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Abstract

We analyze sources of error in prediction market forecasts in order to bound
the difference between a security’s price and the ground truth it estimates. We
consider cost-function-based prediction markets in which an automated market
maker adjusts security prices according to the history of trade. We decompose the
forecasting error into three components: sampling error, arising because traders
only possess noisy estimates of ground truth; market-maker bias, resulting from
the use of a particular market maker (i.e., cost function) to facilitate trade; and
convergence error, arising because, at any point in time, market prices may still be
in flux. Our goal is to make explicit the tradeoffs between these error components,
influenced by design decisions such as the functional form of the cost function
and the amount of liquidity in the market. We consider a specific model in which
traders have exponential utility and exponential-family beliefs representing noisy
estimates of ground truth. In this setting, sampling error vanishes as the number
of traders grows, but there is a tradeoff between the other two components. We
provide both upper and lower bounds on market-maker bias and convergence error,
and demonstrate via numerical simulations that these bounds are tight. Our results
yield new insights into the question of how to set the market’s liquidity parameter
and into the forecasting benefits of enforcing coherent prices across securities.

1 Introduction

A prediction market is a marketplace in which participants can trade securities with payoffs that
depend on the outcomes of future events [19]. Consider the simple setting in which we are interested
in predicting the outcome of a political election: whether the incumbent or challenger will win.
A prediction market might issue a security that pays out $1 per share if the incumbent wins, and
$0 otherwise. The market price p of this security should always lie between 0 and 1, and can be
construed as an event probability. If a trader believes that the likelihood of the incumbent winning is
greater than p, she will buy shares with the expectation of making a profit. Market prices increase
when there is more interest in buying and decrease when there is more interest in selling. By this
process, the market aggregates traders’ information into a consensus forecast, represented by the
market price. With sufficient activity, prediction markets are competitive with alternative forecasting
methods such as polls [4], but while there is a mature literature on sources of error and bias in polls,
the impact of prediction market structure on forecast accuracy is still an active area of research [17].

We consider prediction markets in which all trades occur through a centralized entity known as a
market maker. Under this market structure, security prices are dictated by a fixed cost function and
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the current number of outstanding shares [6]. The basic conditions that a cost function should satisfy
to correctly elicit beliefs, while bounding the market maker’s loss, are now well-understood, chief
among them being convexity [1]. Nonetheless, the class of allowable cost functions remains broad,
and the literature so far provides little formal guidance on the specific form of cost function to use in
order to achieve good forecast accuracy, including how to set the liquidity parameter which controls
price responsiveness to trade. In practice, the impact of the liquidity parameter is difficult to quantify
a priori, so implementations typically resort to calibrations based on market simulations [8, 18].
Prior work also suggests that maintaining coherence among prices of logically related securities has
informational advantages [8], but there has been little work aimed at understanding why.

This paper provides a framework to quantify the impact of the choice of cost function on forecast
accuracy. We introduce a decomposition of forecast error, in analogy with the bias-variance decom-
position familiar from statistics or the approximation-estimation-optimization decomposition for
large-scale machine learning [5]. Our decomposition consists of three components. First, there is the
sampling error resulting from the fact that the market consists of a finite population of traders, each
holding a noisy estimate of ground truth. Second, there is a market-maker bias which stems from the
use of a cost function to provide liquidity and induce trade. Third, there is convergence error due to
the fact that the market prices may not have fully converged to their equilibrium point.

The central contribution of this paper is a theoretical characterization of the market-maker bias and
convergence error, the two components of this decomposition that depend on market structure as
defined by the form of the cost function and level of liquidity. We consider a tractable model of agent
behavior, originally studied by Abernethy et al. [2], in which traders have exponential utility functions
and beliefs drawn from an exponential family. Under this model it is possible to characterize
the market’s equilibrium prices in terms of the traders’ belief and risk aversion parameters, and
thereby quantify the discrepancy between current market prices and ground truth. To analyze market
convergence, we consider the trader dynamics introduced by Frongillo and Reid [9], under which
trading can be viewed as randomized block-coordinate descent on a suitable potential function.

Our analysis is local in that the bounds depend on the market equilibrium prices. This allows us to
exactly identify the main asymptotic terms of error. We demonstrate via numerical experiments that
these asymptotic bounds are accurate early on and therefore can be used to compare market designs.

We make the following specific contributions:

1. We precisely define the three components of the forecasting error.

2. We show that the market-maker bias equals cb ± O(b2) as b → 0, where b is the liquidity
parameter, and c is an explicit constant that depends on the cost function and trader beliefs.

3. We show that the convergence error decreases with the number of trades t as γt with γ = 1−Θ(b).
We provide explicit upper and lower bounds on γ that depend on the cost function and trader
beliefs. In the process, we prove a new local convergence bound for block-coordinate descent.

4. We use our explicit formulas for bias and convergence error to compare two common cost
functions: independent markets (IND), under which security prices vary independently, and
the logarithmic market scoring rule (LMSR) [10], which enforces logical relationships between
security prices. We show that at the same value of the market-maker bias, IND requires at least
half-as-many and at most twice-as-many trades as LMSR to achieve the same convergence error.

We consider a specific utility model (exponential utility), but our bias and convergence analysis
immediately carry over if we assume that each trader is optimizing a risk measure (rather than an
exponential utility function) similar to the setup of Frongillo and Reid [9]. Exponential utility was
chosen because it was previously well studied and allowed us to focus on the analysis of the cost
function and liquidity. The role of the liquidity parameter in trading off the bias and convergence error
has been informally recognized in the literature [7, 10, 13], but our precise definition of market-maker
bias and explicit formulas for the bias and convergence error are novel. Abernethy et al. [2] provide
results that can be used to derive the bias for LMSR, but not for generic cost functions, so they do not
enable comparison of biases of different costs. Frongillo and Reid [9] observe that the convergence
error can be locally bounded as γt, but they only provide an upper bound and do not show how γ
is related to the liquidity or cost function. Our analysis establishes both upper and lower bounds
on convergence and relates γ explicitly to the liquidity and cost function. This is necessary for a
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meaningful comparison of cost function families. Thus our framework provides the first meaningful
way to compare the error tradeoffs inherent in different choices of cost functions and liquidity levels.

2 Preliminaries

We use the notation [N ] to denote the set {1, . . . , N}. Given a convex function f : Rd → R ∪ {∞},
its effective domain, denoted dom f , is the set of points where f is finite. Whenever dom f is
non-empty, the conjugate f∗ : Rd → R ∪ {∞} is defined by f∗(v) := supu∈Rd [vᵀu− f(u)]. We
write ‖·‖ for the Euclidean norm. A centralized mathematical reference is provided in Appendix A.1

Cost-function-based market makers We study cost-function-based prediction markets [1]. Let
Ω be a finite set of mutually exclusive and exhaustive states of the world. A market administrator,
known as market maker, wishes to elicit information about the likelihood of various states ω ∈ Ω,
and to that end offers to buy and sell any number of shares of K securities. Securities are associated
with coordinates of a payoff function φ : Ω → RK , where each share of the kth security is worth
φk(ω) in the event that the true state of the world is ω ∈ Ω. Traders arrive in the market sequentially
and trade with the market maker. The market price is fully determined by a convex potential function
C called the cost function. In particular, if the market maker has previously sold sk ∈ R shares of
each security k and a trader would like to purchase a bundle consisting of δk ∈ R shares of each, the
trader is charged C(s+ δδδ)− C(s). The instantaneous price of security k is then ∂C(s)/∂sk. Note
that negative values of δk are allowed and correspond to the trader (short) selling security k.

LetM := conv{φ(ω) : ω ∈ Ω} be the convex hull of the set of payoff vectors. It is exactly the set
of expectations E [φ(ω)] across all possible probability distributions over Ω, which we call beliefs.
We refer to elements ofM as coherent prices. Abernethy et al. [1] characterize the conditions that a
cost function must satisfy in order to guarantee important properties such as bounded loss for the
market maker and no possibility of arbitrage. To start, we assume only that C : RK → R is convex
and differentiable and thatM⊆ domC∗, which corresponds to the bounded loss property.
Example 2.1 (Logarithmic Market Scoring Rule: LMSR [10]). Consider a complete market with a
single security for each outcome worth $1 if that outcome occurs and $0 otherwise, i.e., Ω = [K] and
φk(ω) = 1{k = ω} for all k. The LMSR cost function and instantaneous security prices are given by

C(s) = log
(∑K

k=1 e
sk
)

and
∂C(s)

∂sk
=

esk∑K
`=1 e

s`
, ∀k ∈ [K]. (1)

Its conjugate is the entropy function, C∗(µ) =
∑
k µk logµk + I{µ ∈ ∆K}, where ∆K is the

simplex in RK and I{·} is the convex indicator, equal to zero if its argument is true and infinity if
false. Thus, in this caseM = ∆K = domC∗.

Notice that the LMSR security prices are coherent because they always sum to one. This prevents
arbitrage opportunities for traders. Our second running example does not have this property.
Example 2.2 (Sum of Independent LMSRs: IND). Let Ω = [K] and φk(ω) = 1{k = ω} for all k.
The cost function and instantaneous security prices for the sum of independent LMSRs are given by

C(s) =
∑K
k=1 log (1 + esk) and

∂C(s)

∂sk
=

esk

1 + esk
, ∀k ∈ [K], (2)

C∗(µ) =
∑
k[µk logµk+(1−µk) log(1−µk)]+I{µ ∈ [0, 1]K},M = ∆K , and domC∗ = [0, 1]K .

When choosing a cost function, one important consideration is liquidity, that is, how quickly prices
change in response to trades. Any cost function C can be viewed as a member of a parametric family
of cost functions of the form Cb(s) := bC(s/b) across all b > 0. With larger values of b, larger trades
are required to move market prices by some fixed amount, and the worst-case loss of the market
maker is larger; with smaller values, small purchases can result in big changes to the market price.

Basic model In our analysis of error we assume that there exists an unknown true probability
distribution ptrue ∈ ∆|Ω| over the outcome set Ω. The true expected payoffs of the K market
securities are then given by the vector µtrue := Eω∼ptrue [φ(ω)].

1A longer version of this paper containing the appendix is available on arXiv and the authors’ websites.
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We assume that there are N traders and that each trader i ∈ [N ] has a private belief p̃i over
outcomes. We additionally assume that each trader i has a utility function ui : R → R for wealth
and would like to maximize expected utility subject to her beliefs. For now we assume that ui
is differentiable and concave, meaning that each trader is risk averse, though later we focus on
exponential utility. The expected utility of trader i owning a security bundle ri ∈ RK and cash ci is
Ui(ri, ci) := Eω∼p̃i

[
ui
(
ci + φ(ω) · ri

)]
. We assume that each trader begins with zero cash. This

is without loss of generality because we could incorporate any initial cash holdings into ui.

3 A Decomposition of Error

In this section, we decompose the market’s forecast error into three major components. The first is
sampling error, which arises because traders have only noisy observations of the ground truth. The
second is market-maker bias, which arises because the shape of the cost function impacts the traders’
willingness to invest. Finally, convergence error arises due to the fact that at any particular point in
time the market prices may not have fully converged. To formalize our decomposition, we introduce
two new notions of equilibrium.

Our first notion of equilibrium, called a market-clearing equilibrium, does not assume the existence
of a market maker, but rather assumes that traders trade only among themselves, and so no additional
securities or cash are available beyond the traders’ initial allocations. This equilibrium is described by
security prices µ̄ ∈ RK and allocations (r̄i, c̄i) of security bundles and cash to each trader i such that,
given her allocation, no trader wants to buy or sell any bundle of securities at those prices. Trader
bundles and cash are summarized as r̄ = (r̄i)i∈[N ] and c̄ = (c̄i)i∈[N ].

Definition 3.1 (Market-clearing equilibrium). A triple (r̄, c̄, µ̄) is a market-clearing equilibrium if∑N
i=1 r̄i = 0,

∑N
i=1 c̄i = 0, and for all i ∈ [N ], 0 ∈ argmaxδ∈RK Ui(r̄i + δ, c̄i − δ · µ̄). We call

µ̄ market-clearing prices if there exist r̄ and c̄ such that (r̄, c̄, µ̄) is a market-clearing equilibrium.
Similarly, we call r̄ a market-clearing allocation if there exists a corresponding equilibrium.

The requirements on
∑N
i=1 r̄i and

∑N
i=1 c̄i guarantee that no additional securities or cash have

been created. In other words, there exists some set of trades among traders that would lead to the
market-clearing allocation, although the definition says nothing about how the equilibrium is reached.

Since we rely on a market maker to orchestrate trade, our markets generally do not reach the market-
clearing equilibrium. Instead, we introduce the notion of market-maker equilibrium. This equilibrium
is again described by a set of security prices µ? and trader allocations (r?i , c

?
i ), summarized as

(r?, c?), such that no trader wants to trade at these prices given her allocation. The difference is that
we now require r? and c? to be reachable via some sequence of trade with the market maker instead
of via trade among only the traders, and µ? must be the market prices after such a sequence of trade.

Definition 3.2 (Market-maker equilibrium). A triple (r?, c?,µ?) is a market-maker equilibrium
for cost function Cb if, for the market state s? =

∑N
i=1 r

?
i , we have

∑N
i=1 c

?
i = Cb(0) − Cb(s?),

µ?= ∇Cb(s?), and for all i ∈ [N ], 0 ∈ argmaxδ∈RK Ui
(
r?i + δ, c?i− Cb(s?+ δ) + Cb(s

?)
)
. We

call µ? market-maker equilibrium prices if there exist r? and c? such that (r?, c?,µ?) is a market-
maker equilibrium. Similarly, we call r? a market-maker equilibrium allocation if there exists a
corresponding equilibrium. We sometimes write µ?(b;C) to show the dependence of µ? on C and b.

The market-clearing prices µ̄ and the market-maker equilibrium prices µ?(b;C) are not unique in
general, but are unique for the specific utility functions that we study in this paper.

Using these notions of equilibrium, we can formally define our error components. Sampling error is
the difference between the true security values and the market-clearing equilibrium prices. The bias
is the difference between the market-clearing equilibrium prices and the market-maker equilibrium
prices. Finally, the convergence error is the difference between the market-maker equilibrium prices
and the market prices µt(b;C) at a particular round t. Putting this together, we have that

µtrue − µt(b;C) = µtrue − µ̄︸ ︷︷ ︸
Sampling Error

+ µ̄− µ?(b;C)︸ ︷︷ ︸
Bias

+µ?(b;C)− µt(b;C)︸ ︷︷ ︸
Convergence Error

. (3)
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4 The Exponential Trader Model

For the remainder of the paper, we work with the exponential trader model introduced by Abernethy
et al. [2] in which traders have exponential utility functions and exponential-family beliefs. Under
this model, both the market-clearing prices and market-maker equilibrium prices are unique and can
be expressed cleanly in terms of potential functions [9], yielding a tractable analysis. The results of
this section are immediate consequences of prior work [2, 9], but our equilibrium concepts bring
them into a common framework.

We consider a specific exponential family [3] of probability distributions over Ω defined as p(ω;θ) =
eφ(ω)·θ−T (θ), where θ ∈ RK is the natural parameter of the distribution, and T is the log partition
function, T (θ) := log

(∑
ω∈Ω e

φ(ω)·θ). The gradient ∇T (θ) coincides with the expectation of φ
under p(·;θ), and domT ∗ = conv{φ(ω) : ω ∈ Ω} =M.

Following Abernethy et al. [2], we assume that each trader i has exponential-family beliefs with
natural parameter θ̃i. From the perspective of trader i, the expected payoffs of theK market securities
can then be expressed as the vector µ̃i with µ̃i,k :=

∑
ω∈Ω φk(ω)p(ω; θ̃i).

As in Abernethy et al. [2], we also assume that traders are risk averse with exponential utility for
wealth, so the utility of trader i for wealthW is ui(W ) = −(1/ai)e

−aiW , where ai is the the trader’s
risk aversion coefficient. We assume that the traders’ risk aversion coefficients are fixed.

Using the definitions of the expected utility Ui, the exponential family distribution p(·; θ̃i), the log
partition function T , and the exponential utility ui, it is straightforward to show [2] that

Ui(ri, ci) = − 1

ai
e−T (θ̃i)−aici∑

ω∈Ω e
φ(ω)·(θ̃i−airi) = − 1

ai
eT (θ̃i−airi)−T (θ̃i)−aici . (4)

Under this trader model, we can use the techniques of Frongillo and Reid [9] to construct potential
functions which yield alternative characterizations of the equilibria as solutions of minimization
problems. Consider first a market-clearing equilibrium. Define Fi(s) := 1

ai
T (θ̃i + ais) for each

trader i. From Eq. (4) we can observe that −Fi(−ri) + ci is a monotone transformation of trader i’s
utility. Since each trader’s utility is locally maximized at a market-clearing equilibrium, the sum
of traders’ utilities is also locally maximized, as is

∑N
i=1(−Fi(−ri) + ci). Since the equilibrium

conditions require that
∑N
i=1 ci = 0, the security allocation associated with any market-clearing

equilibrium must be a local minimum of
∑N
i=1 Fi(−ri). This idea is formalized in the following

theorem. The proof follows from an analysis of the KKT conditions of the equilibrium. (See the
appendix for all omitted proofs.)
Theorem 4.1. Under the exponential trader model, a market-clearing equilibrium always exists and
market-clearing prices are unique. Market-clearing allocations and prices are exactly the solutions
of the following optimization problems:

r̄ ∈ argmin
r:

∑N
i=1 ri=0

[∑N
i=1 Fi(−ri)

]
, µ̄ = argmin

µ∈RK

[∑N
i=1 F

∗
i (µ)

]
. (5)

Using a similar argument, we can show that the allocation associated with any market-maker equilib-
rium is a local minimum of the function F (r) :=

∑N
i=1 Fi(−ri) + Cb

(∑N
i=1 ri

)
.

Theorem 4.2. Under the exponential trader model, a market-maker equilibrium always exists and
equilibrium prices are unique. Market-maker equilibrium allocations and prices are exactly the
solutions of the following optimization problems:

r? ∈ argmin
r

F (r) , µ? = argmin
µ∈RK

[∑N
i=1 F

∗
i (µ) + bC∗(µ)

]
. (6)

Sampling error We finish this section with an analysis of the first component of error identified in
Section 3: the sampling error. We begin by deriving a more explicit form of market-clearing prices:
Theorem 4.3. Under the exponential trader model, the unique market-clearing equilibrium prices
can be written as µ̄ = Eθ̄ [φ(ω)], where θ̄ :=

(∑N
i=1 θ̃i/ai

)
/
(∑N

i=1 1/ai
)

is the risk-aversion-
weighted average belief and Eθ̄ is the expectation under p(·; θ̄).
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The sampling error arises because the beliefs θ̃i are only noisy signals of the ground truth. From
Theorem 4.3 we see that this error may be compounded by the weighting according to risk aversions,
which can skew the prices. To obtain a concrete bound on the error term ‖µtrue− µ̄‖, we need to make
some assumptions about risk aversion coefficients, the true distribution of the outcome, and how this
distribution is related to trader beliefs. For instance, suppose risk aversion coefficients are bounded
both from below and above, the true outcome is drawn from an exponential-family distribution with
natural parameter θtrue, and the beliefs θ̃i are independent samples with mean θtrue and a bounded
covariance matrix. Under these assumptions, one can show using standard concentration bounds
that with high probability, ‖µtrue − µ̄‖ = O(

√
1/N) as N →∞. In other words, market-clearing

prices approach the ground truth as the number of traders increases. In Appendix B.4 we make
the dependence on risk aversion and belief noise more explicit. The analysis of other information
structures (e.g., biased or correlated beliefs) is beyond the scope of this paper; instead, we focus on
the two error components that depend on the market design.

5 Market-maker Bias

We now analyze the market-maker bias—the difference between the marker-maker equilibrium prices
µ? and market-clearing prices µ̄. We first state a global bound that depends on the liquidity b and cost
function C, but not on trader beliefs, and show that µ? → µ̄ with the rate O(b) as b→ 0. The proof
builds on Theorems 4.1 and 4.2 and uses the facts that C∗ is bounded onM (by our assumptions on
C), and conjugates F ∗i are strongly convex onM (from properties of the log partition function).
Theorem 5.1 (Global Bias Bound). Under the exponential trader model, for any C, there exists a
constant c such that ‖µ?(b;C)− µ̄‖ ≤ cb for all b ≥ 0.

This result makes use of strong convexity constants that are valid over the entire setM, which can
be overly conservative when µ? is close to µ̄. Furthermore, it gives us only an upper bound, which
cannot be used to compare different cost function families. In the rest of this section we pursue
a tighter local analysis, based on the properties of F ∗i and C∗ at µ̄. Our local analysis requires
assumptions that go beyond convexity and differentiability of the cost function. We call the class of
functions that satisfy these assumptions convex+ functions. (See Appendix A.3 for their complete
treatment and a more general definition than provided here.) These functions are related to functions
of Legendre type (see Sec. 26 of Rockafellar [15]). Informally, they are smooth functions that are
strictly convex along directions in a certain space (the gradient space) and linear in orthogonal
directions. For cost functions, strict convexity means that prices change in response to arbitrarily
small trades, while the linear directions correspond to bundles with constant payoffs, whose prices
are therefore fixed.
Definition 5.2. Let f : Rd → R be differentiable and convex. Its gradient space is the linear space
parallel to the affine hull of its gradients, denoted as G(f) := span{∇f(u)−∇f(u′) :u,u′∈ Rd}.
Definition 5.3. We say that a convex function f : Rd → R is convex+ if it has continuous third
derivatives and range(∇2f(u)) = G(f) for all u ∈ Rd.

It can be checked that if P is a projection on G(f) then there exists some a such that f(u) =
f(Pu) + aᵀu, so f is up to a linear term fully described by its values on G(f). The condition on
the range of the Hessian ensures that f is strictly convex over G(f), so its gradient map is invertible
over G(f). This means that the Hessian can be expressed as a function of the gradient, i.e., there
exists a matrix-valued function Hf such that∇2f(u) = Hf (∇f(u)) (see Proposition A.8). The cost
functions C for both the LMSR and the sum of independent LMSRs (IND) are convex+.
Example 5.4 (LMSR as a convex+ function). For LMSR, the gradient space of C is parallel to
the simplex: G(C) = {u : 1ᵀu = 0}. The gradients of C are points in the relative interior of
the simplex. Given such a point µ = ∇C(s), the corresponding Hessian is ∇2C(s) = HC(µ) =
(diagk∈[K] µk) − µµᵀ, where diagk∈[K] µk denotes the diagonal matrix with values µk on the
diagonal. The null space of HC(µ) is {c1 : c ∈ R}, so C is linear in the all-ones direction (buying
one share of each security always has cost one), but strictly convex in directions from G(C).
Example 5.5 (IND as a convex+ function). For IND, the gradient space is RK and the gradients are
the points in (0, 1)K . In this case, HC(µ) = diagk[µk(1− µk)]. This matrix has full rank.

Our next theorem shows that for an appropriate vector u, which depends on µ̄ and C, we have
µ?(b;C) = µ̄+ bu+ εb, where ‖εb‖ = O(b2). Here, the O(·) is taken as b→ 0, so the error term
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εb goes to zero faster than the term bu, which we call the asymptotic bias. Our analysis is local in
the sense that the constants hiding within O(·) may depend on µ̄. This analysis fully uncovers the
main asymptotic term and therefore allows comparison of cost families. In our experiments, we show
that the asymptotic bias is an accurate estimate of the bias even for moderately large values of b.
Theorem 5.6 (Local Bias Bound). Assume that the cost function C is convex+. Then

µ?(b;C) = µ̄− b(ā/N)HT (µ̄)∂C∗(µ̄) + εb , where ‖εb‖ = O(b2).

In the expression above, ā = N/(
∑N
i=1 1/ai) is the harmonic mean of risk-aversion coefficients and

HT (µ̄)∂C∗(µ̄) is guaranteed to consist of a single point even when ∂C∗(µ̄) is a set.

The theorem is proved by a careful application of Taylor’s Theorem and crucially uses properties of
conjugates of convex+ functions, which we derive in Appendix A.3. It gives us a formula to calculate
the asymptotic bias for any cost function for a particular value of µ̄, or evaluate the worst-case bias
against some set of possible market-clearing prices. It also constitutes an important step in comparing
cost function families. To compare the convergence error of two costs C and C ′ in the next section,
we require that their liquidities b and b′ be set so that they have (approximately) the same bias, i.e.,
‖µ?(b′;C ′)− µ̄‖ ≈ ‖µ?(b;C)− µ̄‖. Theorem 5.6 tells us that this can be achieved by the linear
rule b′ = b/η where η = ‖HT (µ̄)∂C ′

∗
(µ̄)‖ / ‖HT (µ̄)∂C∗(µ̄)‖. For C = LMSR and C ′ = IND, we

prove that the corresponding η ∈ [1, 2]. Equivalently, this means that for the same value of b the
asymptotic bias of IND is at least as large as that of LMSR, but no more than twice as large:
Theorem 5.7. For any µ̄ there exists η ∈ [1, 2] such that for all b, ‖µ?(b/η; IND) − µ̄‖ =
‖µ?(b; LMSR)−µ̄‖±O(b2). For this same η, also ‖µ?(b; IND)−µ̄‖ = η‖µ?(b; LMSR)−µ̄‖±O(b2).

Theorem 5.6 also captures an intuitive relationship which can guide the market maker in adjusting the
market liquidity b as the number of traders N and their risk aversion coefficients ai vary. In particular,
holding µ̄ and the cost function fixed, we can maintain the same amount of bias by setting b ∝ N/ā.
Note that 1/ai plays the role of the budget of trader i in the sense that at fixed prices, the trader
will spend an amount of cash proportional to 1/ai. Thus N/ā =

∑
i(1/ai) corresponds to the total

amount of available cash among the traders in the market. Similarly, the market maker’s worst-case
loss, amounting to the market maker’s cash, is proportional to b, so setting b ∝

∑
i(1/ai) is natural.

6 Convergence Error

We now study the convergence error, namely the difference between the prices µt at round t and the
market-maker equilibrium prices µ?. To do so, we must posit a model of how the traders interact with
the market. Following Frongillo and Reid [9], we assume that in each round, a trader i ∈ [N ], chosen
uniformly at random, buys a bundle δ ∈ RK that optimizes her utility given the current market state s
and her existing security and cash allocations, ri and ci. The resulting updates of the allocation vector
r = (ri)

N
i=1 correspond to randomized block-coordinate descent on the potential function F (r) with

blocks ri (see Appendix D.1 and Frongillo and Reid [9]). We refer to this model as the all-security
(trader) dynamics (ASD).2 We apply and extend the analysis of block-coordinate descent to this setting.
We focus on convex+ functions and conduct local convergence analysis around the minimizer of F .
Our experiments demonstrate that the local analysis accurately estimates the convergence rate.

Let r? denote an arbitrary minimizer of F and let F ? be the minimum value of F . Also, let rt denote
the allocation vector and µt the market price vector after the tth trade. Instead of directly analyzing
the convergence error ‖µt − µ?‖, we bound the suboptimality F (rt) − F ? since ‖µt − µ?‖2 =
Θ(F (rt)− F ?) for convex+ costs C under ASD (see Appendix D.7.1).

Convex+ functions are locally strongly convex and have a Lipschitz-continuous gradient, so the
standard analysis of block-coordinate descent [9, 11] implies linear convergence, i.e., E [F (rt)]−
F ? ≤ O(γt) for some γ < 1, where the expectation is under the randomness of the algorithm. We
refine the standard analysis by (1) proving not only upper, but also lower bounds on the convergence
rate, and (2) proving an explicit dependence of γ on the cost function C and the liquidity b. These
two refinements are crucial for comparison of cost families, as we demonstrate with the comparison
of LMSR and IND. We begin by formally defining bounds on local convergence of any randomized
iterative algorithm that minimizes a function F (r) via a sequence of iterates rt.

2In Appendix D, we also analyze the single-security (trader) dynamics (SSD), in which a randomly chosen
trader randomly picks a single security to trade, corresponding to randomized coordinate descent on F .
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Definition 6.1. We say that γhigh is an upper bound on the local convergence rate of an algorithm
if, with probability 1 under the randomness of the algorithm, the algorithm reaches an iteration t0
such that for some c > 0 and all t ≥ t0, E

[
F (rt)

∣∣ rt0]− F ? ≤ cγt−t0high . We say that γlow is a lower
bound on the local convergence rate if γhigh ≥ γlow holds for all upper bounds γhigh.

To state explicit bounds, we use the notation D := diagi∈[N ] ai and P := IN − 11ᵀ/N , where IN
is the N ×N identity matrix and 1 is the all-ones vector. We write M+ for the pseudoinverse of a
matrix M and λmin(M) and λmax(M) for its smallest and largest positive eigenvalues.

Theorem 6.2 (Local Convergence Bound). Assume that C is convex+. Let HT := HT (µ̄) and
HC := HC(µ̄). For the all-securities dynamics, the local convergence rate is bounded between

γASDhigh = 1− 2b
N · λmin(PDP ) · λmin

(
H

1/2
T H+

CH
1/2
T

)
+O(b2) ,

γASDlow = 1− 2b
N · λmax(PDP ) · λmax

(
H

1/2
T H+

CH
1/2
T

)
−O(b2) .

In our proof, we first establish both lower and upper bounds on convergence of a generic block-
coordinate descent that extend the results of Nesterov [11]. We then analyze the behavior of the
algorithm for the specific structure of our objective to obtain explicit lower and upper bounds. Our
bounds prove linear convergence with the rate γ = 1−Θ(b). Since the convergence gets worse as
b→ 0, there is a trade-off with the bias, which decreases as b→ 0.

Theorems 5.6 and 6.2 enable systematic quantitative comparisons of cost families. For simplicity,
assume that N ≥ 2 and all risk aversions are a, so λmin(PDP ) = λmax(PDP ) = a. To compare
convergence rates of two costs C and C ′, we need to control for bias. As discussed after Theorem 5.6,
their biases are (asymptotically) equal if their liquidities are linearly related as b′ = b/η for a suitable
η. Theorem 6.2 then states thatC ′b′ requires (asymptotically) at most a factor of ρ as many trades asCb
to achieve the same convergence error, where ρ := η · λmax(H

1/2
T H+

CH
1/2
T )/λmin(H

1/2
T H+

C′H
1/2
T ).

Similarly, Cb requires at most a factor of ρ′ as many trades as C ′b′ , with ρ′ defined symmetrically to ρ.
For C = LMSR and C ′ = IND, we can show that ρ ≤ 2 and ρ′ ≤ 2, yielding the following result:

Theorem 6.3. Assume that N ≥ 2 and all risk aversions are equal to a. Consider running LMSR with
liquidity b and IND with liquidity b′ = b/η such that their asymptotic biases are equal. Denote the
iterates of the two runs of the market as µtLMSR and µtIND and the respective market-maker equilibria
as µ?LMSR and µ?IND. Then, with probability 1, there exist t0 and t1 ≥ t0 such that for all t ≥ t1 and
sufficiently small b

Et0
[∥∥µ2t(1+ε)

LMSR − µ?LMSR
∥∥2] ≤ Et0

[∥∥µtIND − µ?IND∥∥2] ≤ Et0
[∥∥µ(t/2)(1−ε)

LMSR − µ?LMSR
∥∥2]

,

where ε = O(b) and Et0 [·] = E[· | rt0 ] conditions on the t0th iterate of a given run.

This result means that LMSR and IND are roughly equivalent (up to a factor of two) in terms of the
number of trades required to achieve a given accuracy. This is somewhat surprising as this implies
that maintaining price coherence does not offer strong informational advantages (at least when traders
are individually coherent, as assumed here). However, while there is little difference between the
two costs in terms of accuracy, there is a difference in terms of the worst-case loss. For K securities,
the worst-case loss of LMSR with the liquidity b is b logK, and the worst-case loss of IND with the
liquidity b′ is b′K log 2. If liquidities are chosen as in Theorem 6.3, so that b′ is up to a factor-of-two
smaller than b, then the worst-case loss of IND is at least (bK/2) log 2, which is always worse than
the LMSR’s loss of b logK, and the ratio of the two losses increases as K grows.

When all risk aversion coefficients are equal to some constant a, then the dependence of Theorem 6.2
on the number of traders N and their risk aversion is similar to the dependence in Theorem 5.6. For
instance, to guarantee that γ stays below a certain level for varying N and a requires b = Ω(N/a).

7 Numerical Experiments

We evaluate the tightness of our theoretical bounds via numerical simulation. We consider a complete
market over K = 5 securities and simulate N = 10 traders with risk aversion coefficients equal
to 1. These values of N and K are large enough to demonstrate the tightness of our results, but
small enough that simulations are tractable. While our theory comprehensively covers heterogeneous
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Figure 1: (Left) The tradeoff between market-maker bias and convergence. Solid lines are for LMSR,
dashed for IND, the color indicates the number of trades. (Center) Market-maker bias as a function
of b. (Right) Convergence in the objective. Shading indicates 95% confidence based on 20 trading
sequences.

risk aversions and the dependence on the number of traders and securities, we have chosen to
keep these values fixed, so that we can more cleanly explore the impact of liquidity and number
of trades. We consider the two most commonly studied cost functions: LMSR and IND. We fix the
ground-truth natural parameter θtrue and independently sample the belief θ̃i of each trader from
Normal(θtrue, σ2IK), with σ = 5. We consider a single-peaked ground truth distribution with
θtrue

1 = log(1 − ν(K − 1)) and θtrue
k = log ν for k 6= 1, with ν = 0.02. Trading is simulated

according to the all-security dynamics (ASD) as described at the start of Section 6. In Appendix E,
we show qualitatively similar results using a uniform ground truth distribution and single-security
dynamics (SSD).

We first examine the tradeoff that arises between market-maker bias and convergence error as the
liquidity parameter is adjusted. Fig. 1 (left) shows the combined bias and convergence error, ‖µt−µ̄‖,
as a function of liquidity and the number of trades t (indicated by the color of the line) for the two
cost functions, averaged over twenty random trading sequences. The minimum point on each curve
tells us the optimal value of the liquidity parameter b for the particular cost function and particular
number of trades. When the market is run for a short time, larger values of b lead to lower error. On
the other hand, smaller values of b are preferable as the number of trades grows, with the combined
error approaching 0 for small b.

In Fig. 1 (center) we plot the bias ‖µ?(b;C) − µ̄‖ as a function of b for both LMSR and IND. We
compare this with the theoretical approximation ‖µ?(b;C)− µ̄‖ ≈ b(ā/N)‖HT (µ̄)∂C∗(µ̄)‖ from
Theorem 5.6. Although Theorem 5.6 only gives an asymptotic guarantee as b→ 0, the approximation
is fairly accurate even for moderate values of b. In agreement with Theorem 5.7, the bias of IND is
higher than that of LMSR at any fixed value of b, but by no more than a factor of two.

In Fig. 1 (right) we plot the log of Ê[F (rt)]− F ? as a function of the number of trades t for our two
cost functions and several liquidity levels. Even for small t the curves are close to linear, showing
that the local linear convergence rate kicks in essentially from the start of trade in our simulations.
In other words, there exist some ĉ and γ̂ such that, empirically, we have Ê[F (rt)]− F ? ≈ ĉγ̂t, or
equivalently, log(Ê[F (rt)]−F ?) ≈ log ĉ+ t log γ̂. Plugging the belief values into Theorem 6.2, the
slope of the curve for LMSR should be log10 γ̂ ≈ −0.087b for sufficiently small b, and the slope for
IND should be between −0.088b and −0.164b. In Appendix E, we verify that this is the case.

8 Conclusion

Our theoretical framework provides a meaningful way to quantitatively evaluate the error tradeoffs
inherent in different choices of cost functions and liquidity levels. We find, for example, that to
maintain a fixed amount of bias, one should set the liquidity parameter b proportional to a measure of
the amount of cash that traders are willing to spend. We also find that, although the LMSR maintains
coherent prices while IND does not, the two are equivalent up to a factor of two in terms of the
number of trades required to reach any fixed accuracy, though LMSR has lower worst-case loss.

We have assumed that traders’ beliefs are individually coherent. Experimental evidence suggests that
LMSR might have additional informational advantages over IND when traders’ beliefs are incoherent
or each trader is informed about only a subset of events [12]. We touch on this in Appendix C.2, but
leave a full exploration of the impact of different assumptions on trader beliefs to future work.
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A Mathematical Background

A.1 Vectors, Matrices, Intervals

Vectors are denoted by small boldface italics u,µ, . . . , matrices by large italics A,B, P, . . . . The
norm ‖·‖ denotes the standard Euclidean norm for vectors, and the operator norm for matrices, i.e.,
‖A‖ = supu: ‖u‖=1‖Au‖. The range of a matrix, denoted range(·), is the span of its columns.
For a symmetric matrix A, its pseudoinverse, denoted A+, is the unique symmetric matrix with
range(A+) = range(A) such that A+A = AA+ = P where P is the projection on range(A).

For symmetric matrices A and B, we write A � B to denote that B − A is positive-semidefinite.
We use the notation A ' B ± C to denote B − C � A � B + C. For scalars, we similarly write
a ' b± c to mean a ∈ [b− c, b+ c].

We use λmin(A) and λmax(A) to denote the smallest and the largest positive eigenvalue of a sym-
metric positive-semidefinite matrix. We also write λmin(A,B) and λmax(A,B) for the generalized
minimum and maximum eigenvalues defined as follows whenever B 6= 0:

λmin(A,B) := min
u∈range(B)\{0}

uᵀAu

uᵀBu
, λmax(A,B) := max

u∈range(B)\{0}

uᵀAu

uᵀBu
.

The following formulas follow by substituting v = B1/2u:

λmin(A,B) = λmin

(
(B1/2)+A(B1/2)+

)
if range(A) ⊆ range(B),

λmax(A,B) = λmax

(
(B1/2)+A(B1/2)+

)
if range(A) ⊇ range(B).

By Eq. (180) of Petersen and Pedersen [14], we also have for any matrix A (not necessarily square):
λmin(AAᵀ) = λmin(AᵀA) , λmax(AAᵀ) = λmax(AᵀA) . (7)

The following two results relate A and its pseudoinverse A+:
Proposition A.1. Let A and B be symmetric matrices such that range(A) = range(B). Then
A � B if and only if B+ � A+.

Proof. Assume that range(A) = range(B) = L. Then we have the following equivalences
A � B iff uᵀAu ≤ uᵀBu for all u ∈ L\{0}

iff 1 ≤ min
u∈L\{0}

uᵀBu

uᵀAu

iff 1 ≤ λmin(B,A) = λmin

(
(A1/2)+B(A1/2)+

)
= λmin

(
B1/2A+B1/2

)
= λmin(A+, B+) (by Eq. 7)

iff 1 ≤ min
u∈L\{0}

uᵀA+u

uᵀB+u

iff B+ � A+

Proposition A.2 (Blockwise Inversion). Let A,B,C ∈ Rd×d, where A and C are symmetric, and
let S = C −BᵀA+B. Assume the following conditions hold:

• range(A) ∩ range(C) = {0}.
• range(B) ⊆ range(A).
• range(Bᵀ) ⊆ range(C).
• range(S) = range(C).

Then
(A+B +Bᵀ + C)+ = A+ + (I −A+B)S+(I −A+B)ᵀ .

Proof. This follows by the formula in Section 9.1.3 of Petersen and Pedersen [14] for the block
matrix (

UᵀAU UᵀBV
V ᵀBU V ᵀCV

)
where U and V are matrices with an orthonormal basis of range(A) and range(C), respectively.
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The final result of this section relates the optimization of a quadratic form with a matrix A to the
quadratic form with the matrix A+:
Proposition A.3. Let A ∈ Rd×d be a symmetric positive-semidefinite matrix and let u ∈ range(A).
Then

min
δ∈Rd

(
δᵀu+

1

2
δᵀAδ

)
= −1

2
uᵀA+u .

Proof. The result follows from convex conjugacy of quadratic convex functions, see page 108 of
Rockafellar [15].

A.2 Convex Analysis

If f : Rd → R ∪ {∞} then the epigraph of f is the set of points in Rd × R that lie on or above the
graph of f . The function f is called convex if its epigraph is convex. It is called closed if its epigraph
is closed, and proper if it is not identically equal to∞. The effective domain of f is the set of points
where it is finite, denoted dom f . The convex hull of a set S, written convS, is the smallest convex
set containing S. For instance, the simplex in Rd is the convex hull of the vectors of standard basis.

An affine subspace of Rd is any set that can be written asA = {a+u : u ∈ L} for some fixed vector
a where L is a linear subspace of Rd. We refer to L as the linear space parallel to A. The affine hull
of a non-empty set S, denoted aff S, is the smallest affine set that contains S. The relative interior of
a set S, denoted riS, is the interior of S under the topology of its affine hull. The relative boundary
of a set S consists of points in the closure of S that are not in its relative interior, (clS)\(riS). For
instance, the affine hull of the simplex consists of vectors u such that uᵀ1 = 1, where 1 is the
all-ones vector. The parallel linear space is {u : uᵀ1 = 0}. The simplex has an empty interior, but
its relative interior consists of points {u ∈ (0, 1)d : uᵀ1 = 1}. The relative boundary of the simplex
consists of those points in the simplex which have at least one coordinate equal to zero.

For a convex f : Rd → R ∪ {∞}, the subdifferential of f at u is defined as ∂f(u) := {v ∈ Rd :
f(u′) ≥ f(u) + vᵀ(u′ − u), ∀u′ ∈ Rd}. Any convex f : Rd → R ∪ {∞} is subdifferentiable,
i.e., its subdifferential is non-empty, at all points in ri dom f . If the subdifferential is a singleton,
it coincides with the gradient. Given a proper convex function f : Rd → R ∪ {∞}, we define its
convex conjugate f∗ : Rd → R ∪ {∞} by f∗(µ) := supu∈Rd [uᵀµ − f(u)]. For a closed proper
convex function f , its conjugate is also closed, proper and convex, and the following statements are
equivalent:

µ ∈ ∂f(u) iff u ∈ ∂f∗(u) iff f(u) + f∗(µ) = uᵀµ .

We will use the following variant of a duality result known as Fenchel’s duality:
Theorem A.4 (Fenchel’s duality). Let f : Rd → R and g : RK → R∪{∞} be closed proper convex
functions and A ∈ RK×d. Assume that there exists some u ∈ Rd such that Au ∈ ri(dom g) and
some µ ∈ ri(dom g∗) such that Aᵀµ ∈ ri(dom f∗). Then

inf
u∈Rd

[f(−u) + g(Au)] = sup
µ∈RK

[−f∗(Aᵀµ)− g∗(µ)]

and both the supremum and the infimum are attained. Vectors û and µ̂ are their respective solutions
if and only if Aᵀµ̂ ∈ ∂f(−û) and µ̂ ∈ ∂g(Aû).

Proof. The results follows from Corollary 31.2.1 and Theorem 31.3 of Rockafellar [15].

A.3 Convex+ Functions

Throughout the paper we work with functions that satisfy additional assumptions beyond convexity.
We refer to them as convex+ functions. They have a close relationship to functions of Legendre type
(see Sec. 26 of Rockafellar [15]). Before we define convex+ functions, we introduce the gradient
space, which plays a role in their structure.
Definition A.5. Let f : Rd → R∪{∞} be differentiable on the interior of its domainD := int dom f .
Its gradient space, denoted G(f), is the linear space parallel to the affine hull of the set of its gradients,

G(f) := span{∇f(u)−∇f(u′) : u,u′ ∈ D} .
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Definition A.6. Let f : Rd → R∪{∞} and D := int dom f . We say that f is convex+ if it satisfies
the following conditions:

1. f is closed and convex.
2. D is non-empty.
3. f has continuous third derivatives on D.
4. range(∇2f(u)) = G(f) for all u ∈ D.
5. limt→∞‖∇f(ut)‖ =∞ whenever u1,u2, . . . is a sequence in D converging to a boundary

point of D.
Proposition A.7. Let f : Rd → R ∪ {∞} be convex+, D := int dom f . Let P be the projection on
G(f) and a the unique point in A ∩ G(f)⊥, where A is the affine hull of the set of gradients of f .
Then the following statements hold:

1. f(u) = f(Pu) + aᵀu.
2. ∇f(u) = ∇f(Pu).
3. ∇2f(u) = ∇2f(Pu).
4. f is strictly convex on D ∩ G(f).
5. ∇f is one-to-one on D ∩ G(f).

Proof. We prove the first statement by the Mean Value Theorem. First, since f is differentiable
on an open convex D, it must be actually continuously differentiable on D (by Corollary 25.5.1 of
Rockafellar [15]), so the Mean Value Theorem can be applied on D. Let u ∈ D and v ∈ G(f)⊥.
Then for any u′ = u+ tv ∈ D, we have, for some ū on the line segment connecting u and u′,

f(u′) = f(u) + [∇f(ū)]ᵀtv = f(u) + taᵀv (8)

where the second equality follows because v ⊥ G(f). We argue that the entire line {u+ tv : t ∈ R}
must be contained in D. For contradiction, assume it intersects the boundary of D at u? = u+ t?v,
and say t? > 0. Consider an increasing sequence 0 = t1, t2, . . . converging to t?. Eq. (8) holds for u′
replaced by ui = u+ tiv as well as points ũi = ũ+ tiv, where ũ is in a small enough neighborhood
of u along directions in G(f). This means that ∇f(ui) = P∇f(u) + a = ∇f(u). However, this
is not possible for convex+ functions, because the norms of their gradients go to ∞ towards the
boundary. Similar argument holds for t? < 0. This means that the entire line {u + tv : t ∈ R}
must be in D. This holds for arbitrary u ∈ D, so D can be written as D = D0 + G(f)⊥ where
D0 ⊆ G(f). Eq. (8) now implies that statement (1) holds over D. Since f is closed, the statement
also holds over dom f , which then necessarily has form dom f = S0 + G(f)⊥ where S0 ⊆ G(f).
Therefore, statement (1) also holds for u 6∈ dom f .

The remaining statements are more straightforward. To prove the second statement, note that for any
u′ ∈ D, its gradient can be decomposed as∇f(u′) = P∇f(u′) +a. Thus,∇f(u) = P∇f(Pu) +
a = ∇f(Pu). For the third statement, we have ∇2f(u) = P [∇2f(Pu)]P = ∇2f(Pu), because
range(∇2f(Pu)) = G(f). The fourth statement is equivalent to the fifth statement and they follow
because range(∇2f(Pu)) = G(f).

This proposition immediately implies that the Hessian of f can be expressed as a function of the
gradient of f . We will denote such a function Hf :

Proposition A.8. Let f : Rd → R ∪ {∞} be convex+ and D := int dom f . Let D′ := {∇f(u) :
u ∈ D} be the set of its gradients. Then there exists a map Hf : D′ → Rd×d such that∇2f(u) =
Hf (∇f(u)) for all u ∈ D.

Proof. Let D0 = D ∩G(f). Proposition A.7 implies that∇f is a bijection from D0 to D′. Denoting
its inverse from D′ to D0 as h, we can then define the map Hf via Hf (µ) = ∇2f(h(µ)). Now, for
any u ∈ D, we have

∇2f(u) = ∇2f(Pu) = ∇2f(h(∇f(Pu))) = Hf (∇f(Pu)) = Hf (∇f(u)) .

Proposition A.9. Let f : Rd → R ∪ {∞} be a convex+ function and let A = aff dom f∗. Then
there exists a convex+ function g : Rd → R ∪ {∞} such that the following hold:

1. g agrees with f∗ on A.
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2. G(g) is parallel to A, or equivalently G(g) = G(f).
3. For µ ∈ ri dom f∗: ∂f∗(µ) = ∇g(µ) + G(f)⊥.
4. For µ ∈ ri dom f∗: ∇2g(µ) = H+

f (µ).

Proof. We begin by representing f via a function of Legendre type and then rely on the properties of
such functions to obtain g. In particular, we note that by Proposition A.7, the function f is defined by
its values on G(f), except for a linear term, and so we construct a function f0 that is a transformation
of f on G(f) and is of Legendre type.

To start, let D = int dom f , and D0 = D ∩ G(f). Assume that G(f) is d0 dimensional d0 ≤ d, and
let A ∈ Rd×d0 be a matrix whose columns form an orthonormal basis of G(f). Then AᵀA = Id0 ,
i.e., Aᵀ is the left inverse of A. The matrix A is an injective linear map from Rd0 → Rd, but it is also
a bijection from Rd0 to G(f). We also have AAᵀ = P , where P is the projection on G(f). Define
the function f0 : Rd0 → R ∪ {∞} as

f0(v) := f(Av) .

Let S = int dom f0, so S = AᵀD0. We have

∇f0(v) = Aᵀ∇f(Av), ∇2f0(v) = Aᵀ∇2f(Av)A, ∇3f0(v)[·, ·, ·] = ∇3f(Av)[A(·), A(·), A(·)],

so in particular f0 has continuous third derivatives over S. We next argue that f0 is of Legendre type
in the sense of Rockafellar [15], page 258. For that we need to check that it satisfies the following
conditions:

(a) S is non-empty.
This follows, because D0 is non-empty and D0 ⊆ G(f). Now, Aᵀ, as a linear map, is a
bijection from G(f) to Rd0 , so the set S = AᵀD0 is also non-empty.

(b) f0 is differentiable throughout S.
Similarly to the previous property, this holds, because f is differentiable throughout D0.

(c) limt→∞‖∇f0(vt)‖ =∞ whenever v1,v2, . . . is a sequence in S converging to a boundary
point of S.
If u1,u2, . . . is any sequence in D0 converging to the relative boundary of D0, then this
point is on the boundary of D and therefore ‖∇f(ut)‖ → ∞, because f is convex+. Now,
suppose we are given a sequence v1,v2, . . . in S converging to a boundary point of S.
Then ut = Avt is exactly a sequence in D0 converging to the relative boundary of D0, so
‖∇f(Avt)‖ → ∞. Since ∇f(Avt) ∈ G(f) and the row space of Aᵀ coincides with G(f),
we also have ‖∇f0(vt)‖ = ‖Aᵀ∇f(Avt)‖ → ∞.

(d) f0 is strictly convex on S.
Since f0 has a continuous Hessian on S, it suffices to show that its Hessian is full rank,
i.e., its range is Rd0 . For any v ∈ S, we have range(∇2f0(v)) = range(Aᵀ∇2f(Av)A),
which must be Rd0 , because range(∇2f(Av)) = G(f) and A is a bijection from Rd0 to
G(f).

We now express f in terms of f0. Note that by conjugacy, the affine hull of gradients of f coincides
with A = aff dom f∗. By Proposition A.7, the function f is defined by its values on G(f), except for
the linear term, described by the unique a ∈ A ∩ G⊥. We defined f0 to exactly represent f on G(f),
so for any u′ ∈ G(f), we have f0(Aᵀu′) = f(AAᵀu′) = f(u′), because AAᵀ = P . Thus, for any
u ∈ Rd we have, by Proposition A.7,

f(u) = f(Pu) + aᵀu = f0(AᵀPu) + aᵀu = f0(Aᵀu) + aᵀu , (9)

because the row space of Aᵀ coincides with G(f). This relationship between f and f0 implies the
following relationship for their conjugates (by Theorems 12.3 and 16.3 of Rockafellar [15]):

f∗(µ) = inf
y∈Rd: Ay=µ−a

f∗0 (y) , (10)
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where the infimum of an empty set is∞. The linear map A is injective and range(A) = G(f), so
the linear system Av = µ− a has a single solution v = Aᵀ(µ− a) when (µ− a) ∈ G(f), and no
solutions when (µ− a) 6∈ G(f). Therefore,

f∗(µ) =

{
f∗0
(
Aᵀ(µ− a)

)
if µ ∈ A,

∞ if µ 6∈ A.

Since f0 is of Legendre type, so is its conjugate f∗0 (see Theorem 26.5 of Rockafellar [15]), which
means that f∗0 with S∗ := int dom f∗0 satisfies the properties (a)–(d). The function g is constructed
as follows:

g(µ) := f∗0
(
Aᵀ(µ− a)

)
= f∗0 (Aᵀµ) ,

where the equality follows because a ∈ G(f)⊥. This differs from the expression for f∗ in that it does
not equal to∞ outside A. Before we argue that g is convex+, we analyze the gradient, Hessian and
third derivatives of f∗0 . From the properties of the conjugates, we know that ∇f∗0 is the inverse of
∇f0, so for all y ∈ S∗,

∇f∗0 (y) = [∇f0]−1(y) .

Since ∇f0 is continuously differentiable and its derivative (i.e., the Hessian of f0) is an invertible
matrix, the inverse of∇f0 is also continuously differentiable and its derivative (i.e., the Hessian of
f∗0 ) is

∇2f∗0 (y) =
[
∇2f0

(
[∇f0]−1(y)

)]−1
=
[
∇2f0

(
∇f∗0 (y)

)]−1
. (11)

In particular note that ∇2f∗0 (y) is also an invertible matrix. We next show that f∗0 has a continuous
third derivative, by using the chain rule to argue that ∇2f∗0 is continuously differentiable. This
follows, because∇2f∗0 is the composition of (i) the matrix inversion [·]−1, (ii) the Hessian map∇2f0,
and (iii) the conjugate gradient ∇f∗0 , and all of them are continuously differentiable at points where
the respective derivatives are taken; specifically, the matrix inversion is taken at an invertible matrix
∇2f0

(
∇f∗0 (y)

)
, the Hessian at∇f∗0 (y) ∈ S, and the conjugate gradient at y ∈ S∗.

Now we can show that g is convex+. From the definition of g, we have

∇g(µ) = A∇f∗0 (Aᵀµ), ∇2g(µ) = A∇f∗0 (Aᵀµ)Aᵀ, (12)

and
∇3g(µ)[·, ·, ·] = ∇3f∗0 (Aᵀµ)[Aᵀ(·), Aᵀ(·), Aᵀ(·)]. (13)

LetD∗ := int dom g. From the definition of g, we haveD∗ = AS∗+G(f)⊥. Note that G(f∗0 ) = Rn0 ,
because dom f0 has a non-empty interior. Therefore, by Eq. (12), G(g) = range(A) = G(f). We
next verify that g satisfies properties (1)–(5) of convexity+, relying on the properties (a)–(d) satisfied
by f∗0 and S∗:

1. g is closed and convex.
This follows, because f∗0 is closed and convex.

2. D∗ is non-empty.
This follows, since f∗0 satisfies (a), so S∗ is non-empty, and so is D∗.

3. g has continuous third derivatives on D∗.
This follows by Eq. (13), because f∗0 has continuous third derivatives on S∗.

4. range(∇2g(µ)) = G(g) for all µ ∈ D∗.
Since the Hessians of f∗0 are full rank, Eq. (12) implies that range(∇2g(µ)) = range(A) =
G(g).

5. limt→∞‖∇g(µt)‖ =∞ whenever µ1,µ2, . . . is a sequence in D∗ converging to a bound-
ary point of D∗.
If µt converges to a point on the border of D∗ = AS∗+G(f)⊥, then the sequence of points
yt = Aᵀµt converges to the border of S∗. Since f∗0 satisfies property (c), this means that
‖∇f∗0 (yt)‖ → ∞. And since A is injective, also ‖∇g(µt)‖ = ‖A∇f∗0 (yt)‖ → ∞.

We now prove that g has the properties stated in the theorem:

1. g agrees with f∗ on A.
Immediate from the definition of g.
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2. G(g) is parallel to A, or equivalently G(g) = G(f).
As we already argued, Eq. (12) and the fact that G(f∗0 ) = Rn0 imply that G(g) =
range(A) = G(f).

3. For µ ∈ ri dom f∗: ∂f∗(µ) = ∇g(µ) + G(f)⊥.
Note that µ ∈ A, so (µ − a) ∈ G(f). The statement follows by the following chain of
equivalences

u ∈ ∂f∗(µ) iff ∇f(u) = µ

iff A∇f0(Aᵀu) + a = µ (by Eq. 9)
iff ∇f0(Aᵀu) = Aᵀ(µ− a) = Aᵀµ

(because (µ− a) ∈ G(f) = range(A))
iff ∇f∗0 (Aᵀµ) = Aᵀu

iff A∇f∗0 (Aᵀµ) = AAᵀu = Pu (because A is injective)
iff ∇g(µ) = Pu (by Eq. 12)

iff u ∈ ∇g(µ) + G(f)⊥ (because ∇g(µ) ∈ range(A) = G(f))

4. For µ ∈ ri dom f∗: ∇2g(µ) = H+
f (µ).

From Eqs. (12) and (11), we have

∇2g(µ) = A[∇2f∗0 (Aᵀµ)]Aᵀ

= A
[
∇2f0

(
∇f∗0 (Aᵀµ)

)]−1
Aᵀ .

By Proposition A.8,Hf (µ) = ∇2f(u) for any u such that∇f(u) = µ, which is equivalent
to u ∈ ∂f∗(µ). Above, we have shown that∇g(µ) ∈ ∂f∗(µ), so Hf (µ) = ∇2f(∇g(µ)).
We continue the derivation of Hf (µ) using Eqs. (9) and (12):

Hf (µ) = ∇2f(∇g(µ))

= A
[
∇2f0

(
Aᵀ∇g(µ)

)]
Aᵀ

= A
[
∇2f0

(
AᵀA∇f∗0 (Aᵀµ)

)]
Aᵀ

= A
[
∇2f0

(
∇f∗0 (Aᵀµ)

)]
Aᵀ ,

where the last equation follows, because AᵀA = Id0 . Since G(g) = G(f), the ranges of
∇2g(µ) andHf (µ) coincide with G(f). From the above derivations of∇2g(µ) andHf (µ),
we also have

[∇2g(µ)]Hf (µ) = Hf (µ)[∇2g(µ)] = AAᵀ = P ,

so indeed ∇2g(µ) = H+
f (µ).

Thanks to the continuity of third derivatives of f and the continuity of second derivatives of g from
Proposition A.9, we can easily prove a local Lipschitz property for Hf :

Proposition A.10. Let f : Rd → R∪{∞} be convex+ andD′ be the set of its gradients (necessarily
open within aff D′). Let µ ∈ D′ and let B be a closed ball (in aff D′) centered at µ and fully
contained in D′. Then there exists a constant c such that for all µ′ ∈ B

Hf (µ′) '
(
1± c‖µ′ − µ‖

)
Hf (µ) .

Proof. Let g be the function from Proposition A.9. Similarly as we argued in the proof of Proposi-
tion A.9, we can write

Hf (µ) = ∇2f(∇g(µ)) ,

because∇g(µ) ∈ ∂f∗(µ), and thus∇f(∇g(µ)) = µ. Since, g has continuous second derivatives
and f has continuous third derivatives, the Mean Value Theorem implies that ∇g is Lipschitz
continuous on any compact subset of D′, and∇2f is Lipschitz continuous on any compact subset of
int dom f . Since B is compact, and so is its image under ∇g by continuity of ∇g, we obtain that
both ∇g and ∇2f are Lipschitz on required sets, and so Hf is also Lipschitz within B, with some
constant L, i.e.,

‖Hf (µ′)−Hf (µ)‖ ≤ L‖µ′ − µ‖ .
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Since range(Hf (µ′)) = range(Hf (µ)) = G(f), this implies that

Hf (µ′) ' Hf (µ)± L‖µ′ − µ‖P ,

where P is the projection on G(f). Since range(Hf (µ)) = G(f), we have P � σ−1Hf (µ) where
σ = λmin(Hf (µ)) is the smallest positive eigenvalue of Hf (µ). Thus, we have

Hf (µ′) '
(
1± Lσ−1‖µ′ − µ‖

)
Hf (µ) .

A.4 Lipschitz Gradients and Strong Convexity

In addition to (or instead of) convexity+, some of our results require Lipschitz gradients or, dually,
strong convexity. To be precise, we say that a differentiable function f : Rd → R has a Lipschitz
gradient if there exists a constant L such that ‖∇f(u)−∇f(v)‖ ≤ L‖u− v‖ for all u,v ∈ Rd. If
f is twice differentiable, it suffices to check that∇2f(u) � LId for all u, where Id ∈ Rd×d is the
identity.

We say that f is strongly convex with the strong convexity constant σ if

f(v) ≥ f(u) + gᵀ(v − u) +
1

2
σ‖v − u‖2 ,

for all v,u ∈ Rd and g ∈ ∂f(u). A standard convex analysis result states that if f : Rd → R has
a gradient with Lipschitz constant L then f∗ is strongly convex with the strong convexity constant
σ = 1/L (see Prop. 12.60 of Rockafellar and Wets [16]).

B Proofs and Additional Results for Section 4

B.1 Proof of Theorem 4.1

We prove a more explicit version of the theorem:
Theorem B.1. Under the exponential trader model, (r̄, c̄, µ̄) is a market-clearing equilibrium if and
only if

r̄ ∈ argmin
r:

∑N
i=1 ri=0

N∑
i=1

Fi(−ri),
N∑
i=1

c̄i = 0, and µ̄ = ∇T (θ̃i − air̄i) ∀i ∈ [N ].

A market-clearing equilibrium always exists. Furthermore, for any market-clearing equilibrium, the
equilibrium prices are unique solutions of the following dual problem:

µ̄ = argmin
µ∈RK

[∑
i

F ∗i (µ)
]
.

Proof. We first express the market-clearing equilibrium definition using the trader potential functions
Fi instead of trader utilities. Since [−Fi(−ri) + ci] is a monotone one-to-one transformation of the
utility Ui(ri, ci), we get the following equivalences

0 ∈ argmax
δ∈RK

Ui(r̄i + δ, c̄i − δ · µ̄) iff 0 ∈ argmin
δ∈RK

[
Fi(−r̄i − δ)− c̄i + δ · µ̄

]
iff ∇Fi(−r̄i) = µ̄ ,

where the last step follows by setting the gradient of the objective to zero at δ = 0. Thus, we have
that (r̄, c̄, µ̄) is a market-clearing equilibrium iff

N∑
i=1

r̄i = 0,

N∑
i=1

c̄i = 0, ∇Fi(−r̄i) = µ̄ for all i ∈ [N ]. (14)

We now analyze the minimization of the potential
∑
i Fi(−ri) subject to the market clearing con-

straint
∑
i ri = 0. We express this constraint using the convex indicator function I{·}, which equals

zero if its argument is true and∞ when its false. We also introduce the matrix A ∈ RK×NK with the
block structure A := (IK IK · · · IK) where IK is the K ×K identity matrix. Thus, A implements
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the summation over the blocks ri, since Ar =
∑
i ri. With this notation, the potential minimization

problem can be written as

min
r∈RNK

[ N∑
i=1

Fi(−ri)︸ ︷︷ ︸
f(−r)

+ I{Ar = 0}︸ ︷︷ ︸
g(Ar)

]
, (15)

where we introduced the functions f(r) =
∑
i Fi(ri) and g(s) = I{s = 0} for s ∈ RK . Now, if

certain conditions are satisfied, we can apply Fenchel’s duality (Theorem A.4) and obtain that the
value of the primal (15) equals the value of the following dual problem

max
µ∈RK

[
−f∗(Aᵀµ)− g∗(µ)

]
,

which is equivalent to

max
µ∈RK

[
−

N∑
i=1

F ∗i (µ)
]
, (16)

because g∗(µ) = 0 and f∗(y) =
∑
i F
∗
i (yi), for y ∈ RNK , so f∗(Aᵀµ) =

∑
i F
∗
i (µ). It remains

to verify that the preconditions of Theorem A.4 are satisfied. First, we need to check that there exists
r such that Ar ∈ ri(dom g). Since ri(dom g) = {0}, the vector r = 0 satisfies this. We also need to
check that there exist µ such that Aᵀµ ∈ ri(dom f∗), which for our choices of A and f is equivalent
to µ ∈ ri(domF ∗i ) for all i ∈ [N ]. Since domF ∗i = domT ∗ =M, any µ ∈M satisfies this. Thus,
conclusions of Theorem A.4 hold.

The conclusions state that both the primal and the dual are attained, and r̂ and µ̂ are their solutions if
and only if Aᵀµ̂ = ∇f(−r̂) and µ̂ ∈ ∂g(Ar̂). From the definitions of A and f , the first condition is
equivalent to

µ̂ = ∇F (−r̂i) = ∇T (θ̃i − air̂i) .

The second condition is by conjugacy equivalent to Ar̂ = ∇g(µ̂) = 0, i.e.,
N∑
i=1

r̂i = 0 .

This establishes that r̂ and µ̂ are solutions to the primal (15) and dual (16), if and only if they satisfy
the conditions in (14), i.e., if and only if they form a market-clearing equilibrium. This proves the
theorem except for the uniqueness of the equilibrium prices µ̄. The uniqueness follows from the fact
that µ̄ minimizes

∑
i F
∗
i (µ), and the functions F ∗i are strongly convex on their domainM, which in

turn follows because the functions Fi have Lipschitz gradients (a property they inherit from the log
partition function T ).

B.2 Proof of Theorem 4.2

We prove a more explicit version of the theorem:
Theorem B.2. Under the exponential trader model, (r?, c?,µ?) is a market-maker equilibrium for
cost function Cb if and only if, for the market state s? =

∑N
i=1 r

?
i ,

r? ∈ argmin
r

F (r),

N∑
i=1

c?i = Cb(0)−Cb(s?), and µ? = ∇Cb(s?) = ∇T (θ̃i−air?i ) ∀i ∈ [N ].

A market-maker equilibrium always exists. Furthermore, for any market-maker equilibrium, the
equilibrium prices are unique solutions of the following dual problem:

µ? = argmin
µ∈RK

[∑
i

F ∗i (µ) + bC∗(µ)
]
.

Proof. We proceed similarly to the proof of Theorem B.1. We first express the market-maker
equilibrium definition using trader potentials instead of trader utilities:

0 ∈ argmax
δ∈RK

Ui

(
r?i + δ, c?i − Cb(s? + δ) + Cb(s

?)
)
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iff 0 ∈ argmin
δ∈RK

[
Fi(−r?i − δ)− c?i + Cb(s

? + δ)− Cb(s?)
]

iff ∇Fi(−r?i ) = ∇Cb(s?) .

Thus, we have that (r?, c?,µ?) is a market-maker equilibrium iff, for the market state s? =
∑N
i=1 r

?
i ,

N∑
i=1

c?i + Cb(s
?)− Cb(0) = 0, µ? = ∇Cb(s?), ∇Fi(−r̄i) = ∇Cb(s?) for all i ∈ [N ]. (17)

We next use Fenchel’s duality to analyze minimization of the potential F (r) =
∑
i Fi(−ri) +

Cb(
∑
i ri). We again define A := (IK IK · · · IK) and f(r) :=

∑
i Fi(ri), but in this case set

g(s) = Cb(s). Therefore, by Theorem A.4, we obtain the following correspondence between the
primal and the dual:

min
r∈RNK

[ N∑
i=1

Fi(−ri) + Cb(Ar)
]

= min
r∈RNK

[
f(−r) + g(Ar)

]
(18)

= max
µ∈RK

[
−f∗(Aᵀµ)− g∗(µ)

]
= max
µ∈RK

[
−

N∑
i=1

F ∗i (µ)− bC∗(µ)
]
, (19)

where we used the fact that g(r) = bC(r/b) and therefore g∗(µ) = bC∗(r) (this is immediate from
the definition of conjugate). It remains to check the preconditions of Theorem A.4. First, we need to
check that there exists r such that Ar ∈ ri(dom g). Since ri(domCb) = RK , this is vacuous and any
vector r satisfies this. We also need to check that there exist µ such that Aᵀµ ∈ ri(dom f∗), which is
equivalent to µ ∈ ri(domF ∗i ) for all i ∈ [N ]. Since domF ∗i = domT ∗ =M, any µ ∈M satisfies
this. Thus, conclusions of Theorem A.4 hold.

The conclusions state that both the primal and the dual are attained, and r̂ and µ̂ are their solutions if
and only if Aᵀµ̂ = ∇f(−r̂) and µ̂ = ∇g(Ar̂). As in the proof of Theorem B.1, for our A and f ,
the first condition is equivalent to

µ̂ = ∇F (−r̂i) = ∇T (θ̃i − air̂i) .

The second condition, g(s) = Cb(s), is

µ̂ = ∇Cb
( N∑
i=1

r̂i
)
.

This establishes that r̂ and µ̂ are solutions to the primal (18) and dual (19), if and only if they satisfy
the conditions in (17), i.e., if and only if they form a market-maker equilibrium. It remains to show
that µ? is unique. As before this follows by strong convexity of F ∗i and the fact that µ? minimizes∑
i F
∗
i (µ) + bC∗(µ).

B.3 Proof of Theorem 4.3

By Theorem 4.1, µ̄ = argminµ∈RK [
∑
i F
∗
i (µ)] and from the first-order optimality

0 ∈ ∂
[∑
i

F ∗i (µ̄)
]
.

SinceFi(s) = 1
ai
T (θ̃i+ais), the properties of the conjugates (Theorems 12.3 and 16.1 of Rockafellar

[15]) yield

F ∗i (µ) =
1

ai

(
T ∗(µ)− θ̃i · µ

)
.

Thus, ∑
i

F ∗i (µ̄) =
[∑
i

1/ai

]
T ∗(µ)−

[∑
i

θ̃i/ai

]
· µ

19



=⇒ ∂
[∑
i

F ∗i (µ̄)
]

=
[∑
i

1/ai

]
∂T ∗(µ)−

[∑
i

θ̃i/ai

]
.

Therefore, 0 ∈ ∂[
∑
i F
∗
i (µ̄)] iff ∑

i θ̃i/ai∑
i 1/ai

∈ ∂T ∗(µ̄) ,

which is equivalent to

µ̄ = ∇T

(∑
i θ̃i/ai∑
i 1/ai

)
= ∇T (θ̄) = Eθ̄ [φ(ω)] ,

where θ̄ :=
(∑

i θ̃i/ai
)
/
(∑

i 1/ai
)

and the last equality follows from the properties of the log
partition function.

B.4 Sampling Error

The market’s forecasting ability is fundamentally limited by the information present among the
population of traders, and the traders’ risk attitudes in communicating their information via trades. In
this appendix, we quantify these sources of error by analyzing the discrepancy ‖µtrue − µ̄‖ between
the true expected security values and the market-clearing equilibrium prices.

The characterization of µ̄ in Theorem 4.3 reflects two possible sources of error. First, the beliefs
θ̃i are typically noisy signals of the ground truth. Second, beliefs are weighted according to risk
aversions ai, which can skew the prices. To formalize the latter concept, we write

Neff =

(∑
i a
−1
i

)2(∑
i a
−2
i

)
to denote the effective sample size of the weighted average. When risk aversion coefficients are equal
across agents, we have Neff = N , and when one agent has much smaller risk aversion than the others,
Neff → 1. As the next result shows, the magnitude of the sampling error depends on the effective
sample size as it relates to the number of securities and the variance in trader beliefs.

Theorem B.3. Under the exponential trader model, assume that the beliefs θ̃i are drawn indepen-
dently for each trader i ∈ [N ] with mean E[θ̃i] = θtrue and covariance V(θ̃i) � σ2IK for some
σ2 ≥ 0. For any δ ∈ (0, 1), the market-clearing prices µ̄ satisfy, with probability at least 1 − δ,

‖µ̄− µtrue‖ ≤ O
(
σ
√
K/(Neff δ)

)
. Furthermore, assuming that each ai lies in a bounded range

[amin, amax] where amin, amax > 0, we have that Neff →∞ as N →∞.

Proof. We write wi = a−1
i /(

∑
j a
−1
j ) for the weights in the average. Note that Neff = (

∑
i w

2
i )
−1.

By the fact that beliefs are independent, we have:

E

[
N∑
i=1

wiθ̃i

]
= θtrue and V

(
N∑
i=1

wiθ̃i

)
� N−1

eff σ
2IK .

By applying the multidimensional version of Chebyshev’s inequality, we therefore have

Pr

(∥∥∥∥∥
N∑
i=1

wiθ̃i − θtrue

∥∥∥∥∥ > t

)
≤ Kσ2

Neff t2
.

The result then follows from the fact that µ̄ = ∇T (
∑
i wiθ̃i) by Theorem 4.3, the fact that µtrue =

∇T (θtrue), and the Lipschitz continuity of∇T .

For the final claim, we have

Neff =

(∑
i a
−1
i

)2(∑
i a
−2
i

) ≥ (∑i a
−1
max

)2(∑
i a
−2
min

) = N(amin/amax)2.
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Theorem B.3 implies that as the number of traders grows large, the market prices µ̄ converge to the
ground truth µtrue in probability. It is important to note that this relies on Theorem 4.3, which is an
artifact of exponential utility—for general utilities, market-clearing prices may not be consistent in
the statistical sense, and this extra discrepancy would need to be quantified in the error decomposition.

For a finite number of traders, the bound in Theorem B.3 increases with the belief variance and the
number of securities, as one would expect. It decreases with the effective sample size: the information
incorporated into market-clearing prices improves when risk aversions are more uniform, and when
the number of agents increases.

C Proofs and Additional Results for Section 5

C.1 Proof of Theorem 5.1

Since gradients ∇Fi are Lipschitz, the functions F ∗i are strongly convex over their domain, which
isM. Therefore, their sum G(µ) :=

∑
i F
∗
i (µ) is also strongly convex onM with some strong

convexity constant σ. Since µ̄ ∈ riM, G is subdifferentiable at µ̄, and since µ̄ minimizes G, any
element g ∈ ∂G(µ̄) satisfies gᵀ(µ − µ̄) = 0 for all µ ∈ M. This together with strong convexity
yields the lower bound

∑
i F
∗
i (µ) ≥

∑
i F
∗
i (µ̄)+ 1

2σ‖µ−µ̄‖
2. At the same time, C∗(µ) is bounded

below by a linear function of the form C∗(µ̄) + uᵀ(µ− µ̄), because C∗ is subdifferentiable at µ̄
since µ̄ ∈ riM⊆ ri domC∗.

Now from the optimality of µ? and the lower bounds on
∑
i F
∗
i (µ) and C∗(µ), we have∑

i

F ∗i (µ̄) + bC∗(µ̄) ≥
∑
i

F ∗i (µ?) + bC∗(µ?)

≥
(∑
i

F ∗i (µ̄) +
1

2
σ‖µ? − µ̄‖2

)
+ b
(
C∗(µ̄) + uᵀ(µ? − µ̄)

)
=⇒ ‖µ? − µ̄‖2 ≤ −2b

σ
uᵀ(µ? − µ̄)

=⇒ ‖µ? − µ̄‖ ≤ 2b

σ
‖u‖ .

C.2 A Remark on Partial and Incoherent Beliefs

The proof of Theorem 5.1 crucially relies on the fact that dom(
∑
i F
∗
i ) =M⊆ domC∗, i.e., that

the cost functionC does not force any additional constraints onµ beyond those already represented by
the trader potentials Fi. This is natural in our setting, because trader utilities restrict the equilibrium
prices to lie in the smallest set including all coherent price vectors,M. This property of the trader
utilities means that the traders would be always willing to trade if the prices were outside the setM.
If the trader utilities did not have this property, for instance, if each trader was interested in only a
few securities, or their beliefs were incoherent, then this result might not hold. In such a setting, we
might end up with µ̄ 6∈ domC∗. At best, we could then show that

lim
b→0

µ?(b;C) = argmin
µ∈domC∗

[
N∑
i=1

F ∗i (µ)

]
.

This, of course, agrees with Theorem 5.1 for our specific setting when the restriction to domC∗

creates no additional constraints, because dom(
∑
i F
∗
i ) ⊆ domC∗.

C.3 Proof of Theorem 5.6

The proof will proceed by analyzing the Taylor expansion of the dual objective characterizing µ?.
However, the functions F ∗i and C∗ might not be differentiable in the standard sense, because their
domains might have empty interiors (and only non-empty relative interiors). Fortunately, Fi and C
are convex+, so by Proposition A.9 there exist convex+ functions Gi and R that coincide with F ∗i
and C∗ on aff domF ∗i and aff domC∗. These functions are three times continuously differentiable,
which is what we need to obtain the third order Taylor expansion.
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Note that domF ∗i = M for all i ∈ [N ]. Let A denote the affine hull of M = domF ∗i . Since
M⊆ domC∗, the dual in Eq. (6) is equivalent to

µ? = argmin
µ∈A

[
N∑
i=1

Gi(µ) + bR(µ)

]
. (20)

Note that µ̄ ∈ riM, because by the definition µ̄ = ∇T (s̄) for some s̄ and the gradients of T are
in riM. Thus, functions Gi and R are differentiable and have Hessians at µ̄ (by convexity+). We
apply the Taylor expansion at µ̄ to analyze the value of the objective at µ?. Let G(µ) :=

∑
iGi(µ).

By Mean Value Theorem, we have

∇G(µ?) = ∇G(µ̄) +∇2G(µG)(µ̄− µ?)
∇R(µ?) = ∇R(µ̄) +∇2R(µR)(µ̄− µ?)

for some µG and µR on the line segment connecting µ? with µ̄. By Theorem 5.1, ‖µ? − µ̄‖ = O(b)
as b → 0, and thus also ‖µG − µ̄‖ = O(b) and ‖µR − µ̄‖ = O(b). By the continuity of third
derivatives of G and R in the neighborhood of µ̄, the Hessians of G and R are Lipschitz in some
neighborhood of µ̄, which means that

∇2G(µG) = ∇2G(µ̄) + ∆G

∇2R(µR) = ∇2R(µ̄) + ∆R

where ∆G and ∆R are matrices with ‖∆G‖ = O(‖µG− µ̄‖) = O(b) and ‖∆R‖ = O(‖µR− µ̄‖) =
O(b).

We next calculate Hessians∇2G(µ̄) and ∇2R(µ̄). First, note that

∇2G(µ) =
∑
i

∇2Gi(µ) ,

and by Proposition A.9, we have

∇2Gi(µ) = H+
Fi

(µ) = (1/ai)H
+
T (µ) ,

where the last equality follows, because HFi(µ) = aiHT (µ) from the definition of Fi. Thus,

∇2G(µ) =
∑
i

(1/ai)H
+
T (µ) = (N/ā)H+

T (µ) .

We also have
∇2R(µ) = H+

C (µ) .

By Proposition A.9, the affine space A is parallel to G(T ). From the optimality of µ? in (20), we
have

(
∇G(µ?) + b∇R(µ?)

)
⊥ G(T ). Thus, writing P for the projection on G(T ), we obtain

0 = P
(
∇G(µ?) + b∇R(µ?)

)
= P∇G(µ̄) + P∇2G(µ̄)(µ? − µ̄) + P∆G(µ? − µ̄)︸ ︷︷ ︸

εG

+bP∇R(µ̄) + bP
[
∇2R(µ̄) + ∆R

]
(µ? − µ̄)︸ ︷︷ ︸

εR

(21)

= ∇2G(µ̄)(µ? − µ̄) + bP∇R(µ̄) + εG + εR . (22)

In Eq. (21), the terms εG and εR have norms O(b2), because ‖µ? − µ̄‖, ‖∆G‖ and ‖∆R‖ are
all at most O(b). In Eq. (22), we use that P∇G(µ̄) = 0 by optimality of µ̄. We also use that
P∇2G(µ̄) = ∇2G(µ̄), because range(∇2G(µ̄)) = G(T ).

Since (µ? − µ̄) ∈ G(T ), multiplying Eq. (22) by [∇2G(µ̄)]+, we obtain

µ? − µ̄+ [∇2G(µ̄)]+(εG + εR)︸ ︷︷ ︸
ε

= −b[∇2G(µ̄)]+P∇R(µ̄)

= −b(ā/N)HT (µ̄)P∇R(µ̄)

= −b(ā/N)HT (µ̄)∂C∗(µ̄) ,

where the last step follows, because HT (µ̄)P = HT (µ̄), and by Proposition A.9, ∂C∗(µ̄) =
∇R(µ̄) + G⊥(C), and G⊥(C) ⊆ G⊥(T ). The theorem now follows by noting that ‖ε‖ = O(b2).

22



C.4 Proof of Theorem 5.7

We prove a slightly stronger statement that holds not only for the bias measured under the Euclidean
norm, but also when it is measured by the KL divergence. We use a more compact notation µIND(b)
and µLMSR(b) for µ?(b; IND) and µ?(b; LMSR).
Theorem C.1. For any µ̄ there exist η ∈ [1, 2] and ηKL ∈ [1, 2] such that for all b∥∥µIND(b/η)− µ̄

∥∥ =
∥∥µLMSR(b)− µ̄

∥∥+O(b2) , (23)

KL
(
µIND(b/ηKL)

∥∥ µ̄) = KL
(
µLMSR(b)

∥∥ µ̄)+O(b3) , (24)

KL
(
µ̄
∥∥ µIND(b/ηKL)

)
= KL

(
µ̄
∥∥ µLMSR(b)

)
+O(b3) . (25)

For these same η and ηKL, we also have, for all b,

‖µIND(b)− µ̄‖ = η‖µLMSR(b)− µ̄‖ ±O(b2) , (26)

KL
(
µIND(b)

∥∥ µ̄) = η2
KLKL

(
µLMSR(b)

∥∥ µ̄)+O(b3) , (27)

KL
(
µ̄
∥∥ µIND(b)

)
= η2

KLKL
(
µ̄
∥∥ µLMSR(b)

)
+O(b3) . (28)

Proof. Without loss of generality, we assume that the coordinates of µ̄ are sorted in the non-increasing
order, i.e., µ̄1 ≥ µ̄2 ≥ · · · ≥ µ̄K .

Our proof is based on Theorem 5.6, which states that

µ?(b;C)− µ̄ = b
(
− ā

N
HT (µ̄)∂C∗(µ̄)

)
+ εb , where ‖εb‖ = O(b2). (29)

Let H := HT (µ̄) = (diagk∈[K] µ̄k) − µ̄µ̄ᵀ, and let sLMSR and sIND denote arbitrary elements of
∂C∗(µ̄) for the costs LMSR and IND, respectively. Then Eq. (29) yields∥∥µIND(b)− µ̄

∥∥ = b
ā

N
· ‖HsIND‖+O(b2) ,

∥∥µLMSR(b)− µ̄
∥∥ = b

ā

N
· ‖HsLMSR‖+O(b2) ,

so Eqs. (23) and (26) follow by setting

η :=
‖HsIND‖
‖HsLMSR‖

=

(
(sIND)ᵀH2sIND

(sLMSR)ᵀH2sLMSR

)1/2

(30)

and it remains to prove that η ∈ [1, 2]. (We do so below.)

For KL divergence results, we begin by using the fact that all entries of µ̄ are positive so both
f1(µ) := KL (µ‖µ̄) and f2(µ) := KL (µ̄‖µ) have bounded and continuous third derivatives in a
sufficiently small neighborhood of µ̄. Therefore, by Taylor’s theorem, we obtain in this neighborhood

KL (µ‖µ̄) = f1(µ) = f1(µ̄) +∇f1(µ̄)ᵀ(µ− µ̄)︸ ︷︷ ︸
=0

+(µ− µ̄)ᵀ∇2f1(µ̄)ᵀ(µ− µ̄) +O(‖µ− µ̄‖3)

KL (µ̄‖µ) = f2(µ) = f2(µ̄) +∇f2(µ̄)ᵀ(µ− µ̄)︸ ︷︷ ︸
=0

+(µ− µ̄)ᵀ∇2f2(µ̄)ᵀ(µ− µ̄) +O(‖µ− µ̄‖3) .

By direct calculation,∇2f1(µ̄) = ∇2f2(µ̄) = diagk∈[K](µ̄k)−1 =: M . Now, by Theorem 5.1, we
have ‖µ?(b;C)− µ̄‖ = O(b), and so we obtain

KL
(
µ?(b;C)

∥∥ µ̄) =
(
µ?(b;C)− µ̄

)ᵀ
M
(
µ?(b;C)− µ̄

)
+O(b3) (31)

KL
(
µ̄
∥∥ µ?(b;C)

)
=
(
µ?(b;C)− µ̄

)ᵀ
M
(
µ?(b;C)− µ̄

)
+O(b3) . (32)

We next invoke Eq. (29), but before we do so, note that since H = (diagk∈[K] µ̄k) − µ̄µ̄ᵀ and
M = diagk∈[K](µ̄k)−1, we have HMH = H . Now, invoking Eq. (29) and plugging it into Eq. (31),
we obtain

KL
(
µIND(b)

∥∥ µ̄) = b2
ā2

N2
· (sIND)ᵀHsIND +O(b3)

KL
(
µLMSR(b)

∥∥ µ̄) = b2
ā2

N2
· (sLMSR)ᵀHsLMSR +O(b3)

23



and similarly for KL (µ̄‖·). Therefore Eqs. (24), (25), (27) and (28) follow by setting

ηKL :=

(
(sIND)ᵀHsIND

(sLMSR)ᵀHsLMSR

)1/2

(33)

and it remains to prove that ηKL ∈ [1, 2].

In the remainder of the proof, we show that η and ηKL defined in Eqs. (30) and (33) are in [1, 2].
We proceed by Lemma C.2 (see below), which shows that 1 ≤ (vᵀHv)/(sᵀHs) ≤ 4 and 1 ≤
(vH2v)/(sH2s) ≤ 4 for any sorted vectors s and v, whose differences between consecutive
coordinates are within a factor-of-two of each other. We only need to show that s = sLMSR and
v = sIND satisfy this condition.

Recall that sLMSR and sIND can be chosen as arbitrary elements of ∂C∗(µ̄) for the costs LMSR and IND.
From the properties of conjugates, s ∈ ∂C∗(µ̄) iff∇C(s) = µ̄, so we can obtain sLMSR and sIND by
inverting the gradients of LMSR and IND:

sLMSRk = log µ̄k , sINDk = log
(

µ̄k
1−µ̄k

)
for all k ∈ [K].

Note that both sLMSRk and sINDk are monotone transformations of µ̄k, and since µ̄ is sorted, so must be
sLMSR and sIND. We next show that the differences between the consecutive coordinates of sLMSR and
sIND are within a factor two of each other. For any k ∈ [K − 1], we have

sLMSRk − sLMSRk+1 = log

(
µ̄k
µ̄k+1

)
and we also have

sINDk − sINDk+1 = log

(
µ̄k
µ̄k+1

· 1− µ̄k+1

1− µ̄k

)
= log

(
µ̄k
µ̄k+1

· ck + µ̄k
ck + µ̄k+1

)
= log

(
µ̄k
µ̄k+1

)
+ log

(
ck + µ̄k
ck + µ̄k+1

)
,

where ck := 1− µ̄k − µ̄k+1 ≥ 0. Since µ̄k ≥ µ̄k+1, we therefore have

0 ≤ log

(
ck + µ̄k
ck + µ̄k+1

)
≤ log

(
µ̄k
µ̄k+1

)
and therefore

sLMSRk − sLMSRk+1 ≤ sINDk − sINDk+1 ≤ 2(sLMSRk − sLMSRk+1) .

Thus, Lemma C.2 with s = sLMSR and v = sIND and H = HC(µ̄) proves that indeed η ∈ [1, 2] and
ηKL ∈ [1, 2].

Lemma C.2. Let µ ∈ RK be a sorted probability vector, i.e., µ1 ≥ µ2 ≥ · · · ≥ µK , and let
H = (diagk∈[K] µk) − µµᵀ be the covariance matrix of the associated multinomial distribution.
Let s, v be sorted vectors in RK , i.e., s1 ≥ · · · ≥ sK and v1 ≥ · · · ≥ vK , such that sk − sk+1 ≤
vk − vk+1 ≤ 2(sk − sk+1). Then the following two statements hold

sᵀHs ≤ vᵀHv ≤ 4 · sᵀHs , sᵀH2s ≤ vᵀH2v ≤ 4 · sᵀH2s .

Proof. The proof proceeds in several steps.

Step 1: Decomposition of s and v into an alternate basis. We begin by rewriting s and v in
the basis consisting of vectors zk ∈ RK , for k = 1, . . . ,K, where each zk has ones on positions 1
through k, and zeros on the remaining positions, i.e., zkj = 1{j ≤ k}. Let

ak := sk − sk+1 and bk := vk − vk+1 for k = 1, . . . ,K − 1.

The vectors s and v can then be written as

s = sKzK +

K−1∑
k=1

akzk , v = vKzK +

K−1∑
k=1

bkzk (34)
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where
0 ≤ ak ≤ bk ≤ 2ak . (35)

From the definition of H , we have HzK = 0 and so

sᵀHs = (s′)ᵀHs′ , vᵀHv = (v′)ᵀHv′ , sᵀH2s = (s′)ᵀH2s′ , vᵀH2v = (v′)ᵀH2v′ ,
(36)

where s′ and v′ exclude the basis element zK , i.e.,

s′ =

K−1∑
k=1

akzk , v′ =

K−1∑
k=1

bkzk . (37)

Therefore, we have the decomposition

sᵀHs = (s′)ᵀHs′ =

(
K−1∑
k=1

akzk

)ᵀ

H

(
K−1∑
`=1

a`z`

)
=

∑
k,`∈[K−1]

aka`(z
ᵀ
kHz`) , (38)

and similar decompositions for vᵀHv, sᵀH2s, and vᵀH2v.

In the remainder of the proof we show that for all k, ` ∈ [K − 1], we have zᵀkHz` ≥ 0 and
zᵀkH

2z` ≥ 0, which together with the decomposition in Eq. (38) and similar decompositions implied
by Eq. (36) will imply the theorem, thanks to the fact that 0 ≤ ak ≤ bk ≤ 2ak.

Step 2: zᵀkHz` ≥ 0. Fix k, ` ∈ [K] and assume k ≤ `. Then

zᵀkHz` =
∑
j∈[K]

µjzkjz`j − (zᵀkµ)(µᵀz`)

=
(∑
j≤k

µj
)

︸ ︷︷ ︸
µ
[1]
k

−
(∑
j≤k

µj
)

︸ ︷︷ ︸
µ
[1]
k

(∑
j≤`

µj
)

︸ ︷︷ ︸
µ
[1]
`

= µ
[1]
k

(
1− µ[1]

`

)
≥ 0 . (39)

Above, we introduced notation for partial sums

µ
[d]
k :=

k∑
j=1

µdj ,

and used the fact that µ[1]
` ≤ 1, because entries of µ are non-negative and sum to one. This proves

that zᵀkHz` ≥ 0 when k ≤ `. The case k ≥ ` follows by symmetry of H .

Step 3: zᵀkH
2z` ≥ 0. Again, let k, ` ∈ [K] and k ≤ `. First note that

H2 = (diagj∈[K] µ
2
j )−

∑
j∈[K]

µ2
jejµ

ᵀ −
∑
j∈[K]

µ2
jµe

ᵀ
j + µ

[2]
K µµ

ᵀ

where ej is the jth vector of the standard basis and we used our partial sum notation to substitute µ[2]
K

for ‖µ‖2. Thus, we can write

zᵀkH
2z` = µ

[2]
k − µ

[2]
k µ

[1]
` − µ

[1]
k µ

[2]
` + µ

[2]
K µ

[1]
k µ

[1]
`

≥ µ[2]
k − µ

[2]
k µ

[1]
` − µ

[1]
k µ

[2]
` + µ

[2]
` µ

[1]
k µ

[1]
` (40)

=
(
µ

[2]
k − µ

[2]
` µ

[1]
k

)(
1− µ[1]

`

)
≥
(
µ

[2]
k µ

[1]
` − µ

[2]
` µ

[1]
k

)(
1− µ[1]

`

)
(41)

= µ
[1]
k µ

[1]
`

(
µ

[2]
k

µ
[1]
k

−
µ

[2]
`

µ
[1]
`

)(
1− µ[1]

`

)
≥ 0 . (42)
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In Eq. (40), we used the bound µ[2]
K ≥ µ

[2]
` . In Eq. (41), we used that 0 ≤ µ[1]

` ≤ 1, so µ[2]
k (1−µ[1]

` ) ≥
µ

[2]
k µ

[1]
` (1 − µ[1]

` ). The final inequality uses the fact that µ[1]
` ≤ 1 and µ[2]

k /µ
[1]
k ≥ µ

[2]
` /µ

[1]
` . The

latter clearly holds if ` = k or µ[1]
` = µ

[1]
k (in which case µj = 0 for k < j ≤ ` and thus µ[2]

` = µ
[2]
k ).

We now argue that µ[2]
k /µ

[1]
k ≥ µ

[2]
` /µ

[1]
` also holds when k < ` and µk+1 > 0. We introduce the

interval sum notation

µ
[d]
k+1:` :=

∑̀
j=k+1

µdj = µ
[d]
` − µ

[d]
k .

We begin by writing µ[2]
` /µ

[1]
` as the following convex combination

µ
[2]
`

µ
[1]
`

=
µ

[2]
k + µ

[2]
k+1:`

µ
[1]
`

=
µ

[1]
k

µ
[1]
`

·
µ

[2]
k

µ
[1]
k

+
µ

[1]
k+1:`

µ
[1]
`

·
µ

[2]
k+1:`

µ
[1]
k+1:`

= λ ·
µ

[2]
k

µ
[1]
k

+ (1− λ) ·
µ

[2]
k+1:`

µ
[1]
k+1:`

, (43)

where we write λ := µ
[1]
k /µ

[1]
` . The expressions weighted in Eq. (43) by λ and 1− λ can be viewed

as weighted averages of µj , with the weights also equal to µj . Since µ is sorted, we have

µ
[2]
k

µ
[1]
k

=

k∑
j=1

µj

µ
[1]
k

· µj ≥ µk and
µ

[2]
k+1:`

µ
[1]
k+1:`

=
∑̀
j=k+1

µj

µ
[1]
k+1:`

· µj ≤ µk+1 ,

so
µ

[2]
k

µ
[1]
k

≥ µk ≥ µk+1 ≥
µ

[2]
k+1:`

µ
[1]
k+1:`

.

Plugging this back into Eq. (43), we obtain

µ
[2]
`

µ
[1]
`

= λ ·
µ

[2]
k

µ
[1]
k

+ (1− λ) ·
µ

[2]
k+1:`

µ
[1]
k+1:`

≤
µ

[2]
k

µ
[1]
k

,

finishing the proof of Eq. (42), showing that zᵀkH
2z` ≥ 0 when k ≤ `. The case k ≥ ` again follows

by symmetry of H2.

Step 4: Putting it all together. LetM be either the matrixH orH2. Since in both cases zᵀkMz` ≥
0, the inequalities 0 ≤ ak ≤ bk ≤ 2ak imply that∑

k,`∈[K−1]

aka`(z
ᵀ
kMz`) ≤

∑
k,`∈[K−1]

bkb`(z
ᵀ
kMz`) ≤ 4 ·

∑
k,`∈[K−1]

aka`(z
ᵀ
kMz`) .

This is by the decomposition in Eq. (38) and analogous decompositions for vᵀHv, sᵀH2s, and
vᵀH2v equivalent to

sᵀMs ≤ vᵀMv ≤ 4 · sᵀMs ,

proving the lemma.

D Proofs and Additional Results for Section 6

D.1 Trader Dynamics

To study convergence properties of the market, we need to posit a model of how the traders arrive in
the market and which securities they buy or sell, as a function of their current holdings of securities
ri and cash ci, and the current market state s. We refer to such a model as trader dynamics. We
consider two simple trader dynamics:

• All-securities dynamics (ASD). In each round, a trader i ∈ [N ] is chosen uniformly at random.
This trader then buys a bundle δ ∈ RK which optimizes her utility, i.e., if the current state
of the market is s and the current cash and security allocations of the trader are ci and ri,
then the trader picks δ maximizing Ui(ri + δ, ci − Cb(s+ δ) + Cb(s)).
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• Single-security dynamics (SSD). In each round, a trader i ∈ [N ] is chosen uniformly at
random and this trader picks a security k ∈ [K] uniformly at random. The trader then buys
a quantity δ ∈ R of the kth security to optimize her utility. Let ek be the kth vector of the
standard basis. Then the trader picks δ maximizing Ui(ri+δek, ci−Cb(s+δek)+Cb(s)).

The all-securities dynamics has been recently studied by Frongillo and Reid [9]. This model assumes
that traders are able to calculate the optimal bundle over all securities, which may not be a realistic
assumption when the number of securities is large. The single-security dynamics, in which we
only assume that traders can optimize over a single security at a time, is more appropriate for
computationally limited traders.

We formalize both dynamics in a unified analysis via blocks. Specifically, we assume that the
coordinates [N ]× [K] are partitioned into blocks α ∈ A, where α ⊆ [N ]× [K], such that

⊎
α∈A α =

[N ]× [K]. Blocks are disjoint subsets of coordinates of the overall allocation vector r ∈ RNK . We
further assume that each block α ∈ A is fully contained within coordinates corresponding to some
trader i. Thus each block α can be written as {i} × β for some i ∈ [N ] and β ⊆ [K]. For ASD, we
have N blocks A =

{
{i} × [K] : i ∈ [N ]

}
. For SSD, we have NK blocks A =

{
{i} × {k} : i ∈

[N ], k ∈ [K]
}

.

Let Eα ∈ RNK×|α| be the embedding matrix for the block α. It maps |α|-dimensional vectors
u ∈ R|α| to vectors v ∈ RNK that are zero everywhere except for the block α, where they coincide
with u. The range of Eα is exactly the set of vectors that are zero outside the block α. Its transpose
Eᵀ
α projects vectors from RNK to R|α| by removing all coordinates outside the block α. For any

subset β ⊆ [K], we similarly define the embedding matrices Eβ ∈ RK×|β|.
The next theorem shows that optimizing utility, as in ASD or SSD, corresponds to the greedy optimiza-
tion of the potential function F along the coordinates of the corresponding block:

Theorem D.1. Let α = {i} × β, where β ⊆ [K], be a block of coordinates controlled by trader i.
Assume that trader i has security bundle ri and ci units of cash, and the current market state is s.
Then

argmax
δ∈range(Eβ)

Ui(ri + δ, ci − Cb(s+ δ) + Cb(s)) = argmin
δ∈range(Eβ)

F (r−i, ri + δ) ,

where r−i denotes the concatenation of rj across j 6= i.

Proof. The proof is immediate from the definition of the potential F .

D.2 Relationship between the Suboptimality of Potential and the Convergence Error

In this appendix, we relate the suboptimality of the objective to several other quantities used in
analysis of convergence error. We begin by defining these quantities.

Given an allocation vector r ∈ RNK , the associated market price (the gradient of the cost) will be
denoted µ0(r) and the gradients of trader potentials will be denoted µi(r):

µ0(r) := ∇Cb
(∑N

i=1 ri
)

= ∇C
(∑N

i=1 ri/b
)

µi(r) := ∇Fi(−ri) = ∇T (θ̃i − airi) for i ∈ [N ]

where T is the log partition function. As in the body of the paper, let r? denote an arbitrary minimizer
of F and let F ? denote the minimum value of F . From Theorem B.2, at any equilibrium allocation
r?,

µ0(r?) = µ? and µi(r
?) = µ? for all i ∈ [N ].

Let rt denote the allocation vector after the tth trade, and µt := µ0(rt) be the corresponding market
price. We next show that to bound the convergence error ‖µ0(rt) − µ?‖ it suffices to bound the
suboptimality of the current objective value, F (rt)− F ?. In fact, we show that the suboptimality
F (rt) − F ? simultaneously also bounds ‖µi(rt) − µ?‖, which can be viewed as a measure of
suboptimality of individual traders and will be used in our later analysis. We first prove this result
when C has a Lipschitz-continuous gradient and then for the case when C is convex+.

27



Theorem D.2. If∇C has the Lipschitz constant LC then for any r ∈ RNK

F (r)− F ? ≥ b

2LC
· ‖µ0(r)− µ?‖2 +

1

2LT
·
N∑
i=1

1

ai
‖µi(r)− µ?‖2 ,

where LT is the Lipschitz constant of∇T .

Proof. First note that since ∇C and ∇T have Lipschitz constants LC and LT , their conjugates
are strongly convex with constants 1/LC and 1/LT . Further, by the properties of conjugates (see
Theorems 12.3 and 16.1 of Rockafellar [15]), the definitions of Fi and Cb yield

F ∗i (µ) =
1

ai

(
T ∗(µ)− θ̃i · µ

)
, C∗b (µ) = bC∗(µ) ,

and so F ∗i and C∗b are strongly convex, respectively, with constants 1/(aiLT ) and b/LC .

We now invoke the duality result of Theorem B.2 to prove our theorem. Specifically, from Eqs. (18)
and (19), we have

F (r?) = −
N∑
i=1

F ∗i (µ?)− C∗b (µ?) .

Therefore, for any r, we have

F (r)− F ? =

N∑
i=1

Fi(−ri) + Cb
(∑
i

ri
)

+

N∑
i=1

F ∗i (µ?) + C∗b (µ?)

=

N∑
i=1

[
Fi(−ri) + F ∗i (µ?) + rᵀi µ

?
]

+
[
Cb
(∑
i

ri
)

+ C∗b (µ?)−
(∑
i

ri
)ᵀ
µ?
]
.

(44)

Using conjugacy and strong convexity, we next show that the terms in the brackets can be lower-
bounded by quadratic functions.

Let s :=
∑
i ri. Since µi(r) = ∇Fi(−ri) and µ0(r) = ∇Cb(s),

(−ri) ∈ ∂F ∗i (µi(r)) and Fi(−ri) = −rᵀi µi(r)− F ∗i (µi(r))

s ∈ ∂C∗b (µ0(r)) and Cb(µ0(r)) = sᵀµ0(r)− C∗b (µ0(r)) .

Using these identities and invoking the strong convexity of Fi and Cb, we thus obtain

Fi(−ri) + F ∗i (µ?) + rᵀi µ
? = F ∗i (µ?)− (−ri)ᵀ

(
µ? − µi(r)

)
− F ∗i (µi(r))

≥ 1

2aiLT
‖µi(rt)− µ?‖2

Cb(s) + C∗b (µ?)− sᵀµ? = C∗b (µ?)− sᵀ
(
µ? − µ0(r)

)
− C∗b (µ0(r))

≥ b

2LC
‖µ0(r)− µ?‖2 .

The theorem now follows by applying these lower bounds in Eq. (44).

Theorem D.3. If C is convex+ then there exist ε > 0 and c > 0 such that if F (r)− F ? ≤ ε then

F (r)− F ? ≥ c

[
b‖µ0(r)− µ?‖2 +

N∑
i=1

1

ai
‖µi(r)− µ?‖2

]
.

Proof. The proof begins similarly to proof of Theorem D.2, by establishing the identity

F (r)− F ? =

N∑
i=1

[
F ∗i (µ?)− (−ri)ᵀ

(
µ? − µi(r)

)
− F ∗i (µi(r))

]
+
[
C∗b (µ?)− sᵀ

(
µ? − µ0(r)

)
− C∗b (µ0(r))

]
. (45)
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Let Gi be the convex+ functions that match F ∗i on domF ∗i and R be the convex+ function that
matches C∗ on domC∗, and that have the additional properties outlined in Proposition A.9. Thus,

F (r)− F ? =

N∑
i=1

[
Gi(µ

?)− [∇Gi(µi(r))]ᵀ
(
µ? − µi(r)

)
−Gi(µi(r))

]
+ b
[
R(µ?)− [∇R(µ0(r))]ᵀ

(
µ? − µ0(r)

)
−R(µ0(r))

]
. (46)

By convexity+, functions Gi are strictly convex on M = domF ∗i and R is also strictly convex
onM ⊆ domC∗. Thus, Gi and R are strictly convex in a neighborhood of µ? (in affM), which
implies that the terms on the right-hand side of Eq. (46) are strictly convex in µi(r) and µ0(r). Since
they are minimized at µ?, we obtain µi(r) → µ? and µ0(r) → µ? as F (r)− F ? → 0. Thus, by
picking a sufficiently small ε, we can guarantee that µi(r) and µ0(r) are arbitrarily close to µ?

whenever F (r)− F ? ≤ ε. From Taylor’s theorem, and the fact that∇2Gi ≡ H+
Fi
≡ (1/ai)H

+
T and

∇2R ≡ H+
C , we obtain

Gi(µ
?)− [∇Gi(µi(r))]ᵀ

(
µ? − µi(r)

)
−Gi(µi(r)) =

1

2ai

(
µ? − µi(r)

)ᵀ
H+
T (µ̄i)

(
µ? − µi(r)

)
R(µ?)− [∇R(µ0(r))]ᵀ

(
µ? − µ0(r)

)
−R(µ0(r)) =

1

2

(
µ? − µ0(r)

)ᵀ
H+
C (µ̄0)

(
µ? − µ0(r)

)
.

Now, envoking Proposition A.10 for convex+ functions T and C, we obtain that for a sufficiently
small ε we have that if F (r)− F ? ≤ ε, then

H+
T (µ̄i) '

(
1± 1

2

)
H+
T (µ?) , H+

C (µ̄0) '
(

1± 1

2

)
H+
C (µ?) .

Plugging this back into Eq. (46), we obtain

F (r)− F ? '
(

1± 1

2

) N∑
i=1

1

2ai

(
µ? − µi(r)

)ᵀ
H+
T (µ?)

(
µ? − µi(r)

)
+ b

(
1± 1

2

)
1

2

(
µ? − µ0(r)

)ᵀ
H+
C (µ?)

(
µ? − µ0(r)

)
. (47)

The theorem now follows by noting that the ranges of matrices HT (µ?) and HC(µ?) include all
directions µ− µ′ where µ,µ′ ∈M, becauseM = domT ∗ andM⊆ domC∗.

D.3 Local Convergence Rate of Block-Coordinate Descent

In this section, we consider general unconstrained convex minimization, but use the same notation as
in the rest of the paper. The key difference from the standard analysis of Nesterov [11] is the focus
on the local convergence in the neighborhood of the solution, rather than global convergence. This
analysis is not specific to our setting, and may be of independent interest.

We consider the optimization problem

min
r∈RNK

F (r) ,

where F : RNK → R is a differentiable convex function bounded below. We are given a set of blocks
α ∈ A, which partition the coordinates [N ]× [K]. The block-coordinate descent algorithm sets the
initial iterate r0 = 0, and in each iteration chooses an index α ∈ A uniformly at random and fully
optimizes the objective over the coordinates in block α: given the current iterate rt, the new iterate is
rt+1 = Ψα(rt) where

Ψα(r) := argmin
r′∈r+range(Eα)

F (r′) (48)

and Eα is the embedding matrix for the block α as introduced in Appendix D.1.

Nesterov [11] shows that when the optimization objective is strongly convex, it is possible to achieve
the linear convergence rate of the form E [F (rt)]− F ? ≤ cγt for some constants c > 0 and γ < 1.
While the objective in our setting is not globally strongly convex, it is strongly convex locally, so the
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optimization eventually stays within a region where the strong convexity constant is bounded away
from zero, yielding a linear convergence rate. Recall from Section 6 that γhigh is an upper bound on
the local convergence rate of an algorithm if the algorithm with probability 1 reaches an iteration t0
such that for some c > 0 and all t ≥ t0,

E
[
F (rt)

∣∣ rt0]− F ? ≤ cγt−t0high .

Also, γlow is a lower bound on the local convergence rate of an algorithm if γhigh ≥ γlow holds for all
upper bounds γhigh.

Our local convergence-rate results are based on various local properties of F , by which we mean
properties that hold on some proper level set of F , in the sense of the following definition:

Definition D.4 (Level Set). For a given λ ∈ R, the level set S(F, λ) of a function F is defined as the
set of points r where F is at most λ:

S(F, λ) := {r : F (r) ≤ λ} .

The level set S(F, λ) is called proper if λ > F ?.

Our first result requires that the objective be locally strongly convex and smooth in the sense of the
following definition:

Definition D.5 (Strong Convexity and Smoothness for Matrix Seminorms). Let A and B be symmet-
ric positive-semidefinite matrices. We say that a differentiable function F is strongly convex on a set
S with respect to A and smooth on S with respect to B if

1

2
δᵀAδ ≤ F (r + δ)− F (r)− δᵀ∇F (r) ≤ 1

2
δᵀBδ

whenever r ∈ S and r + δ ∈ S.

To state the theorem, we introduce additional notation. For a matrix M ∈ RNK×NK , let Mα,α

denote the block consisting of rows and columns in α, i.e., Mα,α := Eᵀ
αMEα. And let D :

RNK×NK → RNK×NK be the operation of retaining only the block diagonal of a matrix, i.e.,
D(M) := diagα∈AMα,α. Recall that M+ denotes the pseudoinverse of M . Finally, let gt :=
∇F (rt) denote the gradient of the objective in the tth iteration.

Theorem D.6. Assume that F attains a minimum and let S := S(F, λ) be a proper level set which
satisfies the following conditions:

1. F is strongly convex and smooth on S with respect to some positive-semidefinite matrices A
and B such that G(F ) ⊆ range(A), G(F ) ⊆ range(B).

2. There exist non-negative constants σlow ≤ σhigh ≤ ∞ and ` <∞ such that whenever some
iterate rt0 lies in S, then all the consecutive iterates with t ≥ t0 + ` satisfy

σlowE
[
(gt)ᵀA+gt

∣∣∣ rt0] ≤ E
[
(gt)ᵀD(B)+gt

∣∣∣ rt0] ,

E
[
(gt)ᵀD(A)+gt

∣∣∣ rt0] ≤ σhighE
[
(gt)ᵀB+gt

∣∣∣ rt0] ,

where the expectation is over the random choice of updates by the algorithm.

Then if F ? < F (rt0) < λ and t ≥ t0 + `, we have

max

{
1−

σhigh

|A|
, 0

}
≤

E
[
F (rt+1)

∣∣ rt0]− F ?
E [F (rt) | rt0 ]− F ?

≤ 1− σlow

|A|
.

The proof is deferred to a separate subsection below (Appendix D.4). We next show how to apply
Theorem D.6 to obtain bounds on local convergence rate. For the lower bounds, we assume that
the optimization problem is non-degenerate in the sense that the probability of reaching an iterate
rt which attains a minimum is zero; in other words, only approximate solutions are reached in a
finite number of steps. This condition holds for the potential function from the main paper under
all-security dynamics (ASD), whenever there are at least three agents with distinct beliefs.
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Proposition D.7. Let Sin = S(F, λin) and Sout = S(F, λout) be level sets with F ? < λin < λout, and
assume that the conditions of Theorem D.6 hold for the level set Sout with matrices A and B, and
non-negative scalars σlow ≤ σhigh ≤ ∞ and ` <∞. Then for every rt0 ∈ Sin there exists c > 0 such
that for all t ≥ t0

E
[
F (rt) | rt0

]
− F ? ≤ cγt−t0high ,

where γhigh = 1 − σlow/|A|. Furthermore, if the optimization problem is non-degenerate then for
every rt0 ∈ Sin, which has a non-zero probability of occurring, and all t1 ≥ t0, there exists c > 0
such that for all t ≥ t1

E
[
F (rt) | rt1

]
− F ? ≥ cγt−t1low ,

where γlow = max{1− σhigh/|A|, 0}.

Proof. For the upper bound, if F (rt0) = F ?, the bound holds for any c > 0. Otherwise, set
c := γ−`high

(
F (rt0)− F ?

)
. Since the optimization does not increase the objective, this guarantees that

the bound holds for t0 ≤ t ≤ t0 + `. For t ≥ t0 + `, Theorem D.6 gives
E
[
F (rt+1) | rt0

]
− F ? ≤ γhigh ·

(
E
[
F (rt) | rt0

]
− F ?

)
,

and the upper bound now follows by induction.

For the lower bound, note that the non-degeneracy guarantees that F (rt) > F ? for all t ≥ t0. If
γlow = 0, the bound holds for any c. Next consider the case when γlow > 0. Pick t1 ≥ t0 and set

c := min
t1≤t≤t1+`

γ−`low

(
E
[
F (rt) | rt1

]
− F ?

)
,

which is non-zero, because γlow ∈ (0, 1] and F (rt) > F ?. This guarantees that the bound holds up
to t = t1 + `. For larger t, it follows by Theorem D.6 and induction.

When the objective is convex+, we can use the Hessian at the minimum of F to obtain both a
quadratic lower and upper bound on F , yielding the following bounds on the local convergence rate:
Theorem D.8. Let F be a convex+ function attaining a minimum at r?. Let H? := ∇2F (r?) and
assume there exists λ > F ? and non-negative constants σlow, σhigh, and ` such that

σlow ≤
E
[

(gt)ᵀD(H?)+gt
∣∣ rt−` ]

E
[

(gt)ᵀ(H?)+gt
∣∣ rt−` ] ≤ σhigh (49)

whenever F (rt−`) ≤ λ, where the expectation is over the choice of updates by the algorithm.
Then, for all ε > 0, the local convergence rate is bounded above by γhigh = 1 − σlow/|A| + ε.
If the optimization problem is non-degenerate, the local convergence is also bounded below by
γlow = 1− σhigh/|A|.

We defer the proof of Theorem D.8 to a separate subsection (Appendix D.5). The ratio bounded in
Eq. (49) can be interpreted as a curvature of the quadratic form D(H?)+ under the norm described
by the quadratic form (H?)+. Larger values of the ratio (larger curvature) mean faster convergence.
We will refer to the bounds σlow and σhigh as lower and upper bounds on local strong convexity of F
(under randomized block-coordinate descent updates). Any non-trivial lower bound, i.e., σlow > 0,
yields local linear convergence rate since it implies γhigh < 1, since ε can be chosen arbitrarily small.

If we know the Hessian H?, we can obtain a simple lower bound σlow and a linear convergence by
considering all directions in the span of gradients (and setting ` = 0). The span of gradients coincides
with G(F ), because 0 is a valid gradient (since F attains a minimum). Thus, we can obtain σlow by
the following generalized eigenvalue calculation:

σlow = min
u∈G(F )\{0}

uᵀD(H?)+u

uᵀ(H?)+u
= λmin

(
(H?)1/2D(H?)+(H?)1/2

)
, (50)

where λmin(·) is the smallest positive eigenvalue. This is a valid setting of σlow, because for all
u ∈ G(F ) we then have σlowu

ᵀ(H?)+u ≤ uᵀD(H?)+u and therefore, when F (rt−`) ≤ λ, also

σlowE
[

(gt)ᵀ(H?)+gt
∣∣ rt−` ] ≤ E

[
(gt)ᵀD(H?)+gt

∣∣ rt−` ].
This value of σlow is non-zero, because G(F ) = range(H?)+ ⊆ rangeD(H?)+. We pursue this
style of analysis for single-securities dynamics (SSD), where we derive σlow using Eq. (50), but do
so directly in terms of Hessians of functions C and T rather than the potential F . For all-securities
dynamics, we consider ` > 0 and take advantage of the averaging effect of expectations in Eq. (49),
which yields a tighter lower bound σlow and a non-trivial upper bound σhigh.
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D.4 Proof of Theorem D.6

Proof of Theorem D.6. The vector of partial derivatives of F within block α will be called partial
gradient and denoted∇αF (r) := Eᵀ

α∇F (r). Since F has a minimizer, its set of gradients contains a
zero, and therefore its gradient space G(F ) coincides with the span of its gradients (see Definition A.5).
We also define the set Gα(F ) := Eᵀ

αG(F ), which then coincides with the span of partial gradients
of F . Note that by Proposition D.9, proved below, any positive-semidefinite matrix M satisfies
range(M) ⊆ range(D(M)). Since G(F ) ⊆ range(A), we therefore obtain Gα(F ) ⊆ range(Bα,α)
by the following reasoning:

Gα(F ) = Eᵀ
αG(F ) ⊆ Eᵀ

α range(A) ⊆ Eᵀ
α range(D(A)) = range(Aα,α) ,

and similarly obtain Gα(F ) ⊆ range(Bα,α).

Assume F ? < F (rt0) < λ and let t ≥ t0 + `. Consider the bundle r := rt and analyze the value of
the objective at the next iterate rt+1 = Ψα(r). First note that the objective does not increase during
optimization, so F (r) < λ and in particular r ∈ S. From Eq. (48), we then have

F (Ψα(r)) = min
r′∈(r+range(Eα))∩S

F (r′) (51)

≤ min
r′∈(r+range(Eα))∩S

(
F (r) + (r′ − r)ᵀ∇F (r) +

1

2
(r′ − r)ᵀB(r′ − r)

)
(52)

= min
r′∈(r+range(Eα))

(
F (r) + (r′ − r)ᵀ∇F (r) +

1

2
(r′ − r)ᵀB(r′ − r)

)
(53)

= min
δ∈R|α|

(
F (r) + δᵀ∇αF (r) +

1

2
δᵀBα,αδ

)
(54)

= F (r)− 1

2

(
∇αF (r)

)ᵀ
B+
α,α

(
∇αF (r)

)
. (55)

In Eq. (51) it suffices to consider minimization over S, because the objective does not increase during
the optimization and r ∈ S. In Eq. (52) we use the fact that F is smooth on S with respect to
B. Eq. (53) follows, because the minimum in Eq. (53) is actually attained in S. We show this by
contradiction. Let F ′(r′) denote the function minimized in Eq. (53) and assume that the minimum of
F ′ over r + range(Eα) is attained at r′ 6∈ S. Since r ∈ S, the line connecting r and r′ intersects
the boundary of S at some point r′′, where F (r′′) = λ by continuity of F . From the foregoing, we
then have

F ′(r′) ≤ F ′(r) = F (r) < λ = F (r′′) ≤ F ′(r′′) .

This however contradicts the convexity of F ′ along the line connecting r and r′, because r′′ lies
between r and r′, and thus we should have F ′(r′′) ≤ max{F ′(r), F ′(r′)}. This means that the
minimum in Eq. (53) is indeed attained somewhere in S. In Eq. (54), we make the substitution
r′ − r = Eαδ, and Eq. (55) then follows by Proposition A.3, because ∇αF (r) ∈ Gα(F ) ⊆
range(Bα,α).

Taking expectation over the uniformly random choice of the block α, we have

F (r)− Eα [F (Ψα(r))] ≥ 1

2|A|
∑
α∈A

(
∇αF (r)

)ᵀ
B+
α,α

(
∇αF (r)

)
=

1

2|A|
(
∇F (r)

)ᵀD(B)+
(
∇F (r)

)
. (56)

We can also apply the lower bound on F and obtain

F (Ψα(r)) ≥ min
r′∈(r+range(Eα))∩S

(
F (r) + (r′ − r)ᵀ∇F (r) +

1

2
(r′ − r)ᵀA(r′ − r)

)
≥ min
r′∈(r+range(Eα))

(
F (r) + (r′ − r)ᵀ∇F (r) +

1

2
(r′ − r)ᵀA(r′ − r)

)
(57)

= min
δ∈R|α|

(
F (r) + δᵀ∇αF (r) +

1

2
δᵀAα,αδ

)
= F (r)− 1

2

(
∇αF (r)

)ᵀ
A+
α,α

(
∇αF (r)

)
. (58)
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The steps are analogous as in analyzing the upper bound except for Eq. (57), which is now more
straightforward, since the minimum over a larger set cannot lie above a minimum over a smaller set.

Taking expectation over α, we thus obtain

F (r)− Eα [F (Ψα(r))] ≤ 1

2|A|
(
∇F (r)

)ᵀD(A)+
(
∇F (r)

)
. (59)

The same reasoning that gave us bounds on F (Ψα(r)) can be also used to bound the optimal value
F ? by noting that F ? = F (Ψα?(r)) where α? is the block containing all the coordinates, i.e.,
α? = [N ]× [K]. (Note that α? is not necessarily in A.) Eqs. (55) and (58) thus become

F ? ≤ F (r)− 1

2

(
∇F (r)

)ᵀ
B+
(
∇F (r)

)
, (60)

F ? ≥ F (r)− 1

2

(
∇F (r)

)ᵀ
A+
(
∇F (r)

)
. (61)

To finish the proof, we take the conditional expectations in Eq. (56), use the definition of σlow and
take the conditional expectations in Eq. (61) to obtain

E
[
F (rt)

∣∣ rt0]− E
[
F (rt+1)

∣∣ rt0] ≥ 1

2|A|
E
[
(gt)ᵀD(B)+gt

∣∣∣ rt0]
≥ 1

2|A|
· σlowE

[
(gt)ᵀA+gt

∣∣∣ rt0]
≥ σlow

|A|

(
E
[
F (rt)

∣∣ rt0]− F ?) . (62)

Similarly,

E
[
F (rt)

∣∣ rt0]− E
[
F (rt+1)

∣∣ rt0] ≤ σhigh

|A|

(
E
[
F (rt)

∣∣ rt0]− F ?) .

Since the objective never increases, we can actually write

E
[
F (rt)

∣∣ rt0]− E
[
F (rt+1)

∣∣ rt0] ≤ min

{
σhigh

|A|
, 1

}
·
(
E
[
F (rt)

∣∣ rt0]− F ?) . (63)

The theorem now follows by rearranging terms in Eqs. (62) and (63).

It remains to prove the following proposition, which was used in the proof:
Proposition D.9. For any positive-semidefinite matrix M , we have range(M) ⊆ range(D(M)).

Proof. For α ∈ A, let Pα := EαE
T
α be the projection matrix into rangeEα, and note that

D(M) = diagαMα,α =
∑
α

PαMPα .

Let u ∈ RNK and let xα = ‖M1/2Pαu‖. Then

uᵀMu = ‖M1/2u‖2 =
∥∥∥M1/2

(∑
α∈A

Pαu
)∥∥∥2

≤
(∑
α∈A
‖M1/2Pαu‖

)2
=
(∑
α∈A

xα
)2

≤ |A| ·
∑
α∈A

x2
α (64)

= |A| ·
∑
α∈A

uᵀPαMPαu = |A| ·
(
uᵀD(M)u

)
,

where in Eq. (64) we used the inequality between the arithmetic and quadratic mean. Thus any
u ∈ range(M) is also in range(D(M)).
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D.5 Proof of Theorem D.8

This proof builds on several propositions proved in Appendix D.6 below. Let εmax =
√
λ− F ?. For

n = 1, 2, . . . define the level sets S(n) := S(F, F ? + ε2
max/n

2). Thus, by Proposition D.11, for
some c > 0, we have

∇2F (r) ' (1± cεmax︸ ︷︷ ︸
c1

/n)H? for all r ∈ S(n) ,

where we have introduced the notation c1 := cεmax. By Proposition D.12, if n > c1, then the
function F is strongly convex and smooth on S(n) with respect to A(n) := (1 − c1/n)H? and
B(n) := (1 + c1/n)H?. Thus, S(n), A(n), and B(n) satisfy condition (1) of Theorem D.6 for
n > c1.

In the remainder, we only consider the level sets S(n) for n > c1. For each of them define

σlow(n) :=
n− c1
n+ c1

σlow , σhigh(n) :=
n+ c1
n− c1

σhigh .

We next argue that they satisfy condition (2) of Theorem D.6. It suffices to verify that condition (2)
of Theorem D.6 holds for t = t0 + `; let’s call this limited variant condition (2′). If (2′) is satisfied
then also (2) is satisfied, because if rt0 ∈ S(n), then also rt0+k ∈ S(n) for any k ≥ 1, and so we
can apply condition (2′) at t = t0 + k + ` and by taking the conditional expectation we obtain the
original condition (2).

To prove that condition (2) holds for t = t0 + `, note that S(n) ⊆ S(1) = S(F, λ), so Eq. (49) holds
whenever rt0 = rt−` ∈ S(n). So, assuming that n > c1 and rt0 ∈ S(n), we obtain

σlow(n) =
n− c1
n+ c1

σlow

≤ n/(n+ c1)

n/(n− c1)
·
E
[

(gt)ᵀD(H?)+gt
∣∣ rt0 ]

E
[

(gt)ᵀ(H?)+gt
∣∣ rt0 ] =

E
[

(gt)ᵀD(B(n))+gt
∣∣ rt0 ]

E
[

(gt)ᵀA(n)+gt
∣∣ rt0 ]

σhigh(n) =
n+ c1
n− c1

σhigh

≤ n/(n− c1)

n/(n+ c1)
·
E
[

(gt)ᵀD(H?)+gt
∣∣ rt0 ]

E
[

(gt)ᵀ(H?)+gt
∣∣ rt0 ] =

E
[

(gt)ᵀD(A(n))+gt
∣∣ rt0 ]

E
[

(gt)ᵀB(n)+gt
∣∣ rt0 ] .

Now invoking Proposition D.7 with Sin = S(n+1) and Sout = S(n), we obtain that if rt0 ∈ S(n+1)
then there exists c > 0 such that for all t ≥ t0

E
[
F (rt) | rt0

]
− F ? ≤ cγhigh(n)t−t0 ,

where γhigh(n) := 1 − σlow(n)/|A|. Proposition D.13 now implies that S(n + 1) is reached with
probability 1, so γhigh(n) is a valid upper bound on the local convergence rate.

Since the optimization starts at a deterministic point r0 = 0, and the randomization is among a
finite set of choices, there is only a finite set of allocation vectors rt that can be reached at any given
iteration t. If the optimization problem is non-degenerate, then none of these allocations (for any t)
are the actual minimizers of F . In that case, Proposition D.7 yields that if rt0 ∈ S(n+ 1), and it has
a non-zero probability of occurring, then for all t1 ≥ t0, there exists c > 0 such that for all t ≥ t1

E
[
F (rt) | rt1

]
− F ? ≥ cγlow(n)t−t1 ,

where γlow(n) := 1 − σhigh(n)/|A|. Since S(n + 1) is reached with probability 1, this means that
any valid upper bound must be greater than γlow(n).

The theorem now follows, because γhigh(n)→ 1− σlow/|A|, and γlow → 1− σhigh/|A|, as n→∞.

D.6 Supporting Propositions for Theorem D.8

Throughout the propositions below, let F be a convex+ function attaining a minimum. Let P be
a projection on G(F ). Since F attains a minimum, its gradient set includes zero, and therefore in
Proposition A.7 we have a = 0. This means that

F (r) = F (Pr) ,
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so we can assume, without loss of generality, that r? ∈ G(F ). Let H? := ∇2F (r?). Finally, recall
that S(F, λ) denotes a level set (see Definition D.4).

Proposition D.10. For any λ > F ?, S(F, λ) = S0 + G(F )⊥ where S0 ⊆ G(F ) is compact.

Proof. Since F (r) = F (Pr), any level set S can be written as S = S0 + G(F )⊥, where S0 =
S ∩ G(F ). Now if λ > F ? then S is non-empty and closed and hence so is S0. It remains to argue
that it is bounded. By convexity+, F is strictly convex on G(F ), so the minimum of F on the sphere
{r ∈ G(F ) : ‖r − r?‖ = 1} must be some λ1 > F ?. By convexity, F (r)− F ? ≥ λ1‖r − r?‖ for
all r ∈ G(F ). Since S0 ⊆ G(F ) and F (r) ≤ λ for r ∈ S0, the set S0 must be bounded.

Proposition D.11. Let εmax > 0. Then there exists a constant c > 0 such that for all 0 < ε ≤ εmax,
and all r ∈ S(F, F ? + ε2), we have

‖Pr − r?‖ ≤ cε ,∇2F (r) ' (1± cε)H? .

Proof. Let S := S(F, F ? + ε2
max) and S0 := S ∩ G(F ), which is compact by Proposition D.10. Let

σ1 := min
r∈S0

λmin(∇2F (r), P ) .

Note that λmin(∇2F (r), P ) > 0 on the compact set S0, and∇2F (·) and λmin(·, P ) are continuous,
so σ1 > 0. Therefore, F is strictly convex on S with the strict convexity constant σ1. Using the fact
that∇F (r?) = 0, we then have for any r ∈ S,

F (r) = F (Pr) ≥ F ? +
1

2
σ1‖Pr − r?‖2 .

Therefore, if r ∈ S(F, F ? + ε2) ⊆ S then

‖Pr − r?‖ ≤ ε
√

2/σ1 .

For the bound on the Hessian, note that since the third derivative of F is continuous, it is upper
bounded on S0. Therefore, the Hessian is Lipschitz with some constant L on S0, and so ‖∇2F (r)−
H?‖ ≤ L‖Pr − r?‖. Thus, since range(∇2F (r)−H?) ⊆ G(F ), we have

∇2F (r) ' H? ± L‖Pr − r?‖P .

Since σ2P � H? for some σ2 > 0, we obtain

∇2F (r) ' (1± Lσ−1
2 ‖Pr − r?‖)H? .

Thus, for r ∈ S(F, F ? + ε2) ⊆ S we have

∇2F (r) ' (1± εLσ−1
2

√
2/σ1)H? .

Setting c := max{
√

2/σ1, Lσ
−1
2

√
2/σ1} then proves the proposition.

Proposition D.12. Let S be a convex set and A and B positive-semidefinite matrices such that
A � ∇2F (r) � B for all r ∈ S. Then F is strongly convex and smooth on S with respect to A and
B.

Proof. Let r ∈ S, r + δ ∈ S. Then from the 2nd-order Taylor expansion, we have

F (r + δ)− F (r)− δ∇F (r) =
1

2
δᵀ[∇2F (r′)]δ ,

where r′ ∈ S. The proposition now follows, because A � [∇2F (r′)] � B.

Proposition D.13. For any λ > F ?, with probability 1, the randomized block-coordinate descent
algorithm with the objective F reaches an iteration t in which rt ∈ S(F, λ).
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Proof. Since the proposition holds for λ ≥ F (r0), consider the case F ? < λ < F (r0), and in
particular assume F ? < F (r0). We prove the proposition by applying Theorem D.6.

Let S := S(F, F (r0) + 1) and S0 := S ∩ G(F ), which is compact by Proposition D.10. Let

cmin := min
r∈S0

λmin(∇2F (r), P ) , cmax := max
r∈S0

λmax(∇2F (r), P ) .

Note that λmin(∇2F (r), P ) > 0 on the compact set S0, and∇2F (·) and λmin(·, P ) are continuous,
so cmin > 0. Similarly, since λmax(∇2F (r), P ) <∞ on S0, the continuity yields cmax <∞. Since
∇2F (r) = ∇2F (Pr), we have that for all r ∈ S

cminP � ∇2F (r) � cmaxP .

Therefore, by Proposition D.12, F is strongly convex and smooth on S with respect to A := cminP
and B := cmaxP . Let

σlow := λmin

(
D(B)+, A+

)
= λmin

(
c−1
maxD(P )+, c−1

minP
)

=
cmin

cmax
· λmin(D(P )+, P ) ,

which is positive, because range(P ) ⊆ range(D(P )) by Proposition D.9.

Now, by Proposition D.7, with Sin = S(F, F (r0)), Sout = S(F, F (r0) + 1) = S, and the above
matrices A and B, the scalar σlow, and ` = 0, we obtain that for some constant c and γ :=
(1− σlow/|A|) < 1,

E
[
F (rt)

]
− F ? = E

[
F (rt) | r0

]
− F ? ≤ cγt .

To finish the proof, we will appeal to Borel-Cantelli lemma and show that the algorithm must reach
S(F, λ) with probability 1. Specifically, note that by the Markov inequality

∞∑
t=1

P
{
F (rt) ≥ λ

}
=

∞∑
t=1

P
{
F (rt)− F ? ≥ λ− F ?

}
≤
∞∑
t=1

cγt

λ− F ?
=

cγ

(1− γ)(λ− F ?)
<∞ ,

so with probability 1, only a finite number of the events {F (rt) ≥ λ} will occur; in other words, the
level set S(F, λ) is reached with probability 1.

D.7 Local Convergence of the Market

Throughout this section, we assume that C is convex+, which implies that F is convex+ as well. Our
key tool for the analysis of the convergence error of the market is Theorem D.8. Therefore, we need
to analyze the gradient and Hessian of F . We begin the analysis by deriving explicit expressions
for ∇F and ∇2F using the gradients and Hessians of T and C. It will be convenient to do so for
trader-level blocks∇i and∇2

ij .

Given an allocation vector r ∈ RNK , the associated market price (the gradient of the cost) will be
denoted µ0(r) and the gradients of trader potentials will be denoted µi(r):

µ0(r) := ∇Cb
(∑N

i=1 ri
)

= ∇C
(∑N

i=1 ri/b
)

µi(r) := ∇Fi(−ri) = ∇T (θ̃i − airi) for i ∈ [N ]

where T is the log partition function.

The gradient of F is composed of blocks

∇iF (r) = −∇Fi(−ri) +∇Cb
(∑

i ri
)

= −µi(r) + µ0(r) . (65)

For the Hessian, first consider∇iiF :

∇2
iiF (r) = ∇2Fi(−ri) +∇2Cb

(∑
i ri
)

= ai∇2T (θ̃i − airi) +
1

b
∇2C

(
(
∑
i ri)/b

)
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= aiHT (µi(r)) +
1

b
HC(µ0(r)) . (66)

Here, recall that for a convex+ function f , its Hessian at any given point is only a function of
the gradient at that point, which is denoted Hf . In Eq. (66), we express ∇2T and ∇2C using the
respective functions HT and HC and the definitions of µi and µ0.

For i 6= j, the block ∇2
ijF is

∇2
ijF (r) = ∇2Cb

(∑
i ri
)

=
1

b
∇2C

(
(
∑
i ri)/b

)
=

1

b
HC(µ0(r)) . (67)

At any optimum r?, we have µi(r
?) = µ0(r?) = µ?. Thus, using the Kronecker product notation,

the Hessian of F at r? can be expressed as

∇2F (r?) = D ⊗HT (µ?) +
11ᵀ

b
⊗HC(µ?) , (68)

where D := diagi∈[N ] ai and 1 is the N -dimensional all-ones vector

Using local Lipschitz property of HT and HC (Proposition A.10) and the fact that ‖µ? − µ̄‖ = O(b)
(Theorem 5.1), we immediately obtain the following asymptotic expression for∇2F (r?) as b→ 0:
Proposition D.14. Let H? := ∇2F (r?) and D := diagi ai. Then

H? ' (1±O(b))

(
D ⊗HT (µ̄) + (11ᵀ)⊗ 1

b
HC(µ̄)

)
.

We next derive asymptotic formulas for matrices D(H?)+ and (H?)+, from which we will immedi-
ately obtain a lower bound on strong convexity via Eq. (50).

Recall that A is the decomposition of the coordinates [N ]× [K], but for our two dynamics (ASD and
SSD), this decomposition has a special structure. This structure is described by a decomposition B of
[K], which is then applied to each trader, that is A =

{
{i}× β : i ∈ [N ], β ∈ B

}
. For M ∈ RK×K ,

we use the notation DB(M) to describe diagβ∈BMββ . For M ∈ RNK×NK , we continue writing
D(M) instead of a more explicit DA(M).

In stating our results, we use the following shorthands, some of which have been already introduced:
H? := ∇2F (r?), HT := HT (µ̄), HC := HC(µ̄), D := diagi ai, P = IN − 11ᵀ/N.

The matrix P is the projection matrix on the set of centered vectors, i.e., vectors u in RN such
that 1ᵀu = 0. With this notation, the pseudoinverses D(H?)+ and (H?)+ are characterized in the
following theorem:
Theorem D.15. Let M1 := IN ⊗DB(HC)+ and M2 := (PDP )+ ⊗H+

T . Then, as b→ 0,

D(H?)+ ' (1±O(b)) · bM1 , (69)

(H?)+ 'M2 ±O(b)M1 . (70)
Local strong convexity is bounded from below by

σlow = b · λmin

(
(M

1/2
2 )+M1(M

1/2
2 )+

)
−O(b2) (71)

= b · λmin(PDP ) · λmin

(
H

1/2
T DB(HC)+H

1/2
T

)
−O(b2) , (72)

where λmin(·) denotes the smallest positive eigenvalue of a matrix.

The matrices M1 and M2 in the statement of the theorem do not depend on the liquidity parameter b.
The matrix M2, which is the dominant part of the Hessian pseudoinverse (H?)+, is also independent
of the trader dynamics and the cost function. On the other hand, the matrix M1 reflects the cost
function and dynamics. The pseudoinverse D(H?)+ approximately equals bM1 as b→ 0. The main
implication is that σlow = Ω(b). This yields linear convergence rate bound γhigh = 1− Ω(b), which
suggests worse convergence as b → 0. However, in the absence of a matching lower bound, we
cannot conclude that the actual convergence gets worse as b→ 0. In Appendix D.7.1, we derive a
matching bound σhigh = O(b) for ASD. Thus, for ASD, it is not possible to achieve a linear convergence
rate better than 1−Θ(b). (We conjecture similar behavior for SSD.) This means there is a tradeoff
between convergence, which slows down as b→ 0, and the market-maker bias, which gets smaller.
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Proof of Theorem D.15. From Proposition D.14, we know that H? ' (1±O(b))M where

M := D ⊗HT + (11ᵀ)⊗ 1

b
HC . (73)

Proposition D.14 also implies D(H?) ' (1±O(b))D(M). Thus, by Proposition A.1, we obtain

D(H?)+ ' (1±O(b))D(M)+ , (74)

(H?)+ ' (1±O(b))M+ . (75)

The analysis will therefore focus on M and convert to H? only in the last step.

We begin with the analysis of D(M). Specifically, consider the block Mαα where α = {i} × β for
some β ∈ B. From the definition of M

Mαα =
1

b
HC,ββ + aiHT,ββ .

Since range(HT ) = G(T ) ⊆ G(C) = range(HC), there is some constant c1 such that HT � c1HC ,
so we can write

Mαα '
(

1

b
± aic1

)
HC,ββ . (76)

Setting c2 = (maxi ai)c1, and combining Eq. (76) across all blocks α = {i} × β, we thus obtain

D(M) '
(

1

b
± c2

)(
IN ⊗DB(HC)

)
.

Therefore, by Proposition A.1,

D(M)+ ' b

1± bc2
(
IN ⊗DB(HC)+

)
= b(1±O(b))

(
IN ⊗DB(HC)+

)
.

The bound on D(H?)+ now follows by Eq. (75).

We next bound (H?)+ by analyzing M+. First, decompose the matrix D into blocks corresponding
to the ranges of the projection matrices P and IN − P . Let A = PDP , B = PD(IN − P ) and
X = (IN − P )D(IN − P ). Thus,

D = A+B +Bᵀ +X .

Using the decomposition of D, we can decompose M in order to carry out blockwise inversion:

M = D ⊗HT +
N

b
(IN − P )⊗HC

= A⊗HT + (B +Bᵀ)⊗HT +

(
X ⊗HT +

N

b
(IN − P )⊗HC

)
. (77)

We first analyze the Schur complement matrix, which appears in the blockwise inverse:

S :=

(
X ⊗HT +

N

b
(IN − P )⊗HC

)
− (Bᵀ ⊗HT )(A+ ⊗H+

T )(Bᵀ ⊗HT )

=
N

b
(IN − P )⊗HC +

(
X −BᵀA+B

)
⊗HT .

As we argued before, range(HT ) ⊆ range(HC). Also range(X) ⊆ range(IN − P ) and
range(BᵀA+B) ⊆ range(IN − P ), so for some c3 > 0, we have(

X −BᵀA+B
)
⊗HT ' ±c3(IN − P )⊗HC ,

and therefore

S '
(
N

b
± c3

)(
(IN − P )⊗HC

)
. (78)

We now apply blockwise inversion (Proposition A.2) to Eq. (77), with the bounds of Eq. (78) on the
Schur complement to obtain

M+ ' A+ ⊗H+
T +

b

N ± bc3
Y
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where

Y :=
(
INK − (A+ ⊗H+

T )(B ⊗HT )
)(

(IN − P )⊗H+
C

)(
INK − (A+ ⊗H+

T )(B ⊗HT )
)ᵀ

is a positive-semidefinite matrix. Finally, invoking Eq. (75), we obtain

(H?)+ ' (1±O(b))
(
A+ ⊗H+

T

)
+ b(1±O(b))Y

'
(
A+ ⊗H+

T

)
±O(b)

(
A+ ⊗H+

T + Y
)

'
(
A+ ⊗H+

T

)
±O(b)

(
IN ⊗D(HC)+

)
,

where in the last line we used that range(A+ ⊗ H+
T + Y ) ⊆ range(IN ⊗ H+

C ) ⊆ range(IN ⊗
DB(HC)+) because range(HT ) ⊆ range(HC) ⊆ range(DB(HC)).

Finally, to prove Eq. (72), we use Eq. (50). First, note that (H?)+ 'M2 ±O(b)M1, so

range(M2) ⊆ range(H?) = G(F ) ⊆ range(IN ⊗HC) ⊆ range(M1) .

Therefore, if u ∈ G(F )\ range(M2) we have uᵀM1u > 0, but uᵀM2u = 0, so

min
u∈G(F )\{0}

uᵀM1u

uᵀM2u
= min
u∈range(M2)\{0}

uᵀM1u

uᵀM2u
= λmin(M1,M2) > 0

and so
uᵀM2u

uᵀM1u
≤ λ−1

min(M1,M2)

for any u ∈ G(F )\{0}.
From the bounds in Eqs. (69) and (70), there exists a constant c such that for b sufficiently small, and
for all u ∈ G(F )\{0},

uᵀD(H)+u

uᵀH+u
≥ (1− cb) · uᵀ(bM1)u

uᵀM2u+ cb(uᵀM1u)

= b · 1− cb
uᵀM2u
uᵀM1u

+ cb

≥ b · 1− cb
λ−1

min(M1,M2) + cb

≥ b · (λmin(M1,M2)−O(b)) .

The bound on σlow now follows by Eq. (50), after noting that

λmin(M1,M2) = λmin

(
(M

1/2
2 )+M1(M

1/2
2 )+

)
= λmin(PDP )·λmin

(
H

1/2
T DB(HC)+H

1/2
T

)
.

D.7.1 Tighter Analysis of the All-securities Dynamics

In Theorem D.15 we derived a worst-case bound on the curvature, valid across all possible directions
that a gradient can take. In our tighter analysis of ASD, we derive a tighter bound on the expected
curvature, exploiting the fact that the updates are chosen uniformly at random. While our analysis
only applies to ASD, we conjecture that a similar style of analysis can also work for SSD.

We will index blocks by i rather than α, since each block consists of all the coordinates controlled by
the trader i.

We begin by a detailed analysis of how the block-coordinate updates affect the value of the gradient.
Let r by the current iterate. Consider the update Ψi, which optimizes over the coordinates controlled
by trader i (see Eq. 48), and let r′ = Ψi(r) be the new iterate. By the optimality of the update, we
have

µi(r
′) = ∇Fi(−r′i) = ∇Cb

(∑
j r
′
j

)
= µ0(r′)

and therefore, by Eq. (65), for all j ∈ [N ],

∇jF (r′) = −µj(r′) + µ0(r′) = −µj(r′) + µi(r
′) .
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Thus, after the first update, the gradient∇F (r) can be expressed using pairwise differences of µj(r).
When the update Ψi is performed, the value of µi changes, whereas µj for j 6= i is unchanged. The
amount of change in µi will be denoted as δi:

δi(r) := µi(r
′)− µi(r) where r′ = Ψi(r) .

This is locally bounded as follows:
Lemma D.16. There exists constants b0, c > 0 such that for every b ≤ b0 there exists a proper level
set S such that if r ∈ S then

‖δi(r)‖ ≤ cb
∥∥µi(r)− µ0(r)

∥∥
for all i ∈ [N ].

Proof. Let ε ∈ (0, 1). Since T and C are convex+, by Proposition A.10 it is possible to pick δ such
that

HT (µ) ' (1± ε)HT (µ̄) , HC(µ) ' (1± ε)HC(µ̄)

whenever ‖µ − µ̄‖ ≤ δ. Pick b0 small enough such that ‖µ?(b;C) − µ̄‖ ≤ δ/2 for all b ≤ b0.
Fix some b ≤ b0 and pick a level set S such that for all r ∈ S, ‖µi(r) − µ?‖ ≤ δ/2 for all i and
‖µ0(r)− µ?‖ ≤ δ/2. Thus, for any r ∈ S, we have

HT (µi(r)) ' (1± ε)HT (µ̄) for all i, HC(µ0(r)) ' (1± ε)HC(µ̄) .

Now let r ∈ S and let r′ = Ψi(r). By the optimality of r′, we know that ∇iF (r′) = 0. From the
mean value theorem applied to ∇iF , there exists some q on the line segment connecting r and r′
such that

0 = ∇iF (r′) = ∇iF (r) +∇2
iiF (q)(r′ − r) .

Since r′ and r differ only in block i, we obtain

P (r′i − ri) = −
(
∇2
iiF (q)

)+∇iF (r) (79)

where P is the projection on range
(
∇2
iiF (q)

)
= G(C). Now applying the mean value theorem to

∇Fi, we obtain that for some q′ on the line segment connecting r and r′, we have

δi(r) = ∇Fi(−r′i)−∇Fi(−ri)
= ∇2Fi(−q′i)(−r′i + ri)

= ∇2Fi(−q′i)
(
∇2
iiF (q)

)+∇iF (r) , (80)

where in Eq. (80) we used Eq. (79). Now both r and r′ are in the level set S and so is the line
segment connecting them, which includes the points q and q′. Therefore,

∇2Fi(−q′i) = aiHT (µi(q
′)) � ai(1 + ε)HT (µ̄) (81)

and

∇2
iiF (q) = aiHT (µi(q)) +

1

b
HC(µ0(q))

� (1− ε)
(
aiHT (µ̄) +

1

b
HC(µ̄)

)
� 1− ε

b
HC(µ̄) .

Thus, also (
∇2
iiF (q)

)+ � b

1− ε
H+
C (µ̄) . (82)

Plugging Eq. (81) and Eq. (82) into Eq. (80), we obtain

‖δi(r)‖ ≤ ai(1 + ε) ‖HT (µ̄)‖ · b

1− ε
∥∥H+

C (µ̄)
∥∥ ‖∇iF (r)‖ ,

finishing the proof, since∇iF (r) = −µi(r) + µ0(r).

Using the lemma, we can now prove bounds for ASD:
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Theorem D.17. Consider the all-securities dynamics. Let M ′1 := P ⊗H+
C and M2 := (PDP )+ ⊗

H+
T . Then for every sufficiently small b, there exists a proper level set S such that

E
[
(gt+1)ᵀD(H?)+gt+1

∣∣ rt] ' (gt)ᵀ
(

(1±O(b)) · 2bM ′1
)
gt (83)

E
[
(gt+1)ᵀ(H?)+gt+1

∣∣ rt] ' (gt)ᵀ
(
M2 ±O(b)M ′1

)
gt (84)

whenever rt−1 ∈ S. Local strong convexity is bounded from below and above by

σlow = 2b · λmin(PDP ) · λmin

(
H

1/2
T H+

CH
1/2
T

)
−O(b2)

σhigh = 2b · λmax(PDP ) · λmax

(
H

1/2
T H+

CH
1/2
T

)
+O(b2) ,

where λmin(·) and λmax(·) denote the smallest and the largest positive eigenvalue of a matrix.

As mentioned above, the key consequence of Theorem D.17 is the fact that ASD converges at the
rate 1 − Θ(b). The key difference from Theorem D.15 is in the expression for D(H?)+. While
D(H?)+ ≈ b(IN ⊗H+

C ), as stated in Theorem D.15, when we take an expectation over an update in
a single iteration, the action of D(H?)+ is equivalent to that of the matrix 2b(P ⊗H+

C ). Thus, the
averaging effect of an expectation is to remove one rank from matrix IN and replace it by the centering
matrix P = IN − 11ᵀ/N (while incurring an extra factor of two). This has two consequences. First,
the lower bound σlow is a factor of two larger. Second, we can now obtain a non-trivial upper bound
σhigh, which would not be possible via an analog of Eq. (50), because the range of D(H?)+ is too
large.

Proof of Theorem D.17. Consider b0 and c from Lemma D.16, and let b ≤ b0 and S be the level set
from the lemma. Assume that rt−1 ∈ S. After the update in the iteration t− 1, it is guaranteed that
µ0(rt) = µj(r

t) for some j. We analyze the update in the following iteration, i.e., the iteration t.
We write r for rt and r′ for rt+1. Let g := ∇F (r), µj := µj(r) for j ∈ [N ], µ0 := µ0(r), and
similarly define g′, µ′j , µ

′
0 for the iterate r′.

Recall from Eq. (65) that the blocks of the gradient are

gj = µj − µ0 .

Also recall that P = IN − 11ᵀ/N . A key role in the analysis will be played by the centered gradient
vector u := (P ⊗ IK)g whose blocks are

uj = µj − µ̂

where µ̂ := (
∑
j µj)/N is the average among µj . As the final part of the setup, let ρ = maxj‖µj −

µ̂‖, and since µ0 = µj for some j ∈ [N ], we also have ρ ≥ ‖µ0 − µ̂‖.
By Theorem D.15, we have

D(H?)+ =
(
1±O(b)

)
bM1 , (H?)+ = M2 ±O(b)M1 ,

where

M1 = IN ⊗H+
C

M2 = (PDP )+ ⊗H+
T .

For the first part of the theorem (Eqs. 83 and 84), it therefore suffices to show that

E [(g′)ᵀM1g
′ | r] ' (1±O(b)) · gᵀ

(
2P ⊗H+

C

)
g (85)

E [(g′)ᵀM2g
′ | r] ' gᵀM2g ±O(b) · gᵀ

(
P ⊗H+

C

)
g . (86)

Note that P ⊗H+
C = (P ⊗IK)M1(P ⊗IK) andM2 = (P ⊗IK)M2(P ⊗IK), so Eqs. (85) and (86)

are equivalent to

E [(g′)ᵀM1g
′ | r] ' (1±O(b)) · uᵀ(2M1)u (M1-bound)

E [(g′)ᵀM2g
′ | r] ' uᵀM2u±O(b) · uᵀM1u , (M2-bound)

which is what we will show next.
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Assume that the ith block is chosen for an update in the iteration t and write δi for δi(r). Note that

µ′0 = µ′i = µi + δi , µ′j =

{
µj if j 6= i,
µi + δi if j = i.

Thus, from Eq. (65), the blocks g′j can be written as

g′j =

{
µi − µj + δi if j 6= i,
0 if j = i.

Calculate:

(g′)ᵀM1g
′ =

∑
j

(g′j)
ᵀH+

C g
′
j

=
∑
j 6=i

(µi − µj + δi)
ᵀH+

C (µi − µj + δi)

=
∑
j

(µi − µj + δi)
ᵀH+

C (µi − µj + δi)− δᵀiH
+
C δi

=
∑
j

[
(µi − µj)ᵀH+

C (µi − µj) + 2δᵀiH
+
C (µi − µj) + δᵀiH

+
C δi

]
− δᵀiH

+
C δi

'
∑
j

[
(µi − µj)ᵀH+

C (µi − µj)
]
±
[
4N‖δi‖‖H+

C ‖ρ+N‖H+
C ‖‖δi‖

2
]

(87)

'
∑
j

[
(µi − µj)ᵀH+

C (µi − µj)
]
±
[
8Nbc‖H+

C ‖ρ
2 + 4Nb2c2‖H+

C ‖ρ
2
]

(88)

'
∑
j

[
(µi − µj)ᵀH+

C (µi − µj)
]
± bc1ρ2 . (89)

In Eq. (87), we used the fact that

‖µi − µj‖ ≤ ‖µi − µ̂‖+ ‖µj − µ̂‖ ≤ 2ρ .

In Eq. (88), we used Lemma D.16, which implies that

‖δi‖ ≤ bc‖µi − µ0‖ ≤ bc
(
‖µi − µ̂‖+ ‖µ0 − µ̂‖

)
≤ 2bcρ . (90)

And in Eq. (88), we set c1 = 8Nc‖H+
C ‖+ 4Nb0c

2‖H+
C ‖.

Recall that uj = µj − µ̂, so µi − µj = ui − uj . Thus, taking expectation over i, Eq. (89) yields

Ei [(g′)ᵀM1g
′] ' 1

N

N∑
i=1

N∑
j=1

[
(µi − µj)ᵀH+

C (µi − µj)
]
± bc1ρ2

=
1

N

N∑
i=1

N∑
j=1

[
(ui − uj)ᵀH+

C (ui − uj)
]
± bc1ρ2

=
1

N

N∑
i=1

N∑
j=1

[
uᵀ
iH

+
Cui − 2uᵀ

iH
+
Cuj + ujH

+
Cuj

]
± bc1ρ2

=

N∑
i=1

[
2uᵀ

iH
+
Cui

]
± bc1ρ2 (91)

= 2uᵀM1u± bc1ρ2 , (92)

where Eq. (91) follows because
∑
i ui = 0. To prove (M1-bound), it remains to upper bound

ρ2. Let σ be the smallest eigenvalue of H+
C over G(C); it must be greater than zero because

range(HC) = G(C). We can bound ρ2 as

ρ2 ≤
N∑
i=1

‖µi − µ̂‖2 ≤ σ−1
N∑
i=1

(µi − µ̂)ᵀH+
C (µi − µ̂) = σ−1uᵀM1u . (93)
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Plugging this bound back into Eq. (92) yields (M1-bound).

We next prove (M2-bound). Again, consider an update of the block i. Let u′ := (P ⊗ Ik)g′ be the
centered version of g′. Its blocks are

u′j =

{
uj − δi/N if j 6= i,
uj − δi/N + δi if j = i.

Thus,

‖u′ − u‖2 = (N − 1) · ‖δi‖
2

N2
+

(
1− 1

N

)2

‖δi‖2 ≤ ‖δi‖2 ≤ (2bcρ)2

where the last inequality follows by Eq. (90). Also, from the definition of ρ,

‖u‖2 ≤ Nρ2 .

Now, we bound (g′)ᵀM2g
′. Since M2 = (P ⊗ IK)M2(P ⊗ IK), we can write

(g′)ᵀM2g
′ = (u′)ᵀM2u

′

=
(
u+ (u′ − u)

)ᵀ
M2

(
u+ (u′ − u)

)
' uᵀM2u±

[
2‖u‖‖M2‖‖u′ − u‖+ ‖M2‖‖u′ − u‖2

]
' uᵀM2u±

[
4bc
√
N‖M2‖ρ2 + 4b2c2‖M2‖ρ2

]
(94)

' uᵀM2u± bc2ρ2 , (95)

where in Eq. (94) we used the previously derived bounds and in Eq. (95), we set c2 = 4c
√
N‖M2‖+

4b0c
2‖M2‖. Finally, using the bound on ρ2 from Eq. (93) in Eq. (95) yields (M2-bound).

It remains to prove the bounds σlow and σhigh. In particular, we will show that if rt−1 ∈ S then

σlow · E
[
(g′)ᵀ(H?)+g′

∣∣ r] ≤ E
[
(g′)ᵀD(H?)+g′

∣∣ r] ≤ σhigh · E
[
(g′)ᵀ(H?)+g′

∣∣ r] (96)

then taking expectation over r = rt, conditionally on rt−1, we also obtain

σlow · E
[
(g′)ᵀ(H?)+g′

∣∣ rt−1
]
≤ E

[
(g′)ᵀD(H?)+g′

∣∣ rt−1
]
≤ σhigh · E

[
(g′)ᵀ(H?)+g′

∣∣ rt−1
]

which will yield the desired conclusion by Theorem D.8 (with the level set S and ` = 2).

To prove Eq. (96), we first apply Eqs. (83) and (84):

E
[
(g′)ᵀ(H?)+g′

∣∣ r]
E
[
(g′)ᵀD(H?)+g′

∣∣ r]︸ ︷︷ ︸
=:z

' (1±O(b)) ·
gᵀ
(

2b(P ⊗ IK)M1(P ⊗ IK)
)
g

gᵀ
(
M2 ± O(b) · (P ⊗ IK)M1(P ⊗ IK)

)
g

= (1±O(b)) · uᵀ ( 2bM1 )u

uᵀ
(
M2 ±O(b)M1

)
u

= (1±O(b)) · 2b
uᵀM2u
uᵀM1u

± O(b)
.

Now note that the blocks of u take form ui = µi − (
∑
j µj)/N , where µi ∈M ⊆ range(H+

T ), so
u ∈ range(P ⊗H+

T ) = range(M2) ⊆ range(M1). This means that

0 < λmin(M1,M2) ≤ u
ᵀM1u

uᵀM2u
≤ λmax(M1,M2) ,

so we can write
z ' (1±O(b)) · 2b · u

ᵀM1u

uᵀM2u
,

and thus,

2b · λmin(M1,M2)−O(b2) ≤ z ≤ 2b · λmax(M1,M2) +O(b2) .

The theorem now follows, because

λmin(M1,M2) = λmin

(
(M+

2 )1/2M1(M+
2 )1/2

)
= λmin(PDP ) · λmin

(
H

1/2
T H+

CH
1/2
T

)
,

and similarly for λmax(M1,M2).
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D.7.2 Tighter Relationship between Suboptimality and Convergence Error for ASD

For ASD, it is possible to establish a tighter relationship between the convergence error ‖µt − µ?‖
and suboptimality F (rt) − F ? than we proved in Appendix D.2. Specifically, we showed that
‖µt − µ?‖2 = O(F (rt)− F ?) for convex+ C. Under ASD, we obtain a matching lower bound for
the one-step expectation, i.e., E

[
‖µt+1 − µ?‖2 | rt

]
= Θ(F (rt)− F ?).

Theorem D.18. Let C be convex+. Under ASD, with probability one there exists t0 such that for all
t ≥ t0,

E
[
‖µt+1 − µ?‖2 | rt

]
' (1±O(b)) ·Θ(F (rt)− F ?) .

Proof. Recall that in the notation introduced in Appendix D.2, we have µt = µ0(rt). We use a
similar notation as in the proof of Theorem D.17. We write r for rt and r′ for rt+1. Let µj := µj(r)
for j ∈ [N ], µ0 := µ0(r), and similarly define µ′j , µ

′
0 for the iterate r′. Finally, write δi for δi(r).

We assume that t0 ≥ 1. Let ρ = maxj‖µj − µ?‖, and since µ0 = µj for some j ∈ [N ], we also
have ρ ≥ ‖µ0 − µ?‖. We will use the following loose bound on ρ2:

ρ2 ≤
N∑
i=1

‖µi − µ?‖2 .

We start with the expression for the suboptimality in Eq. (47) and specialize it to ASD:

F (r)− F ? '
(

1± 1

2

) N∑
i=1

1

2ai

(
µ? − µi

)ᵀ
H+
T (µ?)

(
µ? − µi

)
+ b

(
1± 1

2

)
1

2

(
µ? − µ0

)ᵀ
H+
C (µ?)

(
µ? − µ0

)
' (c1 ± c2)

(
N∑
i=1

‖µ? − µi‖2 + b‖µ? − µ0‖2
)

(97)

' (c1 ± c2)(1 + b)

N∑
i=1

‖µ? − µi‖2 . (98)

In Eq. (97), we used the fact that λmin(H+
T (µ?), P ) > 0 and λmin(H+

C (µ?), P ) > 0, where P is the
projection on the linear space parallel toM, which implies existence of constants 0 ≤ c2 < c1 such
that

(c1 − c2)P �
(

1± 1

2

)
1

2ai
H+
T (µ?) � (c1 + c2)P

(c1 − c2)P �
(

1± 1

2

)
1

2
H+
C (µ?) � (c1 + c2)P .

In Eq. (98), we used the upper bound ‖µ? − µ0‖2 ≤ ρ2 ≤
∑N
i=1‖µi − µ?‖2. We now similarly

bound E
[
‖µt+1 − µ?‖2 | rt

]
. Recall that in our notation µt+1 = µ0(rt+1) = µ′0. We assume that

b is sufficiently small, so Lemma D.16 applies, i.e., b ≤ b0:

E
[
‖µ′0 − µ?‖2 | r

]
=

1

N

N∑
i=1

‖µ′i − µ?‖2

=
1

N

N∑
i=1

‖µi + δi − µ?‖2

' 1

N

N∑
i=1

[
‖µi − µ?‖2 ± 2‖δi‖ρ+ ‖δi‖2

]
(99)

' 1

N

N∑
i=1

[
‖µi − µ?‖2 ± 4cbρ2 + 4c2b2ρ2

]
(100)
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'
(

1

N
± c3b

) N∑
i=1

‖µi − µ?‖2 . (101)

In Eq. (99), we applied the bound ‖µi − µ?‖ ≤ ρ. In Eq. (100), we used Lemma D.16 and applied
the triangular inequality to obtain ‖µi−µ0‖ ≤ ‖µi−µ?‖+ ‖µ0−µ?‖ ≤ 2ρ. Finally, in Eq. (101),
we applied the bound ρ2 ≤

∑N
i=1‖µi −µ?‖2 and set c3 = 4c+ 4c2b0. The theorem now follows by

combining Eq. (98) and Eq. (101). Note that, as before, we suppress the dependence on N and ai
within the O(·) and Θ(·) notation.

D.7.3 Summary of Local Convergence Results

Here we summarize our local convergence results for ASD and SSD. Recall that D := diagi∈[N ] ai,
P := IN−11ᵀ/N , and λmin(·) and λmax(·) to denote the smallest and the largest positive eigenvalues
of a matrix.

Theorem D.19. Assume that C is convex+. Let HT := HT (µ̄), HC := HC(µ̄), and DC be the
diagonal matrix with the diagonal of HC . For all-securities dynamics, local strong convexity is
bounded from below and above by

σASDlow = 2b · λmin(PDP ) · λmin

(
H

1/2
T H+

CH
1/2
T

)
−O(b2) ,

σASDhigh = 2b · λmax(PDP ) · λmax

(
H

1/2
T H+

CH
1/2
T

)
+O(b2) .

For single-security dynamics, local strong convexity is bounded from below by

σSSDlow = b · λmin(PDP ) · λmin

(
H

1/2
T D+

CH
1/2
T

)
−O(b2) .

Proof. The theorem follows immediately from Theorems D.15 and D.17.

Recall that by Theorem D.8, the bounds on local strong convexity translate into bounds on local
convergence rate as γhigh = 1− σlow/N and γlow = 1− σhigh/N for ASD, and γhigh = 1− σlow/NK
for SSD.

So, for ASD, Theorem D.19 proves linear convergence with the rate γ = 1−Θ(b). This means that
the convergence gets worse as b→ 0, leading to a trade-off with the bias, which decreases as b→ 0.
Our numerical experiments in Section 7 and Appendix E show that these bounds on the convergence
rate are empirically quite tight. Below, we show an example when the two bounds match except for
the O(b2) terms: when all traders have identical risk aversions and the cost function is LMSR.

For SSD, we only present a lower bound on the local strong convexity, which suffices to establish
a linear convergence rate. This bound is worse by a factor of two than the bound for ASD. This we
believe is only an artifact of a looser analysis and we expect that the reasoning that gave rise to a
tighter analysis of ASD can be generalized to SSD. Our experiments in Appendix E also suggest that
our SSD analysis is looser than the ASD analysis.

Example D.20 (Convergence of LMSR under ASD). We next demonstrate the tightness of our bounds
for ASD. Consider the setting when N ≥ 2 and the risk aversion of all traders equals a. Then
PDP = aPINP = aP , and since P is a non-zero projection matrix, we obtain λmin(PDP ) =
aλmin(P ) = a and similarly λmax(PDP ) = a. Furthermore, if the cost is LMSR thenHC = HT , and
thus H1/2

T H+
CH

1/2
T = IK −11ᵀ/K. Therefore, Theorem 6.2 yields the bounds σASDlow = 2ab−O(b2)

and σASDhigh = 2ab+O(b2), whose main asymptotic terms match exactly. Thus, the objective decreases
at the rate γt and the convergence error at the rate γt/2 with γ = 1− 2ab/N +O(b2), and the linear
term in b cannot be improved.

D.8 Proof of Theorem 6.2

The theorem follows immediately from Theorem D.19, because γhigh = 1 − σlow/N and γlow =
1− σhigh/N for ASD (by Theorem D.8).
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D.9 Proof of Theorem 6.3

Proof of Theorem 6.3. Fix the liquidity b for LMSR and b′ = b/η for IND, where η ∈ [1, 2] (following
Theorem 5.7). We begin by deriving the relationship between the upper and lower bounds on the rate
of convergence using Theorem 6.2. We will write γhigh and γlow for the convergence rate bounds for
LMSR and γ′high and γ′low for IND. We will start with LMSR.

Following the same steps as in Example D.20, we have λmin(PDP ) = λmax(PDP ) = a, and since
HLMSR = HT , we obtain

γhigh = 1− 2ab/N +O(b2) , γlow = 1− 2ab/N −O(b2) .

For IND, we have HIND = DT where DT is the diagonal of HT . By Lemma D.21 (see below), we
obtain that

λmin

(
H

1/2
T H+

INDH
1/2
T

)
= λmin

(
H

1/2
T D+

TH
1/2
T

)
≥ 1

λmax

(
H

1/2
T H+

INDH
1/2
T

)
= λmax

(
H

1/2
T D+

TH
1/2
T

)
≤ 2 .

Plugging these expressions, alongside b′ = b/η, into Theorem 6.2, we obtain

γ′high ≤ 1− 2ab / ηN +O(b2) ≤ 1− ab/N +O(b2)

γ′low ≥ 1− 4ab / ηN +O(b2) ≤ 1− 4ab/N −O(b2)

Next, note the following chain of inequalities which we will use to simplify our analysis. Let
γ = 1− αb+O(b2), and let t ≥ t0 and c > 0. Then

cγt−t0 = exp
{

(log c) + (t− t0) log
(
1− αb+O(b2)

)}
≤ exp

{
(log c)− b(t− t0)

(
α−O(b)

)}
≤ exp

{
−bt
(
α−O(b)− εt

)}
,

where εt → 0 as t → ∞. Similarly, for γ = 1 − αb − O(b2), we can derive the following lower
bound

cγt−t0 = exp
{

(log c) + (t− t0) log
(
1− αb−O(b2)

)}
≥ exp

{
(log c)− b(t− t0)

(
α+O(b)

)}
≥ exp

{
−bt
(
α+O(b) + εt

)}
,

where εt → 0 as t→∞. In the remainder of the proof, we will write ε, ε′, ε′′ etc., to mean quantities
that are O(b) + εt with some εt → 0 as t→∞.

We can now apply our convergence rate bounds to bound the suboptimality of the potential under
both costs and liquidities. For each of the two costs C, let FC and F ?C denote the corresponding
potential and its optimal value, and rtC and µtC be the corresponding iterates and market prices. By
Proposition D.7 and Proposition D.13, we obtain that with probability 1, we will reach an iteration t0
such that for all t ≥ t0

exp
{
−bt
(
2a/N + ε

)}
≤ E

[
FLMSR(r

t
LMSR) | r

t0
LMSR
]
− F ?LMSR ≤ exp

{
−bt
(
2a/N − ε

)}
exp

{
−bt
(
4a/N + ε

)}
≤ E

[
FLMSR(r

t
IND) | r

t0
IND
]
− F ?IND ≤ exp

{
−bt
(
a/N − ε

)}
,

where we used our bounds for cγt−t0 . By Theorem D.18, we then also have, for some ε′, and all
t > t0,

exp
{
−bt
(
2a/N + ε′

)}
≤ E

[
‖µtLMSR − µ?LMSR‖2 | r

t0
LMSR
]
≤ exp

{
−bt
(
2a/N − ε′

)}
exp

{
−bt
(
4a/N + ε′

)}
≤ E

[
‖µtIND − µ?IND‖2 | r

t0
IND
]
≤ exp

{
−bt
(
a/N − ε′

)}
.

Now writing Et0 [·] instead of E
[
· | rt0IND

]
, E
[
· | rt0IND

]
, we obtain that for a suitable ε′′

Et0
[∥∥µ2t(1+ε′′)

LMSR − µ?LMSR
∥∥2
]
≤ exp

{
−2bt

(
2a/N − ε′

)
(1 + ε′′)

}
= exp

{
−bt
(
4a/N − 2ε′ + 4aε′′/N − 2ε′ε′′

)}
≤ exp

{
−bt
(
4a/N + ε′

)}
(102)
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≤ Et0
[
‖µtIND − µ?IND‖2

]
≤ exp

{
−bt
(
a/N − ε′

)}
≤ exp

{
−bt
(
a/N + ε′/2− aε′′/N − ε′ε′′/2

)}
(103)

= exp
{
−b(t/2)

(
2a/N + ε′

)
(1− ε′′)

}
≤ Et0

[∥∥µ(t/2)(1−ε′′)
LMSR − µ?LMSR

∥∥2
]
.

It remains to verify that we can choose a suitable ε′′ to guarantee inequalities (102) and (103) for
a sufficiently small b and large t. One possibility is to set ε′′ = 3Nε′/(2a), because then (for a
sufficiently small b and large t), we have

4aε′′

N
≥ 3ε′ + 2ε′ε′′ =⇒ −2ε′ +

4aε′′

N
− 2ε′ε′′ ≥ ε′ =⇒ (102),

aε′′

N
≥ 3

2
ε′ − 1

2
ε′ε′′ =⇒ −ε′ ≥ ε′

2
− aε′′

N
− ε′ε′′

2
=⇒ (103).

Lemma D.21. Let µ ∈ RK be a probability vector with non-zero entries, let H := (diagk∈[K] µk)−
µµᵀ be the covariance matrix of the associated multinomial distribution, andD := diagk∈[K] µk(1−
µk) be the diagonal matrix consisting of the diagonal of H . Then

1 ≤ λmin(H1/2D−1H1/2) and λmax(H1/2D−1H1/2) ≤ 2 .

Proof. Let L := range(D−1/2HD−1/2). To prove the lemma, it suffices to show that for all u ∈ L

uᵀu ≤ uᵀD−1/2HD−1/2u ≤ 2uᵀu . (104)

This will imply that 1 ≤ λmin(D−1/2HD−1/2) and λmax(D−1/2HD−1/2) ≤ 2. Thus, by Eq. (7),
we will also have 1 ≤ λmin(H1/2D−1H1/2) and λmax(H1/2D−1H1/2) ≤ 2.

Let u ∈ L and v = D−1/2u. Eq. (104) can be rewritten as

vᵀDv ≤ vᵀHv ≤ 2vᵀDv .

We will next show that both inequalities hold.

Part 1: vᵀDv ≤ vᵀHv. We first rewrite the constraint u ∈ L in terms of v. To start,
note that u ∈ L = range(D−1/2HD−1/2) iff u ⊥ null(D−1/2HD−1/2). Next, note that
y ∈ null(D−1/2HD−1/2) iff D−1/2y ∈ null(H), which is equivalent to y ∈ D1/2 null(H).
Now, null(H) = {c1 : c ∈ R}, where 1 is the all-ones vector. So,

null(D−1/2HD−1/2) = D1/2 null(H) =
{
y : yj = c

√
µj(1− µj) for j ∈ [K], for some c ∈ R

}
.

Therefore, u ⊥ null(D−1/2HD−1/2) iff∑
j∈[K]

uj

√
µj(1− µj) = 0 . (105)

Since v = D−1/2u, we have u = D1/2v, i.e., uj = vj
√
µj(1− µj) for j ∈ [K]. Substituting this

expression into Eq. (105) yields ∑
j∈[K]

vjµj(1− µj) = 0 . (106)

When K = 1, then D = H = 0, so in this case indeed vᵀDv ≤ vᵀHv. Next consider K > 1. We
will use the following identity for v1µ1, implied by Eq. (106):

v1µ1 = − 1

1− µ1

∑
j≥2

vjµj(1− µj) . (107)
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We next argue that vᵀHv − vᵀDv ≥ 0:

vᵀHv − vᵀDv = −
∑

j,k∈[K]
j 6=k

µjµkvjvk (108)

= −
∑
j,k≥2
j 6=k

µjµkvjvk − 2
∑
k≥2

µ1v1µkvk

= −
∑
j,k≥2
j 6=k

µjµkvjvk +
2

1− µ1

∑
j,k≥2

µj(1− µj)vjµkvk (109)

= −
∑
j,k≥2
j 6=k

zjzk +
2

1− µ1

∑
j,k≥2

(1− µj)zjzk (110)

= −
∑
j,k≥2
j 6=k

zjzk +
1

1− µ1

∑
j,k≥2

(
(1− µj) + (1− µk)

)
zjzk (111)

=
1

1− µ1

[ ∑
j,k≥2
j 6=k

zjzk

(
−(1− µ1) + (1− µj) + (1− µk)

)
+
∑
j≥2

2(1− µj)z2
j

]

=
1

1− µ1

[ ∑
j,k≥2
j 6=k

zjzk

(
(1− µ1 − µj − µk) + 2µ1

)
+
∑
j≥2

z2
j

(
2(1− µ1 − µj) + 2µ1

) ]

=
1

1− µ1

[
2µ1

∑
j,k≥2

zjzk +
∑
j,k≥2
j 6=k

(1− µ1 − µj − µk)zjzk +
∑
j≥2

2(1− µ1 − µj)z2
j

]

=
1

1− µ1

[
2µ1

∑
j,k≥2

zjzk +
∑
j,k≥2
j 6=k

∑
`≥2
6̀=j,k

µ`zjzk +
∑
j≥2

∑
`≥2
` 6=j

2µ`z
2
j

]
(112)

=
1

1− µ1

[
2µ1

∑
j,k≥2

zjzk +
∑
j,k≥2

∑
`≥2
6̀=j,k

µ`zjzk +
∑
j≥2

∑
`≥2
` 6=j

µ`z
2
j

]

=
1

1− µ1

[
2µ1

∑
j,k≥2

zjzk +
∑
`≥2

µ`
∑
j,k≥2
j 6=`,k 6=`

zjzk +
∑
j≥2

∑
`≥2
` 6=j

µ`z
2
j

]

=
1

1− µ1

[
2µ1

(∑
j≥2

zj

)2

+
∑
`≥2

µ`

(∑
j≥2
j 6=`

zj

)2

+
∑
j,`≥2
6̀=j

µ`z
2
j

]
≥ 0 . (113)

In Eq. (108), we use the fact that D is the diagonal of H , so the right-hand side only sums over
off-diagonal entries of H . In Eq. (109), we replaced µ1v1 using Eq. (107). In Eq. (110), introduce
the substitution zj := µjvj . In Eq. (111), we use the fact that 2

∑
j,k≥2(1− µj)zjzk =

∑
j,k≥2(1−

µj)zjzk +
∑
j,k≥2(1− µk)zjzk. In Eq. (112), we use the fact that

∑
`∈[K] µ` = 1 and so (1− µ1 −

µj−µk) =
∑
` 6=1,j,k µ` and (1−µ1−µj) =

∑
` 6=1,j µ`. Finally, the inequality in Eq. (113) follows

because µ1, µ` ≥ 0.

Part 2: vᵀHv ≤ 2vᵀDv. We show by direct calculation that 2vᵀDv − vᵀHv ≥ 0:

2vᵀDv − vᵀHv ≥ 0 = 2
[ ∑
j∈[K]

µjv
2
j −

∑
j∈[K]

µ2
jv

2
j

]
−
[ ∑
j∈[K]

µjv
2
j −

∑
j,k∈[K]

µjµkvjvk

]
(114)
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=
∑
j∈[K]

µjv
2
j − 2

∑
j∈[K]

µ2
jv

2
j +

∑
j,k∈[K]

µjµkvjvk

=
∑

j,k∈[K]

µjµkv
2
j − 2

∑
j∈[K]

µ2
jv

2
j +

∑
j,k∈[K]

µjµkvjvk (115)

=
∑

j,k∈[K]
j 6=k

µjµkv
2
j +

∑
j,k∈[K]
j 6=k

µjµkvjvk

=
∑

j,k∈[K]
j 6=k

(1

2
µjµkv

2
j +

1

2
µjµkv

2
k + µjµkvjvk

)
(116)

=
∑

j,k∈[K]
j 6=k

1

2
µjµk (vj + vk)

2 ≥ 0 . (117)

In Eq. (114), we just use the definition of H and D. In Eq. (115), we use that
∑
k∈[K] µk = 1.

In Eq. (116), we use that by symmetry
∑
j 6=k µjµkv

2
j =

∑
j 6=k µjµkv

2
k and so

∑
j 6=k µjµkv

2
j =∑

j 6=k µjµk(v2
j + v2

k)/2. The final inequality in Eq. (117) follows because µj , µk ≥ 0.

E Additional Numerical Experiments

In Section 7, we demonstrated that our asymptotic theory closely matches simulations for all-securities
dynamics and single-peaked beliefs. Here we include experiments for an additional set of beliefs
(uniform beliefs, defined below) and single-securities dynamics (defined in Appendix D.1). Once
again, we consider a setting in which there is a complete market over K = 5 securities with N = 10
traders who have exponential utilities, exponential-family beliefs and risk aversion coefficients ai = 1
for i ∈ [N ]. Similar to Section 7, we fix the ground-truth natural parameter θtrue and independently
sample the belief θ̃i of each trader from Normal(θtrue, σ2IK). We consider two settings of the ground
truth and beliefs:

• Uniform Beliefs: All outcomes are equally likely. We set θtrue = 000 and σ = 1.
• Single-Peaked Beliefs: One outcome is more likely than the others. Here we set θtrue

1 =
log(1− ν · (k − 1)) and θtrue

k = log(ν) for k 6= 1. We use ν = 0.02 and σ = 5.

Fig. 2 shows the trader beliefs and market-clearing equilibrium prices (calculated via Theorem 4.3)
for both settings. Note that in Section 7, we gave results for the case of single-peaked beliefs and
all-security dynamics whereas here we present results for all four combinations of belief settings and
trader dynamics.

Bias/convergence tradeoffs We first examine the tradeoff that arises between market-maker bias
and convergence error as the liquidity parameter of the market is adjusted. Since our main interest
is in the effect of the cost function C and liquidity parameter b on error, we ignore the sources of
error that do not depend on the choice of cost function, such as the sampling error. Fig. 3 shows the
combined bias and convergence error, ‖µ̄− µt(b;C)‖, as a function of liquidity, for different beliefs
and cost functions under ASD after different numbers of trades have occurred. (Other choices of norm
lead to similar results.) Similarly, we give results for SSD in Fig. 4. The minimum point on each
curve tells us the optimal value of the liquidity parameter b for the particular setting and number of
trades. When the market has not been running long, larger values of b lead to lower error. On the
other hand, smaller values of b are preferable as the number of trades grows, with the combined error
approaching 0 for small b. The combined error of LMSR is similar to that of the sum of independent
LMSRs (IND) under uniform beliefs, but LMSR produces lower combined error for single-peaked
beliefs.

Market-maker bias We next focus in on the market-maker bias to empirically evaluate our bounds
from Section 5. From Theorem 5.6, we know that ‖µ?(b;C)− µ̄‖ ≈ b(ā/N)‖HT (µ̄)∂C∗(µ̄)‖. In
Fig. 5, we plot the empirical bias ‖µ?(b;C) − µ̄‖ as a function of b for both LMSR and IND under
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Figure 2: Two sets of beliefs of the N = 10 traders about the K = 5 outcomes. The beliefs were
sampled once and then fixed in all experiments. The gray bars show the market-clearing equilibrium
prices µ̄ as in Definition 3.1 and Theorem 4.3.
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Figure 3: The tradeoff between marker-maker bias and convergence error for ASD with different
beliefs and cost functions. Solid lines show the total bias and convergence error of LMSR after various
numbers of trades, averaged over 20 random trade sequences. Dotted lines show the same for IND.

uniform and single-peaked beliefs, and in each case compare this bias with the approximation implied
by the theory. We find that although Theorem 5.6 only gives an asymptotic guarantee as b→ 0, the
approximation above is fairly accurate even for moderate values of b. As Theorem 5.7 shows, the bias
of IND is higher than that of LMSR at any fixed value of b, but by no more than a factor of two. The
difference is greater for single-peaked beliefs than uniform beliefs. Note that the bias is unaffected by
the choice of trader dynamics.

Convergence error Finally, we turn to the convergence error. We first show that the local linear
convergence rate kicks in very quickly—essentially from the start of trade in our simulations. We
then examine the tightness of our bounds on the local convergence rate from Section 6.

From Theorem D.3, we know that F (rt) − F ? is an upper bound on ‖µt − µ?‖2, and under ASD
we also have F (rt) − F ? = Θ(‖µt − µ?‖2) (by Theorem D.18), where we suppress the implicit
dependence on C and b. Rather than examining the convergence of prices directly, we examine
convergence of the objective, which will be more convenient in the discussion below. Fig. 6 shows
the empirical value of Ê [F (rt)]− F ?, where the expectation is the empirical average over the 20
random sequences, as a function of the number of trades, plotted on a log scale, for our two belief
sets and cost functions under the all-securities trade dynamics. In all settings, the log of convergence
error appears linear, matching the local asymptotic analysis in Section 6. In other words, there exist
some ĉ and γ̂ such that, empirically, we have for all t, Ê [F (rt)]− F ? ≈ ĉγ̂t.
To examine the tightness of the bounds from Section 6, we dig more deeply into the value of this
empirical constant γ̂, which depends on C and b. Since this approximation holds for any sufficiently
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Figure 4: The tradeoff between marker-maker bias and convergence error for SSD with different
beliefs and cost functions. Solid lines show the total bias and convergence error of LMSR after various
numbers of trades, averaged over 20 random trade sequences. Dotted lines show the same for IND.
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Figure 5: Market-maker bias as a function of b for different beliefs and cost functions.

large t, we can define γ̂ by choosing some t1 and t2 and setting

γ̂ =

(
Ê [F (rt2)]− F ?

Ê [F (rt1)]− F ?

)1/(t2−t1)

.

If γ̂ is the correct asymptotic convergence rate, then from Theorem D.8, we should have 1−σhigh/N ≤
γ̂ ≤ 1−σlow/N for values of σhigh and σlow that satisfy Eq. (49), since |A| = N for ASD. Rearranging
terms, we would expect that, for sufficiently large t1 and t2,

σlow ≤ N

1−

(
Ê [F (rt2)]− F ?

Ê [F (rt1)]− F ?

)1/(t2−t1)
 ≤ σhigh. (118)

We refer to this quantity that is upper and lower bounded by σhigh and σlow as the empirical strong
convexity σ̂. Note that σlow and σhigh implicitly depend on b and C.

We can now check how well our theoretical lower and upper bounds on local strong convexity bound
the empirical strong convexity σ̂. In Fig. 7, we plot σ̂ as a function of b using different values of t1
and t2 and compare it with the asymptotic bounds of σlow and σhigh computed as in Theorem D.19,
dropping the terms that are O(b2). We would expect to see σlow ≤ σ̂ ≤ σhigh as b goes to 0, and
indeed this is the case. For LMSR, the values of σhigh and σlow coincide, and the empirical values for σ̂
agree for small b.

We now turn to our results for single-security dynamics (SSD). Fig. 8 shows the empirical value of
F (rt) − F ?, averaged over 20 random sequences of trade, as a function of the number of trades,
plotted on a log scale, for our two belief sets and cost functions under SSD. The plots show the
convergence error for LMSR and IND right on top of each other, suggesting that the main asymptotic
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Figure 6: Convergence in the objective value for various trader beliefs, cost functions, and liquidity
parameters under ASD. Solid lines show the log error in objective for LMSR, dotted lines for IND.
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Figure 7: The empirical strong convexity from Eq. (118) under ASD for various values of t1, t2
represented as dots, and asymptotic bounds for σlow and σhigh from Theorem D.19 (ignoring O(b2)
terms) represented as lines.

term is driven by the diagonal of HC(µ̄), which is the same for both costs, and which appears in the
lower bound of Theorem D.19 (with a multiplier that could be possibly improved). Similar to ASD,
we also evaluate the empirical strong convexity σ̂. In this case, we only have access to a lower bound
(Theorem D.19), which our plots show to be a valid albeit a somewhat loose bound. All the bounds
that we used in the ASD and SSD strong convexity plots are summarized in Table 1.
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Figure 8: Convergence in the objective value for various trader beliefs, cost functions, and liquidity
parameters under SSD. Solid lines show the log error in objective for LMSR, dotted lines for IND; the
IND and LMSR lines are right on top of each other.
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Figure 9: The empirical strong convexity from Eq. (118) under SSD for various values of t1, t2
represented as dots, and asymptotic bound for σlow from Theorem D.19 (ignoring the O(b2) term)
represented as the black solid line.

Table 1: The bounds σlow and σhigh in the various cases we consider in our experiments, computed
using Theorem D.19.

Beliefs Dynamics C σlow σhigh

Uniform Beliefs
ASD LMSR 2b 2b

IND 2.31b 2.78b

SSD LMSR 1.01b —
IND 1.01b —

Single-Peaked Beliefs
ASD LMSR 2b 2b

IND 2.03b 3.78b

SSD LMSR 1.01b —
IND 1.01b —
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