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Abstract

Empirical risk minimization offers well-known learning grantees when training
and test data come from the same domain. In the real worldgthowe often
wish to adapt a classifier fromsourcedomain with a large amount of training
data to differentargetdomain with very little training data. In this work we give
uniform convergence bounds for algorithms that minimizemavex combination
of source and target empirical risk. The bounds explicitlgdel the inherent
trade-off between training on a large but inaccurate sodata set and a small but
accurate target training set. Our theory also gives restlien we have multiple
source domains, each of which may have a different numberstdimces, and we
exhibit cases in which minimizing a non-uniform combinatiaf source risks can
achieve much lower target error than standard empiricaiminimization.

1 Introduction

Domain adaptation addresses a common situation that aressapplying machine learning to di-
verse data. We have ample data drawn frasn@acedomain to train a model, but little or no training
data from theargetdomain where we wish to use the model [17, 3, 10, 5, 9]. Domdaptation
guestions arise in nearly every application of machineniegr In face recognition systems, training
images are obtained under one set of lighting or occlusionlitions while the recognizer will be
used under different conditions [14]. In speech recognjtaoustic models trained by one speaker
need to be used by another [12]. In natural language proagssart-of-speech taggers, parsers,
and document classifiers are trained on carefully annotat@uing sets, but applied to texts from
different genres or styles [7, 6].

While many domain-adaptation algorithms have been propdbede are only a few theoretical
studies of the problem [3, 10]. Those studies focus on the w&&re training data is drawn from a
source domain and test data is drawn from a different targetath. We generalize this approach
to the case where we have some labeled data from the targetimlémaddition to a large amount
of labeled source data. Our main result is a uniform convergeébound on the true target risk
of a model trained to minimize a convex combination of engpirisource and target risks. The
bound describes an intuitive tradeoff between the quanfithe source data and the accuracy of
the target data, and under relatively weak assumptions weaapute it from finite labeled and
unlabeled samples of the source and target distributiomsus# the task of sentiment classification
to demonstrate that our bound makes correct predictionstabodel error with respect to a distance
measure between source and target domains and the numbeinofg instances.

Finally, we extend our theory to the case in which we have iplalsources of training data, each

of which may be drawn according to a different distributiodanay contain a different number

of instances. Several authors have empirically studieceaiabcase of this in which eaghstance

is weighted separately in the loss function, and instandgh® are set to approximate the target
domain distribution [10, 5, 9, 11]. We give a uniform conwemge bound for algorithms that min-



imize a convex combination of multiple empirical sourcésignd we show that these algorithms
can outperform standard empirical risk minimization.

2 A Rigorous Model of Domain Adaptation

We formalize domain adaptation for binary classificatioricdi®ws. A domainis a pair consisting
of a distributionD on X’ and a labeling functiorf : X — [0, 1]. Initially we consider two domains,
asourcedomain(Dg, fs) and atargetdomain(Dr, fr).

A hypothesiss a functionh : X — {0,1}. The probability according the distributidns that a
hypothesish disagrees with a labeling functigh(which can also be a hypothesis) is defined as

es(h,f) = Ex~ps [ [h(x) = fX)]].

When we want to refer to thisk of a hypothesis, we use the shorthardh) = es(h, fs). We
write the empirical risk of a hypothesis on the source dorasiy (h). We use the parallel notation
er(h, f), er(h), andér(h) for the target domain.

We measure the distance between two distributbrand D’ using a hypothesis class-specific dis-
tance measure. Lét be a hypothesis class for instance spateand. Ay be the set of subsets
of X' that are the support of some hypothesig4n In other words, for every hypothesisc H,
{z:2 € X, h(x) =1} € Ay. We define the distance between two distributions as:

dy(D,D') =2 sup [Prp [A] - Prp/[4]] .

A€eAy

For our purposes, the distanég has an important advantage over more common means for com-
paring distributions such ak; distance or the KL divergence: we can compdig from finite
unlabeledsamples of the distributior®® andD’ when has finite VC dimension [4]. Furthermore,
we can compute a finite-sample approximatiordpby finding a classifieh € H that maximally
discriminates between (unlabeled) instances fi@andD’ [3].

For a hypothesis spagé, we define the symmetric difference hypothesis spdae as
HAH = {h(x) ® R (x): h,h € H} ,

whered is the XOR operator. Each hypothegis HAH labels as positive all points on which a
given pair of hypotheses iH disagree. We can then defing, a7 in the natural way as the set of
all setsA suchthatd = {z : © € X, h(x) # h/(x)} for someh, b’ € H. This allows us to define as
above a distancéy Ay that satisfies the following useful inequality for any hyipeges:, /' € H,
which is straight-forward to prove:

1
les(h,h') —er(h,h)| < idHAH(Ds,DT) .

We formalize the difference between labeling functions feasuring error relative to other hypothe-
ses in our class. Thideal hypothesisninimizes combined source and target risk:

h* = argmineg(h) + ep(h) .
heH

We denote the combined risk of the ideal hypothesid by s (h*) +er(h*) . The ideal hypothesis
explicitly embodies our notion of adaptability. When thedbéypothesis performs poorly, we
cannot expect to learn a good target classifier by minimismgrce errof. On the other hand, for
the kinds of tasks mentioned in Section 1, we expetd be small. If this is the case, we can
reasonably approximate target risk using source risk amdidtance betweeRs andD .

We illustrate the kind of result available in this settinglwihe following bound on the target risk

in terms of the source risk, the difference between labdlimgtions fs and fr, and the distance
between the distribution®s andD. This bound is essentially a restatement of the main theorem
of Ben-David et al. [3], with a small correction to the statarhof their theorem.

1This notion of domain is not the domain of a function. To avoid confusianwill always mean a specific
distribution and function pair when we say domain.

20f course it is still possible that the source data contains relevant infamebout the target function even
when the ideal hypothesis performs poorly — suppose, for examplefdlic) = 1 if and only if fr(z) =0
— but a classifier trained using source data will perform poorly on data the target domain in this case.



Theorem 1 LetH be a hypothesis space of VC-dimensibandi{s, Ur be unlabeled samples of
sizem’ each, drawn fromDg and Dr, respectively. Letl; a7 be the empirical distance aHs,
U7, induced by the symmetric difference hypothesis spach.pfdbability at leastl — § (over the
choice of the samples), for everye H,

2dlog(2m’) + log(%)

/

+A.

1.
er(h) < es(h) + §dHAH(uSaUT) + 4\/ m

The corrected proof of this result can be found Appendik Fhe main step in the proof is a variant
of the triangle inequality in which the sides of the triangdpresent errors between different decision
rules [3, 8]. The bound is relative ta When the combined error of the ideal hypothesis is large,
there is no classifier that performs well on both the sourcktarget domains, so we cannot hope
to find a good target hypothesis by training only on the sodmeain. On the other hand, for small
A (the most relevant case for domain adaptation), Theorenowssthat source error and unlabeled
‘HAH-distance are important quantities for computing targedrer

3 A Learning Bound Combining Source and Target Data

Theorem 1 shows how to relate source and target risk. We nogepd to give a learning bound for
empirical risk minimization using combined source andeatgpining data. In order to simplify the
presentation of the trade-offs that arise in this scenamcstate the bound in terms of VC dimension.
Similar, tighter bounds could be derived using more sojufsitdd measures of complexity such as
PAC-Bayes [15] or Rademacher complexity [2] in an analogoag

At train time a learner receives a sample= (Sr, Sg) of m instances, wher@p consists ofim
instances drawn independently fr@s- andSs consists of 1 — 3)m instances drawn independently
from Dg. The goal of a learner is to find a hypothesis that minimizegetarisker(h). Wheng
is small, as in domain adaptation, minimizing empiricagj&risk may not be the best choice. We
analyze learners that instead minimize a convex combimati@mpirical source and target risk:

éa(h) = aér(h) + (1 - a)és(h)

We denote as, (h) the corresponding weighted combination of true source argkt risks, mea-
sured with respect tg andDr.

We bound the target risk of a domain adaptation algorithrrifinimizesé,, (k). The proof of the
bound has two main components, which we state as lemmas.bElmst/ we bound the difference
between the target risk-(h) and weighted risk, (k). Then we bound the difference between the
true and empirical weighted risks (1) andé,, (h). The proofs of these lemmas, as well as the proof
of Theorem 2, are in Appendix B.

Lemmal Leth be a hypothesis in clagg. Then
1
ealt) —er(8)] < (1~ ) (3dmardDs. Pr) 44

The lemma shows that asapproaches 1, we rely increasingly on the target data, andisftance
between domains matters less and less. The proof uses ardieaihnique to that of Theorem 1.

Lemma2 Let H be a hypothesis space of VC-dimensibnlf a random labeled sample of size
m is generated by drawingm points fromDy and (1 — §)m points fromDg, and labeling them
according tofs and fr respectively, then with probability at least— ¢ (over the choice of the
samples), for every € H

. a?  (1—-a)? \/dlog(2m) —logd
|éa(h) —ea(h)] < F—'_ 5 5 )

3A longer version of this paper that includes the omitted appendix can el fanithe authors’ websites.



The proof is similar to standard uniform convergence prqd6 1], but it uses Hoeffding’s in-
equality in a different way because the bound on the rangkeofandom variables underlying the
inequality varies witln and5. The lemma shows that asmoves away front (where each instance
is weighted equally), our finite sample approximation 1¢k) becomes less reliable.

Theorem 2 Let’H be a hypothesis space of VC-dimensioheti/s andi/r be unlabeled samples
of sizem’ each, drawn fronDgs and D respectively. Lef be a labeled sample of size generated
by drawingsm points fromD; and (1 — 3)m points fromDg, labeling them according tgs and
fr, respectively. Ik € H is the empirical minimizer of, (k) on.S andh}. = minyey er(h) is the
target risk minimizer, then with probability at leakt- 6 (over the choice of the samples),

~ 2 _ 2 —
er(h) < ex(hy) +2 %ﬂll_aﬁ) \/dlog@;n% logd

2dlog(2m’) + log(3)

/

+ A

1
2(]. — a) §dHAH(uS,uT) + 4\/ m

Whena = 0 (that is, we ignore target data), the bound is identical & ¢l Theorem 1, but with an
empirical estimate for the source error. Similarly wheg- 1 (that is, we use only target data), the
bound is the standard learning bound using only target ddtéde optimala (which minimizes the
right hand side), the bound is always at least as tight asraittthese two settings. Finally note that
by choosing different values af, the bound allows us to effectively trade off the small antaafn
target data against the large amount of less relevant sdatae

We remark that when it is known that= 0, the dependence on in Theorem 2 can be improved;
this corresponds to the restricted or realizable setting.

4 Experimental Results

We evaluate our theory by comparing its predictions to eiwgliresults. While ideally Theorem 2
could be directly compared with test error, this is not grattbecause\ is unknown,dyax IS
computationally intractable [3], and the VC dimensi@ris too large to be a useful measure of
complexity. Instead, we develop a simple approximation leédrem 2 that we can compute from
unlabeled data. For many adaptation taskis small (there exists a classifier which is simultane-
ously good for both domains), so we ignore it here. We appnaied a7 by training a linear
classifier to discriminate between the two domains. We ugaralard hinge loss (normalized by
dividing by the number of instances) and apply the quartity (hinge loss in place of the actual
dnan. Let((Us,Ur) be our approximation tdy Az, computed from source and target unlabeled
data. For domains that can be perfectly separated with maf@i/s,lr) = 1. For domains that
are indistinguishable;(Us, Ur) =0. Finally we replace the VC dimension sample complexity term
with a tighter constant’. The resulting approximation to the bound of Theorem 2 is

() = \/ (G52 ) - s )

Our experimental results are for the task of sentimentifleaon. Sentiment classification systems
have recently gained popularity because of their poteagiplicability to a wide range of documents
in many genres, from congressional records to financial neBecause of the large number of
potential genres, sentiment classification is an ideal Bmedomain adaptation. We use the data
provided by Blitzer et al. [6], which consists of reviews afta types of products from Amazon.com:
apparel, books, DVDs, electronics, kitchen appliancesimuideo, and a catchall category “other”.
The task is binary classification: given a review, predicether it is positive (4 or 5 out of 5 stars)
or negative (1 or 2 stars). We chose the “apparel” domain asaoget domain, and all of the plots
on the right-hand side of Figure 1 are for this domain. We iobg&npirical curves for the error
as a function ofx by training a classifier using a weighted hinge loss. Supplosd¢arget domain
has weighte and there argm target training instances. Then we scale the loss of targgiirg
instance byy/3 and the loss of a source training instancg by- «)/(1 — ().



(a) vary distancems = 2500, (©) ¢(Us,Ur) = 0.715, (e) ¢(Us,Ur) = 0.715,
m7 = 1000 ms = 2500, varymr varyms, mr = 2500
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Figure 1: Comparing the bound with test error for sentiméassification. The:-axis of each figure
showsa. They-axis shows the value of the bound or test set error. (a)ata),(e) depict the bound,
(b), (d), and (f) the test error. Each curve in (a) and (b)espnts a different distance. Curves in
(c) and (d) represent different numbers of target instanCesves in (e) and (f) represent different
numbers of source instances.

Figure 1 shows a series of plots of equation 1 (on the top)ledupith corresponding plots of test
error (on the bottom) as a function aeffor different amounts of source and target data and difteren
distances between domains. In each pair of plots, a singeper (distance, number of target
instancesnr, or number of source instancess) is varied while the other two are held constant.
Note thats = mr/(mr +mg). The plots on the top part of Figure 1 are not meant to be naaleri
proxies for the true error (For the source domains “books! ‘aivd”, the distance alone is well
above%). Instead, they are scaled to illustrate that the boundnislai in shape to the true error
curve and that relative relationships are preserved. Bpsing a different in equation 1 for each
curve, one can achieve complete control over their mininmaorder to avoid this, we only use a
single value of”'=1600 for all 12 curves on the top part of Figure 1.

First note that in every pair of plots, the empirical errorvas have a roughly convex shape that
mimics the shape of the bounds. Furthermore the value which minimizes the bound also has
a low empirical error for each corresponding curve. Thiggasts that choosing to minimize the
bound of Theorem 2 and subsequently training a classifieirionmze the empirical erro¢,, (k) can
work well in practice, provided we have a reasonable measucemplexity* Figures 1a and 1b
show that more distant source domains result in highertamger. Figures 1c and 1d illustrate that
for more target data, we have not only lower error in genérdlalso a higher minimizing. Finally,
figures 1e and 1f depict the limitation of distant source détiéh enough target data, no matter how
much source data we include, we always prefer to use onlyatigettdata. This is reflected in our
bound as a phase transition in the value of the optim@overning the tradeoff between source and
target data). The phase transition occurs when= C/{(Us,Ur)?* (See Figure 2).

4Although Theorem 2 does not hold uniformly for allas stated, this is easily remedied via an application
of the union bound. The resulting bound will contain an additional logarittiagitor in the complexity term.
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Figure 2: An example of the phase transition in the optimalThe value ofa which minimizes
the bound is indicated by the intensity, where black mears1 (corresponding to ignoring source
and learning only from target data). We fix= 1600 and((Us, Ur) = 0.715, as in our sentiment
results. Ther-axis shows the number of source instances (log-scale)y¥hés shows the number
of target instances. A phase transition occurs at 3,13@tangtances. With more target instances
than this, it is more effective to ignore even an infinite amtaaf source data.

5 Learning from Multiple Sources

We now explore an extension of our theory to the case of nel8purce domains. We are pre-
sented with data fronV distinct sources. Each soursgis associated with an unknown underlying
distributionD; over input points and an unknown labeling functién From each sourcs;, we

are givenm; labeled training instances, and our goal is to use thesarioss to train a model to
perform well on a target domaifDr, fr), which may or may not be one of the sources. This setting
is motivated by several new domain adaptation algorithnis $1 11, 9] that weigh the loss from
training instances depending on how “far” they are from @irgdt domain. That is, each training
instance is its own source domain.

As in the previous sections, we will examine algorithms timimize convex combinations of
training errors over the labeled examples from each sousoath. As before, we lety; = 3;m

with Z;V:lﬂj = 1. Given a vectoix = (a1, -+, o) of domain weights with _; o; = 1, we
define the empiricatv-weighted error of functioh as

N N
talh) =Y ajey(h) = D" =L 3 [hx) - ()]
j=1 j=1""7

€S

The truea-weighted errore, (h) is defined analogously. LéP, be a mixture of theV source
distributions with mixing weights equal to the componentsao Finally, analogous to in the
single-source setting, we define the error of the multi-seigleal hypothesis for a weightingas

N
Yo = min{er(h) + €a(h)} = min{er(h) + ; ajej(h)} .

The following theorem gives a learning bound for empiriésk minimization using the empirical
a-weighted error.

Theorem 3 Suppose we are given; labeled instances from sourég for j = 1... N. For a fixed

vector of weightsy, let h = argming .4, € (h), and leth?. = argmin, c,, er(h). Then for any
d € (0,1), with probability at leasti — § (over the choice of samples from each source),

N 2

a:  |dlog2m —logd 1
Zf]\/u+2 Yo + =dnan(Da, Dr) | .
=1 ﬁj 27’77, 2

er(h) < ep(hh) +2




(a) Source. More girls than boys (b) Target. Separator from (c) Weighting sources to match
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Figure 3: A 1-dimensional example illustrating how nonfann mixture weighting can result in
optimal error. We observe one feature, which we use to prgdicder.(a) At train time we observe
more females than malef) Learning by uniformly weighting the training data causetouigarn a
suboptimal decision boundarfg) but by weighting the males more highly, we can match the targe
data and learn an optimal classifier.
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The full proof is in appendix C. Like the proof of Theorem Zsisplit into two parts. The first part
bounds the difference between theweighted error and the target error similar to lemma 1. The
second is a uniform convergence bounddg(h) similar to lemma 2.

Theorem 3 reduces to Theorem 2 when we have only two souncegfavhich is the target domain
(that is, we have some small number of target instancesy rttdre general, though, because by
manipulatinga. we can effectively change the source domain. This has tweerprences. First,
we demand that there exists a hypothésisvhich has low error on both the-weighted convex
combination of sources and the target domain. Second, weuredistance between the target and
a mixture of sources, rather than between the target andjbe siaurce.

One question we might ask is whether there exist settingserdn@on-uniform weighting can lead
to a significantly lower value of the bound than a uniform viriigg. This can happen if some
non-uniform weighting of sources accurately approximatestarget domain. As a hypothetical
example, suppose we are trying to predict gender from hékjgure 3). Each instance is drawn
from a gender-specific Gaussian. In this example, we can i@dptimal classifier by weighting
the “males” and “females” components of the source to matehdrget.

6 Reated Work

Domain adaptation is a widely-studied area, and we cannpé ho cover every aspect and ap-
plication of it her€. Instead, in this section we focus on other theoretical @agres to domain
adaptation. While we do not explicitly address the relatigmsn this paper, we note that domain
adaptation is closely related to the setting of covariaift, sthich has been studied in statistics. In
addition to the work of Huang et al. [10], several other atgh@mve considered learning by assigning
separate weights to the components of the loss functioegponding to separate instances. Bickel
at al. [5] and Jiang and Zhai [11] suggest promising emgidgorithms that in part inspire our
Theorem 3. We hope that our work can help to explain when takggeithms are effective. Dai et
al. [9] considered weighting instances using a transfearawariant of boosting, but the learning
bounds they give are no stronger than bounds which compligtebre the source data.

Crammer et al. [8] consider learning when the marginal ifistion on instances is the same across
sources but the labeling function may change. This cormedpadn our theory to cases where
dnuan = 0 but X is large. Like us they consider multiple sources, but thetiam of weighting

is less general. They consider only including or discardirsgurce entirely.

Li and Bilmes [13] give PAC-Bayesian learning bounds for@déon using “divergence priors”.
They place source-centered prior on the parameters of alrezdtaed in the target domain. Like

5The NIPS 2006 Workshop on Learning When Test and Training Inpate IDifferent Distributions
(http://ida.first.fraunhofer.de/projects/different06/) contains a good set of refer-
ences on domain adaptation and related topics.



our model, the divergence prior also emphasizes the trhtdetfieen source and target. In our
model, though, we measure the divergence (and consequbethias) of the source domain from
unlabeled data. This allows us to choose the best tradewiEles source and target labeled data.

7 Conclusion

In this work we investigate the task of domain adaptationiwve have a large amount of train-
ing data from a source domain but wish to apply a model in aetatgmain with a much smaller
amount of training data. Our main result is a uniform coneerg learning bound for algorithms
which minimize convex combinations of source and targetigogb risk. Our bound reflects the
trade-off between the size of the source data and the agcofabe target data, and we give a
simple approximation to it that is computable from finitedddal and unlabeled samples. This ap-
proximation makes correct predictions about model tesr éor a sentiment classification task. Our
theory also extends in a straightforward manner to a maliree setting, which we believe helps to
explain the success of recent empirical work in domain adtipt.

Our future work has two related directions. First, we wistighten our bounds, both by considering
more sophisticated measures of complexity [15, 2] and bydimg our distance measure on the most
relevant features, rather than all the features. We alsotplanvestigate algorithms that choose a
convex combination of multiple sources to minimize the limTheorem 3.
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A Proof of Theorem 1

The proof of Theorem 1 makes use of the following simple iraditpiwhich is straight-forward to
prove®. For any hypothesds, b’ € H,

1
les(h,h') —er(h,h")| < idHAH(DS,DT) :

The proof also relies heavily on the triangle inequality d@assification error [3, 8] which implies
that for any labeling functiong,, fo, andfs, es(f1, f2) < es(f1, f3) + €s(f2, f3). Similarly, for
the target domain, for ang, fo, andfs, er(f1, f2) < er(f1, f3) + er(fa, f3).

GT(h)

IA

er(h*) +er(h,h*) <er(h™) 4+ es(h,h*) + |er(h, h*) — es(h, h")]|
1
ET(h*) + Es(h, h*) + gdHAH(DS,DT)

IN

IN

1
ET(h*) + Es(h) + Es(h*) + id'HAH(DS»DT)
1
es(h) + 5dnan(Ds, Dr) + A

2
)+ 4\/leog(Qm’) +log(%)

ml

1.
< es(h) + sdyan(Us,Ur

3 + A

The last step in the proof is an application of Theorem 3.4 efi-Bavid, Gehrke, and Kifer [4],
together with the observation that since we can represeny e« HAH as a linear threshold net-
work of depth 2 with 2 hidden units, the VC dimensiorfAH is at most twice the VC dimension
of H [1]. [

B Proof of the main theorem

B.1 Proof of Lemmal

This proof again relies heavily on the triangle inequaldy ¢lassification error.

lea(h) = er(h)] = (1 - )les (k) — ex(h)|
< (1 a)[les(h) — es(h, h)| + [es (b h*) = ex(h, k)| + lex (b h*) = ex ()]
< (1= a) [es(h*) + les(h, h*) — ex(h, h*)] + ex (h*)]

< (1 — a)(%dHAH('DSa’DT) + /\)

B.2 Proof of Lemma?2

We begin by restating Hoeffding’s inequality.

Hoeffding's inequality
If X1, Xo,...,X, areindependentand < X; <b;(i =1,2,...,n), then fore > 0

Pr [|X — E[X]| > ¢] < 2720/ Zinabizan)?,
whereX = (X1 + -+ X,,)/n.

Let X,..., Xa,, be random variables that take on the valfegs)|h(z) — fr(x)| for the fm
instancesr € Sr. Similarly, let Xg,,+1,. .., X, be random variables that take on the values

5Ben-David et al. [3] incorrectly stated this inequality in the original proofh&orem 1. They wrote it
usingdy instead of} dra%.



(1—a)/(1=p)|h(z)— fs(x)| for the(1—3)m instances: € Sg. Note thatXy, ..., Xz, € [0, /0]
andXgmi1,- .-, Xm € [0, (1 — a)/(1 — )]. Then

Furthermore, by linearity of expectations

Blen(h)] = © <ﬁmaeT(h) (1 Byme—?

m B 1-3
= aer(h) + (1 — a)es(h) = ea(h).

So by Hoeffding's inequality the following holds for evehy

. —2m?e?
Pr Hea(h) - ea(h>| > 6] < 2exp (Zm rangeQ(X‘))
i=1 ?

—2m?2e2

The remainder of the proof for hypothesis classes of finited#@ension follows a standard argu-
ment. In particular, the reduction to a finite hypothesis€lasing the growth function does not
change [16, 1]. This, combined with the union bound, givethagprobability that there existy
hypothesish € H, |é.(h) — e (h)| > €. Substituting’ for the probability and solving gives us

_ a?  (1—a«)?\ dlog(2m) —logé
- \/(ﬂ Ty ) am

B.3 Proof of Theorem 2

The proof follows the standard set of steps for proving legyrbounds [1], using Lemma 1 to
bound the difference between target and weighted errort@mana 2 for the uniform convergence
of empirical and true weighted errors. Below we use L1, L2} &hm1 to indicate that a line of the
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proof follows by application of Lemma 1, Lemma 2, or Theorenedpectively.

(h h 1—a ( dHAH(DS7DT)+)\> (L2)

(1-« dlo 2m —logé
<é \/—1\/ 8( 8% L (1—a) ( dran(Ds, Dr) + A) (L2)
N o (1-« dlog(2m) — log § 1
< €a(hT) + \/6—’_—1\/ g o g + (1 - Oé) <2dHAH(DSaDT) + A)

(1-— dlog(2 —logé 1
a Og m o8 + (1 - Oé) <2dHAH(D5,DT)—|—)\> (L2)

/ (1-a) dlog(2m) — log ¢ 1
<er hT 1= \/ g ) 2(1 — a) (QdHAH(DSHDT)JF)\) (L1)

<6Ct h’T +2

(1- dlog(2 log 0
<er(hy) +2 ﬁ+ @) \/ og( mn)l %80 4
/ 4
2(1-a) (;dHAH(US»UT) + 4\/2dlog(2mm)/+ Log () + A) (Thm 1)
[
C Proof of Theorem 3
Lemma3 Leth be a hypothesis in clags. Then|eq (h) — er(h)| < dyar (Do, Pr) + Yo -
Proof:
lea(h) — er(h)| < [lea(h) = €alh, h7)| + |€a(h, h*) — ex(h, h")| + |ex(h, h") — er ()]
< [ea(h”) + |ea(h, h*) — ex(h,h")| + er(h")]
S (§dHA'H(Da7DT) + ’7&)
[

Lemma4 LetH be a hypothesis space of VC-dimensioif a random labeled sample of sizeis
generated by drawing;m points fromD;, and labeling them according t;, then with probability
at leastl — ¢ (over the choice of the samples), for everg H:

léa(h) —ea(h)| < @\/dlog@gg— log §

Proof: Because of its similarity to the proof of Lemma 2 (in Appen&i2), we will omit some
details of this proof. LeX, ..., Xz, be random variables that take on the val(es/ 3;)|h(x) —
[j(x)| for the 8;m instances: € S;. Note thatX,,..., Xg,, € [0,a;/6;]. Then

N
B =3 aé(h) zaj S it =3 X
j=1

TES i=1

By linearity of expectations again, we haf#é, (h)] = eq(h).
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By Hoeffding’s inequality the following holds for every.

—2m?2e?
Pr[léa(h) — €a(h)| > €] < 2exp <Zm1 r2ange2(Xi)>

The remainder of the proof is identical to the proof of Lemma 2 [ |

The proof of Theorem 3 combines Lemmas 3 and 4, following antidal argument to the proof of
Theorem 2.
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