

A.10 Theorem Statement and Proof for Constant Slot Ratios

The following Theorem is mentioned in Section 8.2. For completeness, the the-
orem and proof are formally stated here.

Theorem 9. Suppose that CTRs are of the form cs
i = ei(γ̂i)

s−1 for all i and
s. Assume that advertisers i = 1, · · · ,K strictly prefer their current slots to
all others in equilibrium, i.e. the following condition holds for i = 1,K and all
j ∈ {1, · · · ,K}, j 6= i whenever Ji,j > 0:

(vi − pi
i)ĉ

i
i > (vi − pj

i )ĉ
j
i .

Furthermore, assume that for all i such that Zi > 0, vi − pi
i > 0. Then for

generic valuations and relevances there exists r1 > 0 such that no advertiser
has an incentive to deviate from the pre-exploration symmetric Nash equilibrium
bids once exploration is added. Any r1 satisfying the following set of conditions
is sufficient:

r1 ≤ min

{

1

2
, min

i=1,K;Zi>0

ĉ1
i

Zi

(vi − pi
i)(γ̂i)

i−1,

min
i=1,K;1≤j≤K;Ji,j>0

ĉ1
i

Ji,j

(

(vi − pi
i)(γ̂i)

i−1 − (vi − pj
i )(γ̂i)

j−1
)

}

The incentives for player 1 and players K,K + 1, · · · , N can be analyzed
exactly as in the proof of Theorem 1, and the conditions on r1 follow from
this analysis as before. Thus here we focus only on the incentives of players
2, · · · ,K − 1.



Incentives of Players 2, . . . , K − 1 to Move to Slots 1, . . . , K

Lemma 8. In the constant ratio setting, when ri = r1 for i ∈ 2, · · · ,K, players
2, . . . ,K − 1 do not have incentive to deviate to other slots 1, . . . ,K during
adjacent-ad swapping exploration for any r1.

Proof. To ensure that players in slots 2, · · · ,K − 1 do not have incentive to
switch to other slots within this range, we need the condition

(

(1− ri−1 − ri)ĉ
i
i + ri−1ĉ

i−1
i + riĉ

i+1
i

)

(vi − pi
i)

≥
(

(1− rj−1 − rj)ĉ
j
i + rj−1ĉ

j−1
i + rj ĉ

j+1
i

)

(vi − pj
i )

to be satisfied for any i, j ∈ {1, · · · ,K}. Setting ri = r1 for all i and plugging in
ĉs−1
i = ĉs

i /γ̂i and ĉs+1
i = ĉs

i γ̂i, we get

(1− rs−1 − rs)ĉ
s
i + rs−1ĉ

s−1
i + rsĉ

s+1
i = ĉs

i +

(

γ̂i − 2 +
1

γ̂i

)

r1ĉ
s
i

=

(

1 +
r1(γ̂i − 1)2

γ̂i

)

ĉs
i

for every player i and for all s = 2, . . . ,K − 1. Thus, the condition that needs to
be satisfied is

ĉi
i

(

1 +
r1(γ̂i − 1)2

γ̂i

)

(vi − pi
i) ≥ ĉj

i

(

1 +
r1(γ̂i − 1)2

γ̂i

)

(vi − pj
i )

which is equivalent to the symmetric equilibrium condition before exploration

and thus holds by assumption. For deviation to slot 1, note that (1+ r1(γ̂i−1)2

γ̂i
) ≥

1 and thus ĉ
′i
i ≥ ĉi

i for every i = 2, . . . ,K − 1, whereas ĉ
′1
1 ≤ ĉ1

1. Consequently,
if deviations to 1 were unprofitable prior to exploration, they are certainly still
unprofitable with exploration. Finally, for deviations to slot K, note that the
effective CTR for slot K is ĉK

i (1+ r1(γ̂i − 2)) ≤ ĉK
i (1+ r1(γ̂i +1/γ̂i − 2)). Thus,

ĉi
i

(

1 +
r1(γ̂i − 1)2

γ̂i

)

(vi − pi
i) ≥ ĉK

i

(

1 +
r1(γ̂i − 1)2

γ̂i

)

(vi − pj
i )

≥ ĉK
i (1 + r1(γ̂i − 2)) (vi − pj

i )

Incentives of Players 2, . . . , K − 1 to Move to Ranks K + 1, . . . , N

Lemma 9. In the constant ratio setting, when ri = r1 for i ∈ 2, · · · ,K, players
in slots 2, . . . ,K − 1 have no incentive to move to ranks K + 1, . . . , N during
adjacent-ad swapping exploration for any r1.

Proof. Since αK = min{ (γ̂i−1)2

qmax
, 1}, we have that αKqmax ≤ (γ̂i − 1)2 or

(γ̂i−1)2

γ̂i
≥ αKqmax( 1

γ̂i
)K−i.



In order to eliminate incentives to deviate to slots K + 1, . . . , N , we need to
satisfy

(

1 +
r1(γ̂i − 1)2

γ̂i

)

(vi − pi
i) ≥ r1αKqmax(

1

γ̂i

)K−ivi,

or, alternatively,

(vi − pi
i) ≥ r1

(

vi

(

αKqmax

(

1

γ̂i

)K−i

− (γ̂i − 1)2

γ̂i

)

− pi
i(γ̂i − 1)2

γ̂i

)

.

But since (γ̂i − 1)2/γ̂i ≥ αKqmax(1/γ̂i)
K−i, we know that αKqmax(1/γ̂i)

K−i −
(γ̂i − 1)2/γ̂i ≤ 0, and the right-hand side is at most 0. Since the left-hand side
is at least 0 (otherwise our assumption of equilibrium prior to exploration does
not hold), any r1 satisfies the condition.

A.11 Learning Bounds for Constant Slot Ratios

The following theorem giving learning bounds for the constant slot ratio setting
is mentioned in Section 8.2. Again, let ni,s denote the number of times we have
observed advertiser i in slot s at the current fixed CTR estimates, and let zi,s,j

be a random variable indicating whether or not the ad i was clicked on the jth
time it appeared in slot s.

Theorem 10. Suppose that CTRs are of the form cs
i = ei(γi)

s−1 for all i and
s, where γi is unknown and ei = c1

i . Suppose also that the adjacent-ad swapping
algorithm has been running for Q queries with a fixed set of broadcasted CTR
estimates. Suppose we have observed ni,s instances of ad i at slot s with a fixed
set of broadcasted CTR estimates. Let ĉs

i be our new estimate of CTR, defined
as:

ĉs
i =

(γ̂i)
s−si

ni,si

ni,si
∑

j=1

zi,si,j

where

γ̂i =
(1/ni,si+1)

∑ni,si+1

j=1 zi,si+1,j

(1/ni,si
)
∑ni,si

j=1 zi,si,j

Then for any δ ∈ (0, 1), with probability 1− δ, the following bound holds for all
advertisers i and slots s:

|ĉs
i − cs

i | ≤
(

s(s + 1) + s2
i + 1

)

√

ln(4N/δ)

ni

+
(s(s + 1) + s2

i ) ln(4N/δ)

ĉsi

i ni

.

where ni = min{ni,si
, ni,si+1}.

The proof is divided into a sequence of lemmas. The first one, stated below,
follows from a direct application of Hoeffding’s inequality and the union bound.
Recall that si is a chosen slot to explore for ad i.



Lemma 10. For each i, with probability at least 1− δ, we have

|ĉsi

i − csi

i | ≤ ∆i,
∣

∣ĉsi+1
i − csi+1

i

∣

∣ ≤ ∆i, (7)

where

∆i = max







√

ln 4
δ

2ni,si

,

√

ln 4
δ

2ni,si+1







.

Lemma 11. Assuming Equation 7 holds. Then for each i we have

|γ̂s
i − γs

i | ≤
s(s + 1)∆i

ĉsi

i

.

Proof. First we can see that for any i,

|γ̂i − γi| =
∣

∣

∣

∣

ĉsi+1
i

ĉsi

i

− csi+1
i

csi

i

∣

∣

∣

∣

=

∣

∣ĉsi+1
i csi

i − ĉsi

i csi+1
i

∣

∣

ĉsi

i csi

i

=

∣

∣(ĉsi+1
i − csi+1

i )csi

i − (ĉsi

i − csi

i )csi+1
i

∣

∣

ĉsi

i csi

i

≤
∣

∣ĉsi+1
i − csi+1

i

∣

∣ csi

i + |ĉsi

i − csi

i | csi+1
i

ĉsi

i csi

i

≤ ∆i(c
si

i + csi+1
i )

ĉsi

i csi

i

≤ 2∆i

ĉsi

i

.

Now, by Taylor’s theorem, we have

(γ̂i)
s = (γi)

s + s(γ̂i − γi)
(

(γ̂i)
s−1 − (γi)

s−1
)

+
1

2
s(s− 1)(γ̂i − γi)

2(γ̃)s−2,

for some γ̃ between γi and γ̂i. Since
∣

∣(γ̂i)
s−1 − (γi)

s−1
∣

∣ ≤ 1 and 0 ≤ γi, γ̂i, γ̃ ≤
1,10 we have

|(γ̂i)
s − (γi)

s| =
∣

∣

∣

∣

s(γ̂i − γi)
(

(γ̂i)
s−1 − (γi)

s−1
)

+
1

2
s(s− 1)(γ̂i − γi)

2(γ̃)s−2

∣

∣

∣

∣

≤ |γ̂i − γi|
(

s +
s(s− 1)

2

)

≤ s(s + 1) |γ̂i − γi|
2

≤ s(s + 1)∆i

ĉsi

i

.

With these lemmas, we can prove Theorem 10. For each i and s,

|ĉs
i − cs

i | =
∣

∣(γ̂i)
s−si ĉsi

i − (γi)
s−sicsi

i

∣

∣

=
∣

∣

(

(γ̂i)
s−si − (γi)

s−si
)

ĉsi

i + (γi)
s−si (ĉsi

i − csi

i )
∣

∣

≤
∣

∣(γ̂i)
s−si − (γi)

s−si
∣

∣ ĉsi

i + (γi)
s−si |ĉsi

i − csi

i |
≤
(

(s− si)
2 + (s− si)

)

∆i + (γi)
s−si∆i

≤ ∆i

(

s2 + s + s2
i + (γi)

s−si
)

.

10 If γ̂i happens to be greater than 1 (which is possible), then we can safely set it to 1.
This change can only make the estimate more accurate, since we know γi ∈ (0, 1].



By the previous lemma,

(γi)
s−si ≤ (γ̂i)

s−si +
((s− si)

2 + (s− si))∆i

ĉsi

i

≤ (γ̂i)
s−si +

s2 + s + s2
i ∆i

ĉsi

i

,

and we obtain

|ĉs
i − cs

i | ≤ ∆i

(

s2 + s + s2
i + (γ̂i)

s−si +
(s2 + s + s2

i )∆i

ĉsi

i

)

.

A simple application of the union bound results in Theorem 10.


