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Abstract

We describe and explore a new perspective on the
sample complexity of active learning. In many sit-
uations where it was generally believed that ac-
tive learning does not help, we show that active
learning does help in the limit, often with expo-
nential improvements in sample complexity. This
contrasts with the traditional analysis of active
learning problems such as non-homogeneous lin-
ear separators or depth-limited decision trees, in
which Ω(1/ε) lower bounds are common. Such
lower bounds should be interpreted carefully; in-
deed, we prove that it is always possible to learn an
ε-good classifier with a number of samples asymp-
totically smaller than this. These new insights arise
from a subtle variation on the traditional definition
of sample complexity, not previously recognized
in the active learning literature.

1 Introduction

Machine learning research has often focused on the problem
of learning a classifier from labeled examples sampled inde-
pendent from the particular learning algorithm that is used.
However, for many contemporary practical problems such
as classifying web pages or detecting spam, there is often
an abundance of unlabeled data available, from which a rel-
atively small subset is selected to be labeled and used for
learning. In such scenarios, the question arises of how to
select that subset of examples to be labeled.

One possibility, which has recently been generating sub-
stantial interest, is active learning. In active learning, the
learning algorithm itself is allowed to select the subset of un-
labeled examples to be labeled. It does this sequentially (i.e.,
interactively), using the requested label information from
previously selected examples to inform its decision of which
example to select next. The hope is that by only requesting
the labels of informative examples, the algorithm can learn
a good classifier using significantly fewer labels than would
be required if the labeled set were sampled at random.

A number of active learning analyses have recently been
proposed in a PAC-style setting, both for the realizable and
for the agnostic cases, resulting in a sequence of important
positive and negative results [6, 7, 8, 2, 10, 4, 9, 13, 12].

In particular, the most concrete noteworthy positive result
for when active learning helps is that of learning homo-
geneous (i.e., through the origin) linear separators, when
the data is linearly separable and distributed uniformly over
the unit sphere, and this example has been extensively an-
alyzed [8, 2, 10, 4, 9]. However, few other positive results
are known, and there are simple (almost trivial) examples,
such as learning intervals or non-homogeneous linear sepa-
rators under the uniform distribution, where previous analy-
ses of sample complexities have indicated that perhaps active
learning does not help at all [8].

In this work, we approach the analysis of active learn-
ing algorithms from a different angle. Specifically, we point
out that traditional analyses have studied the number of label
requests required before an algorithm can both produce an ε-
good classifier and prove that the classifier’s error is no more
than ε. These studies have turned up simple examples where
this number is no smaller than the number of random labeled
examples required for passive learning. This is the case for
learning certain nonhomogeneous linear separators and in-
tervals on the real line, and generally seems to be a common
problem for many learning scenarios. As such, it has led
some to conclude that active learning does not help for most
learning problems. One of the goals of our present analysis
is to dispel this misconception. Specifically, we study the
number of labels an algorithm needs to request before it can
produce an ε-good classifier, even if there is no accessible
confidence bound available to verify the quality of the clas-
sifier. With this type of analysis, we prove that active learn-
ing can essentially always achieve asymptotically superior
sample complexity compared to passive learning when the
VC dimension is finite. Furthermore, we find that for most
natural learning problems, including the negative examples
given in the previous literature, active learning can achieve
exponential1 improvements over passive learning with re-
spect to dependence on ε. This situation is characterized in
Figure 1.1.

1.1 A Simple Example: Unions of Intervals

To get some intuition about when these types of sample com-
plexity are different, consider the following example. Sup-
pose that C is the class of all intervals over [0, 1] and D is

1We slightly abuse the term “exponential” throughout the paper.
In particular, we refer to any polylog(1/ε) as being an exponential
improvement over 1/ε.
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Figure 1.1: Active learning can often achieve exponential
improvements, though in many cases the amount of improve-
ment cannot be detected from information available to the
learning algorithm. Here γ may be a target-dependent con-
stant.

a uniform distribution over [0, 1]. If the target function is
the empty interval, then for any sufficiently small ε, in order
to verify with high confidence that this (or any) interval has
error ≤ ε, we need to request labels in at least a constant
fraction of the Ω(1/ε) intervals [0, ε], [ε, 2ε], . . ., requiring
Ω(1/ε) total label requests.

However, no matter what the target function is, we can
find an ε-good classifier with only a logarithmic sample com-
plexity via the following extremely simple 2-phase learning
algorithm. We start with a large (Ω(1/ε)) set of unlabeled ex-
amples. In the first phase, on each round we choose a point
x uniformly at random from the unlabeled sample and query
its label. We repeat this until we observe the first +1 label, at
which point we enter the second phase. In the second phase,
we alternate between running one binary search on the ex-
amples between 0 and that x and a second on the examples
between that x and 1 to approximate the end-points of the
interval. At the end, we output a smallest interval consistent
with the observed positive labels.

If the target h∗ labels every point as −1 (the so-called
all-negative function), the algorithm described above would
output a hypothesis with 0 error even after 0 label requests.
On the other hand, if the target is an interval [a, b] ⊆ [0, 1],
where b − a = w > 0, then after roughly O(1/w) queries
(a constant number that depends only on the target), a posi-
tive example will be found. Since only O(log(1/ε)) queries
are required to run the binary search to reach error rate ε, the
sample complexity is at worst logarithmic in 1/ε. Thus, we
see a sharp distinction between the sample complexity re-
quired to find a good classifier (logarithmic) and the sample
complexity needed to both find a good classifier and verify
that it is good.

This example is particularly simple, since there is effec-
tively only one “hard” target function (the all-negative tar-
get). However, most of the spaces we study are significantly
more complex than this, and there are generally many targets
for which it is difficult to achieve good verifiable complexity.

Our Results: We show that in many situations where it
was previously believed that active learning cannot help, ac-
tive learning does help in the limit. Our main specific contri-

butions are as follows:

• We distinguish between two different variations on the
definition of sample complexity. The traditional defi-
nition, which we refer to as verifiable sample complex-
ity, focuses on the number of label requests needed to
obtain a confidence bound indicating an algorithm has
achieved at most ε error. The newer definition, which
we refer to simply as sample complexity, focuses on the
number of label requests before an algorithm actually
achieves at most ε error. We point out that the latter is
often significantly smaller than the former, in contrast
to passive learning where they are often equivalent up
to constants for most nontrivial learning problems.

• We prove that any distribution and finite VC dimension
concept class has active learning sample complexity
asymptotically smaller than the sample complexity of
passive learning for nontrivial targets. A simple corol-
lary of this is that finite VC dimension implies o(1/ε)
active learning sample complexity.

• We show it is possible to actively learn with an exponen-
tial rate a variety of concept classes and distributions,
many of which are known to require a linear rate in the
traditional analysis of active learning: for example, in-
tervals on [0, 1] and non-homogeneous linear separators
under the uniform distribution.

• We show that even in this new perspective, there do
exist lower bounds; it is possible to exhibit somewhat
contrived distributions where exponential rates are not
achievable even for some simple concept spaces (see
Theorem 12). The learning problems for which these
lower bounds hold are much more intricate than the
lower bounds from the traditional analysis, and intu-
itively seem to represent the core of what makes a hard
active learning problem.

2 Background and Notation

Let X be an instance space and Y = {−1, 1} be the set of
possible labels. Let C be the hypothesis class, a set of mea-
surable functions mapping from X to Y , and assume that C
has VC dimension d. We consider here the realizable set-
ting in which it is assumed that the instances are labeled by
a target function h∗ in the class C. The error rate of a hy-
pothesis h with respect to a distribution D over X is defined
as er(h) = PD(h(x) 6= h∗(x)).

We assume the existence of an infinite sequence
x1, x2, . . . of examples sampled i.i.d. according to D. The
learning algorithm may access any finite initial segment
x1, x2, . . . , xm. Essentially, this means we allow the algo-
rithm access to an arbitrarily large, but finite, sequence of
random unlabeled examples. In active learning, the algo-
rithm can select any example xi, and request the label h∗(xi)
that the target assigns to that example, observing the labels
of all previous requests before selecting the next example to
query. The goal is to find a hypothesis h with small error with
respect to D, while simultaneously minimizing the number
of label requests that the learning algorithm makes.



2.1 Two Definitions of Sample Complexity

The following definitions present a subtle but significant dis-
tinction we refer to throughout the paper. Several of the re-
sults that follow highlight situations where these two defini-
tions of sample complexity can have dramatically different
dependence on ε.

Definition 1 A function S(ε, δ, h∗) is a verifiable sample
complexity for a pair (C,D) if there exists an active learn-
ing algorithm A(t, δ) that outputs both a classifier ht and a
value ε̂t ∈ R after making at most t label requests, such that
for any target function h∗ ∈ C, ε ∈ (0, 1/2), δ ∈ (0, 1/4),
for any t ≥ S(ε, δ, h∗),

PD(er(ht) ≤ ε̂t ≤ ε) ≥ 1− δ.

Definition 2 A function S(ε, δ, h∗) is a sample complexity
for a pair (C,D) if there exists an active learning algorithm
A(t, δ) that outputs a classifier ht after making at most t
label requests, such that for any target function h∗ ∈ C, ε ∈
(0, 1/2), δ ∈ (0, 1/4), for any t ≥ S(ε, δ, h∗),

PD(er(ht) ≤ ε) ≥ 1− δ.

Note that both types of sample complexity can be target-
dependent and distribution-dependent. The only distinction
is whether or not there is an accessible guarantee on the error
of the chosen hypothesis that is also at most ε. This confi-
dence bound can only depend on quantities accessible to the
learning algorithm, such as the t requested labels. Thus, any
verifiable sample complexity function is also a sample com-
plexity function, but we study a variety of cases where the
reverse is not true. In situations where there are sample com-
plexity functions significantly smaller than any achievable
verifiable sample complexities, we sometimes refer to the
smaller quantity as the true sample complexity to distinguish
it from the verifiable sample complexity.

A common alternative formulation of verifiable sample
complexity is to let A take ε as an argument and allow it to
choose online how many label requests it needs in order to
guarantee error at most ε [8]. This alternative definition is
essentially equivalent (either definition can be reduced to the
other without significant loss), as the algorithm must be able
to produce a confidence bound of size at most ε on the error
of its hypothesis in order to decide when to stop requesting
labels anyway.2

2.2 The Verifiable Sample Complexity

To date, there has been a significant amount of work study-
ing the verifiable sample complexity (though typically un-
der the aforementioned alternative formulation). It is clear
from standard results in passive learning that verifiable sam-
ple complexities of O ((d/ε) log(1/ε) + (1/ε) log(1/δ)) are

2There is some question as to what the “right” formal model
of active learning is in general. For instance, we could instead let
A generate an infinite sequence of ht hypotheses (or (ht, ε̂t) in
the verifiable case), where ht can depend only on the first t label
requests made by the algorithm along with some initial segment
of unlabeled examples (as in [5]), representing the case where we
are not sure a-priori of when we will stop the algorithm. However,
for our present purposes, such alternative models are equivalent in
sample complexity up to constants.

easy to obtain for any learning problem, by requesting the
labels of random examples. As such, there has been much
interest in determining when it is possible to achieve verifi-
able sample complexity smaller than this, and in particular,
when the verifiable sample complexity is a polylogarithmic
function of 1/ε (representing exponential improvements over
passive learning).

One of the earliest active learning algorithms in this
model is the selective sampling algorithm of Cohn, Atlas,
and Ladner [6], henceforth referred to as CAL. This algo-
rithm keeps track of two spaces—the current version space
Ci, defined as the set of hypotheses in C consistent with all
labels revealed so far, and the current region of uncertainty
Ri = {x ∈ X : ∃h1, h2 ∈ Ci s.t. h1(x) 6= h2(x)}. In
each round i, the algorithm picks a random unlabeled exam-
ple from Ri and requests its label, eliminating all hypotheses
in Ci inconsistent with the received label to make the next
version space Ci+1. The algorithm then defines Ri+1 as the
region of uncertainty for the new version space Ci+1 and
continues. Its final hypothesis can then be taken arbitrarily
from Ct, the final version space, and we use the diameter of
Ct for the ε̂t error bound.

While there are a small number of cases in which this
algorithm and others have been shown to achieve exponen-
tial improvements in the verifiable sample complexity for all
targets (most notably, the case of homogeneous linear sepa-
rators under the uniform distribution), there exist extremely
simple concept classes for which Ω(1/ε) labels are needed
for some targets. For example, consider the class of intervals
in [0, 1] under the uniform distribution. In order to distin-
guish the all-negative target from the set of hypotheses that
are positive on a region of weight ε and make a high proba-
bility guarantee, Ω(1/ε) labeled examples are needed [8].

Recently, there have been a few quantities proposed to
measure the verifiable sample complexity of active learning
on any given concept class and distribution. Dasgupta’s split-
ting index [8], which is dependent on the concept class, data
distribution, target function, and a parameter τ , quantifies
how easy it is to make progress toward reducing the diam-
eter of the version space by choosing an example to query.
Another quantity to which we will frequently refer is Han-
neke’s disagreement coefficient [12], defined as follows.

Definition 3 For any h ∈ C and r > 0, let B(h, r) be a ball
of radius r around h in C. That is,

B(h, r) = {h′ ∈ C : PD(h(x) 6= h′(x)) ≤ r} .

For any hypothesis class C, define the region of disagree-
ment as

DIS(C) = {x ∈ X : ∃h1, h2 ∈ C : h1(x) 6= h2(x)} .

Additionally, let C̄ denote any countable dense subset of C.3

For our purposes, the disagreement coefficient of a hypothe-
sis h, denoted θh, is defined as

θh = sup
r>0

P(DIS(B̄(h, r)))

r
.

3That is, C̄ is countable and ∀h ∈ C, ∀ε > 0, ∃h′ ∈ C̄ :
P(h(X) 6= h′(X)) ≤ ε. Such a subset exists, for example, in
any C with finite VC dimension. We introduce this countable
dense subset to avoid certain degenerate behaviors, such as when
DIS(B(h, 0)) = X .



The disagreement coefficient for a concept space C is de-
fined as θ = suph∈C θh.

The disagreement coefficient is often a useful quan-
tity for analyzing the verifiable sample complexity of ac-
tive learning algorithms. For example, it has been shown
that the algorithm of Cohn, Atlas, and Ladner described
above achieves a verifiable sample complexity at most θh∗d ·
polylog(1/(εδ)) when run with concept class C̄ for target
function h∗ ∈ C [12]. We will see that both the disagree-
ment coefficient and splitting index are also useful quantities
for analyzing true sample complexities, though their use in
that case is less direct.

2.3 The True Sample Complexity

This paper focuses on situations where true sample complex-
ities are significantly smaller than verifiable sample com-
plexities. In particular, we show that many common pairs
(C,D) have sample complexity that is polylogarithmic in
both 1/ε and 1/δ and linear only in some finite target-
dependent constant γh∗ . This contrasts sharply with the infa-
mous 1/ε lower bounds mentioned above, which have been
identified for verifiable sample complexity. The implication
is that, for any fixed target h∗, such lower bounds vanish as
ε approaches 0. This also contrasts with passive learning,
where 1/ε lower bounds are typically unavoidable [1].

Definition 4 We say that (C,D) is actively learnable at an
exponential rate if there exists an active learning algorithm
achieving sample complexity

S(ε, δ, h∗)=γh∗ · polylog (1/(εδ))

for some finite γh∗ = γ(h∗, D) independent of ε and δ.

3 Strict Improvements of Active Over Passive
In this section, we describe conditions under which active
learning can achieve a sample complexity asymptotically su-
perior to passive learning. The results are surprisingly gen-
eral, indicating that whenever the VC dimension is finite,
essentially any passive learning algorithm is asymptotically
dominated by an active learning algorithm on all targets.

Definition 5 A function S(ε, δ, h∗) is a passive learning
sample complexity for a pair (C,D) if there exists an algo-
rithm A(((x1, h

∗(x1)), (x2, h
∗(x2)), . . . , (xt, h

∗(xt))), δ)
that outputs a classifier ht, such that for any target function
h∗ ∈ C, ε ∈ (0, 1/2), δ ∈ (0, 1/4), for any t ≥ S(ε, δ, h∗),

PD(er(ht) ≤ ε) ≥ 1− δ.

Thus, a passive learning sample complexity corresponds
to a restriction of an active learning sample complexity to
algorithms that specifically request the first t labels in the
sequence and ignore the rest. In particular, it is known that
for any finite VC dimension class, there is always an O (1/ε)
passive learning sample complexity [14]. Furthermore, this
is often tight (though not always), in the sense that for any
passive algorithm, there exist targets for which the corre-
sponding passive learning sample complexity is Ω(1/ε) [1].
The following theorem states that for any passive learning
sample complexity, there exists an achievable active learn-
ing sample complexity with a strictly slower asymptotic rate
of growth. Its proof is included in Appendix D.

Theorem 6 Suppose C has finite VC dimension, and let
D be any distribution on X . For any passive learning
sample complexity Sp(ε, δ, h) for (C,D), there exists an
active learning algorithm achieving a sample complexity
Sa(ε, δ, h) such that, for all targets h ∈ C for which
Sp(ε, δ, h) = ω(1),4

Sa(ε, δ, h) = o (Sp(ε/4, δ, h)) .

In particular, this implies the following simple corollary.

Corollary 7 For any C with finite VC dimension, and any
distribution D over X , there is an active learning algorithm
that achieves a sample complexity S(ε, δ, h) such that

S(ε, δ, h) = o (1/ε)

for all targets h ∈ C.

Proof: Let d be the VC dimension of C. The passive
learning algorithm of Haussler, Littlestone & Warmuth [14]
is known to achieve a sample complexity no more than
(kd/ε) log(1/δ), for some universal constant k < 200 [14].
Applying Theorem 6 now implies the result.

Note the interesting contrast, not only to passive learning,
but also to the known results on the verifiable sample com-
plexity of active learning. This theorem definitively states
that the Ω(1/ε) lower bounds common in the literature on
verifiable samples complexity can never arise in the anal-
ysis of the true sample complexity of finite VC dimension
classes.

4 Composing Hypothesis Classes

Recall the simple example of learning the class of inter-
vals over [0, 1] under the uniform distribution. It is well
known that the verifiable sample complexity of the “all-
negative” classifier in this class is Ω(1/ε). However, con-
sider the more limited class C1 ⊂ C containing only the
intervals h with w(h) = P(h(X) = +1) > 0. Using
the simple algorithm described in Section 1.1, this restricted
class can be learned with a (verifiable) sample complexity
of only O(1/w(h) + log(1/ε)). Furthermore, the remain-
ing set of classifiers C2 = C \ C ′ (which consists of only
the all-negative classifier) has sample complexity 0. Thus,
C = C1 ∪ C2, and both (C1, D) and (C2, D) are learnable
at an exponential rate.

It turns out that it is often convenient to view concept
classes in terms of such well-constructed, possibly infinite
sequences of subsets. Generally, given a distribution D and
a function class C, suppose we can construct a sequence
of subclasses, C1, C2, . . ., where C = ∪∞i=1Ci, such that
it is possible to actively learn any subclass Ci with only

4Recall that we say a non-negative function φ(ε) = o (1/ε) iff
lim
ε→0

φ(ε)/(1/ε) = 0. Similarly, φ(ε) = ω(1) iff lim
ε→0

1/φ(ε) = 0.

Here and below, the o(·), ω(·), Ω(·) and O(·) notation should be
interpreted as ε → 0 (from the + direction), treating all other pa-
rameters (e.g., δ and h∗) as fixed constants. Note that any algorithm
achieving a sample complexity Sp(ε, δ, h) 6= ω(1) is guaranteed,
with probability ≥ 1 − δ, to achieve error zero using a finite num-
ber of samples, and therefore we cannot hope to achieve a slower
asymptotic growth in sample complexity.



Si(ε, δ, h) sample complexity. Thus, if we know that the tar-
get h∗ is in Ci, it is straightforward to guarantee Si(ε, δ, h

∗)
sample complexity. However, it turns out it is also possible
to learn with sample complexity O(Si(ε/2, δ/2, h

∗)) even
without this information. This can be accomplished by using
an aggregation algorithm.

We describe a simple algorithm for aggregation below
in which multiple algorithms are run on different subclasses
Ci in parallel and we select among their outputs by com-
parisons. Within each subclass Ci we run an active learning
algorithm Ai, such as Dasgupta’s splitting algorithm [8] or
CAL, with some sample complexity Si(ε, δ, h).

Algorithm 1 The Aggregation Procedure. Here it is assumed
that C = ∪∞i=1Ci, and that for each i, Ai is an algorithm
achieving sample complexity at most Si(ε, δ, h) for the pair
(Ci, D). The procedure takes t and δ as parameters.

Let k be the largest integer s.t. k2 d72 ln(4k/δ)e ≤ t/2
for i = 1, . . . , k do

Let hi be the output of running Ai(bt/(4i2)c, δ/2) on
the sequence {x2n−1}∞n=1

end for
for i, j ∈ {1, 2, . . . , k} do

if P(hi(X) 6= hj(X)) > 0 then
Let Rij be the first d72 ln(4k/δ)e elements in the se-
quence {x2n}∞n=1 for which hi(x) 6= hj(x)
Request the labels of all examples in Rij

Let mij be the number of elements in Rij on which
hi makes a mistake

else
Let mij = 0

end if
end for
Return ĥt = hi where i = argmin

i∈{1,2,...,k}

max
j∈{1,2,...,k}

mij

Using this algorithm, we can show the following sample
complexity bound. The proof appears in Appendix A.

Theorem 8 For any distribution D, let C1, C2, . . . be a se-
quence of classes such that for each i, the pair (Ci, D) has
sample complexity at most Si(ε, δ, h) for all h ∈ Ci. Let
C = ∪∞i=1Ci. Then (C,D) has a sample complexity at most

min
i:h∈Ci

max

{

4i2 dSi(ε/2, δ/2, h)e , 2i2
⌈

72 ln
4i

δ

⌉}

,

for any h ∈ C. In particular, Algorithm 1 achieves this, when
used with the Ai algorithms that each achieve the Si(ε, δ, h)
sample complexity.

A particularly interesting implication of Theorem 8 is
that, if we can decompose C into a sequence of classes Ci

such that each (Ci, D) is learnable at an exponential rate,
then this procedure achieves exponential rates. Since it is
more abstract and it allows us to use known active learning
algorithms as a black box, we often use this compositional
view throughout the remainder of the paper. In particular,
since the verifiable sample complexity of active learning is
presently much better understood in the existing literature,
it will often be useful to use this result in combination with

an algorithm with a known bound on its verifiable sample
complexity. As the following theorem states, at least for the
case of exponential rates, this approach of constructing al-
gorithms with good true sample complexity by reduction to
algorithms with known verifiable complexity on subspaces
loses nothing in generality. The proof is included in Ap-
pendix B.

Theorem 9 For any (C,D) learnable at an exponential
rate, there exists a sequence C1, C2, . . . with C = ∪∞i=1Ci,
and a sequence of active learning algorithms A1, A2, . . .
such that the algorithm Ai achieves verifiable sample com-
plexity at most γipolylogi (1/(εδ)) for the pair (Ci, D).
Thus, the aggregation algorithm (Algorithm 1) achieves ex-
ponential rates when used with these algorithms.

Note that decomposing a given C into a sequence of Ci

subsets that have good verifiable sample complexities is not
always a simple task. One might be tempted to think a simple
decomposition based on increasing values of verifiable sam-
ple complexity with respect to (C,D) would be sufficient.
However, this is not always the case, and generally we need
to use information more detailed than verifiable complexity
with respect to (C,D) to construct a good decomposition.
We have included in Appendix C a simple heuristic approach
that can be quite effective, and in particular yields good sam-
ple complexities for every (C,D) described in Section 5.

5 Exponential Rates

The results in Section 3 tell us that the sample complexity
of active learning can be made strictly superior to any pas-
sive learning sample complexity when the VC dimension is
finite. We now ask how much better that sample complex-
ity can be. In particular, we describe a number of concept
classes and distributions that are learnable at an exponential
rate, many of which are known to require Ω(1/ε) verifiable
sample complexity.

5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situ-
ations in which exponential rates are trivially achievable; in
fact, in each of the cases mentioned in this subsection, the
sample complexity is actually O(1).

Clearly if |X | < ∞ or |C| < ∞, we can always achieve
exponential rates. In the former case, we may simply re-
quest the label of every x in the support of D, and thereby
perfectly identify the target. The corresponding γ = |X |.
In the latter case, for every pair h1, h2 ∈ C such that
P(h1(X) 6= h2(X)) > 0, we may request the label of any
xi such that h1(xi) 6= h2(xi), and there will be only one (up
to measure zero differences) h ∈ C that gets all of these ex-
amples correct: namely, the target function. So in this case,
we learn with an exponential rate with γ = |C|2.

Less obvious is the fact that this argument extends to any
countably infinite hypothesis class C. In particular, in this
case we can list the classifiers in C: h1, h2, . . .. Then we
define the sequence Ci = {hi}, and simply use Algorithm 1.
By Theorem 8, this gives an algorithm with sample complex-
ity S(ε, δ, hi) = 2i2 d72 ln(4i/δ)e = O(1).



5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric concepts in R
n are learnable at

an exponential rate if the underlying distribution is uniform
on some subset of R

n. Here we provide some examples;
interestingly, every example in this subsection has some tar-
gets for which the verifiable sample complexity is Ω(1/ε).
As we see in Section 5.3, all of the results in this section can
be extended to many other types of distributions as well.

Unions of k intervals under arbitrary distributions: Let
X be the interval [0, 1) and let C(k) denote the class of
unions of at most k intervals. In other words, C(k) contains
functions described by a sequence 〈a0, a1, · · · , a`〉, where
a0 = 0, a` = 1, ` ≤ 2k + 1, and a0, · · · , a` is the (nonde-
creasing) sequence of transition points between negative and
positive segments (so x is labeled +1 iff x ∈ [ai, ai+1) for
some odd i). For any distribution, this class is learnable at an
exponential rate, by the following decomposition argument.
First, let

C1 = {h ∈ C(k) : P(h(X) = +1) = 0} .

That is, C1 contains the all-negative function, or any func-
tion that is equivalent given the distribution D. For i =
2, 3, . . . , k + 1, inductively define

Ci =
{

h ∈ C(k) : ∃h′ ∈ C(i−1)

s.t. P(h(X) 6= h′(X)) = 0
}

\ ∪j<iCj .

In other words, Ci contains all of the functions that can be
represented as unions of i − 1 intervals but cannot be repre-
sented as unions of fewer intervals. Clearly C1 has verifiable
sample complexity 0. For i > 1, within each subclass Ci,
the disagreement coefficient is bounded by something pro-
portional to k + 1/w(h), where

w(h) = min{P([aj , aj+1)) : 0 ≤ j < `, P([aj , aj+1)) > 0}
is the weight of the smallest positive or negative interval and
〈a0, a1, · · · , a`〉 is the sequence of transition points corre-
sponding to this h. Thus, running CAL with C̄i achieves
polylogarithmic (verifiable) sample complexity for any h ∈
Ci. Since C(k) = ∪k+1

i=1 Ci, by Theorem 8, C(k) is learnable
at an exponential rate.

Ordinary Binary Classification Trees: Let X be the cube
[0, 1]n, D be the uniform distribution on X , and C be the
class of binary decision trees using a finite number of axis-
parallel splits (see e.g., Devroye et al. [11], Chapter 20). In
this case, (similarly to the previous example) we let Ci be
the set of decision trees in C distance zero from a tree with
i leaf nodes, not contained in any Cj for j < i. For any i,
the disagreement coefficient for any h ∈ Ci (with respect to
(Ci, D)) is a finite constant, and we can choose C̄i to have
finite VC dimension, so each (Ci, D) is learnable at an ex-
ponential rate (by running CAL with C̄i), and thus by Theo-
rem 8, (C,D) is learnable at an exponential rate.

5.2.1 Linear Separators
Theorem 10 Let C be the hypothesis class of linear separa-
tors in n dimensions, and let D be the uniform distribution
over the surface of the unit sphere. The pair (C,D) is learn-
able at an exponential rate.

Proof: (Sketch) There are multiple ways to achieve this. We
describe here a simple proof that uses a decomposition as
follows. Let λ(h) be the probability mass of the minority
class under hypothesis h. C1 contains only the separators
h with λ(h) = 0, and C2 = C \ C1. As before, we can
use a black box active learning algorithm such as CAL to
learn within each class Ci. To prove that we indeed get the
desired exponential rate of active learning, we show that the
disagreement coefficient of any separator h with respect to
(C,D) is at most∝ √n/λ(h). Hanneke’s results concerning
the CAL algorithm [12] then imply that C2 is learnable at an
exponential rate. Since C1 trivially has sample complexity
1, combined with Theorem 8, this would imply the result.

We describe the key steps involved in computing the dis-
agreement coefficient. First we can show that for any two
linear separators h(x) = sign(w · x + b) and h′(x) =
sign(w′ · x + b′), we can lower bound the distance between
them as

P(h(X) 6= h′(X)) ≥ max

{

|λ− λ′|, 2α

π
min{λ, λ′}

}

,

where α = arccos(w·w′) is the angle between w and w′, λ is
the probability mass of the minority class under h, and λ′ is
the probability mass of the minority class under h′. Assume
for now that h and h′ are close enough together to have the
same minority class; it’s not necessary, but simplifies things.

We are now ready to compute the disagreement coeffi-
cient. Assume r < λ/

√
n. From the previous claim we have

B(h, r) ⊆
{

h′ : max

{

|λ− λ′|, 2α

π
min{λ, λ′}

}

≤ r

}

where B(h, r) is the ball of radius r around h in the hypoth-
esis space. The region of disagreement of the set on the left
is contained within

DIS ({h′ : w′ = w ∧ |λ′ − λ| ≤ r})

∪DIS

({

h′ :
2α

π
(λ− r) ≤ r ∧ |λ− λ′| = r

})

.

By some trigonometry, we can show this region is con-
tained within

DIS({h′ : w′ = w ∧ |λ′ − λ| ≤ r})
∪
{

x : |w · x + b1| ≤ c
r

λ

}

∪
{

x : |w · x + b2| ≤ c
r

λ

}

for some constants b1, b2, c. Using previous results [2, 12], it
is possible to show that the measure of this region is at most
2r + c′(

√
n/λ)r = c′′(

√
n/λ)r. This finally implies that for

any target function, the disagreement coefficient is at most
c′′(
√

n/λ), where λ is the probability of the minority class
of the target function.

5.3 Composition results

We can also extend the results from the previous subsection
to other types of distributions and concept classes in a variety
of ways. Here we include a few results to this end.

Close distributions: If (C,D) is learnable at an exponential
rate, then for any distribution D′ such that for all measurable



Figure 5.1: Illustration of the proof of Theorem 11. The dark
gray regions represent BD1(h1, 2r) and BD2(h2, 2r). The func-
tion h that gets returned is in the intersection of these. The light
gray regions represent BD1(h1, ε/3) and BD2(h2, ε/3). The tar-
get function h∗ is in the intersection of these. We therefore must
have r ≤ ε/3, and by the triangle inequality er(h) ≤ ε.

A ⊆ X , λPD(A) ≤ PD′(A) ≤ (1/λ)PD(A) for some λ ∈
(0, 1], (C,D′) is also learnable at an exponential rate. In
particular, we can simply use the algorithm for (C,D), filter
the examples from D′ so that they appear like examples from
D, and then any t large enough to find an ελ-good classifier
with respect to D is large enough to find an ε-good classifier
with respect to D′.

A composition theorem for mixtures of distributions:
Suppose there exist algorithms A1 and A2 for learning a
class C at an exponential rate under distributions D1 and
D2 respectively. It turns out we can also learn under any
mixture of D1 and D2 at an exponential rate, by using A1

and A2 as black boxes. In particular, the following theorem
relates the sample complexity under a mixture to the sample
complexities under the mixing components.

Theorem 11 Let C be an arbitrary hypothesis class. As-
sume that the pairs (C,D1) and (C,D2) have sam-
ple complexities S1(ε, δ, h

∗) and S2(ε, δ, h
∗) respectively,

where D1 and D2 have density functions PD1
and PD2

respectively. Then for any α ∈ [0, 1], the pair
(C,αD1 + (1 − α)D2) has sample complexity at most
2 dmax{S1(ε/3, δ/2, h

∗), S2(ε/3, δ/2, h
∗)}e.

Proof: If α = 0 or 1 then the theorem statement holds triv-
ially. Assume instead that α ∈ (0, 1). We describe an algo-
rithm in terms of α, D1, and D2, which achieves this sample
complexity bound.

Suppose algorithmsA1 andA2 achieve the stated sample
complexities under D1 and D2 respectively. At a high level,
the algorithm we define works by “filtering” the distribution
over input so that it appears to come from two streams, one
distributed according to D1, and one distributed according to
D2, and feeding these filtered streams to A1 and A2 respec-
tively. To do so, we define a random sequence u1, u2, · · · of
independent uniform random variables in [0, 1]. We then run
A1 on the sequence of examples xi from the unlabeled data
sequence satisfying

ui <
αPD1

(xi)

αPD1
(xi) + (1− α)PD2

(xi)
,

and run A2 on the remaining examples, allowing each to
make an equal number of label requests.

Let h1 and h2 be the classifiers output by A1 and A2.
Because of the filtering, the examples that A1 sees are dis-
tributed according to D1, so after t/2 queries, the current
error of h1 with respect to D1 is, with probability 1 − δ/2,
at most inf{ε′ : S1(ε

′, δ/2, h∗) ≤ t/2}. A similar argument
applies to the error of h2 with respect to D2.

Finally, let

r = inf{r : BD1
(h1, r) ∩BD2

(h2, r) 6= ∅} .

Define the output of the algorithm to be any h ∈
BD1

(h1, 2r) ∩ BD2
(h2, 2r). If a total of t ≥

2 dmax{S1(ε/3, δ/2, h
∗), S2(ε/3, δ/2, h

∗)}e queries have
been made (t/2 by A1 and t/2 by A2), then by a union
bound, with probability at least 1 − δ, h∗ is in the intersec-
tion of the ε/3-balls, and so h is in the intersection of the
2ε/3-balls. By the triangle inequality, h is within ε of h∗ un-
der both distributions, and thus also under the mixture. (See
Figure 5.1 for an illustration of these ideas.)

5.4 Lower Bounds

Given the previous discussion, one might suspect that any
pair (C,D) is learnable at an exponential rate, under some
mild condition such as finite VC dimension. However, we
show in the following that this is not the case, even for some
simple geometric concept classes when the distribution is es-
pecially nasty.

Theorem 12 There exists a pair (C,D), with the VC dimen-
sion of C equal 1, that is not learnable at an exponential rate
(in the sense of Definition 4).

Proof: (Sketch) Let T be a fixed infinite tree in which each
node at depth i has ci children; ci is defined shortly. We
consider learning the hypothesis class C where each h ∈ C
corresponds to a path down the tree starting at the root; every
node along this path is labeled 1 while the remaining nodes
are labeled −1. Clearly for each h ∈ C there is precisely
one node on each level of the tree labeled 1 by h (i.e. one
node at each depth d). C has VC dimension 1 since knowing
the identity of the node labeled 1 on level i is enough to
determine the labels of all nodes on levels 0, . . . , i perfectly.
This learning problem is depicted in Figure 5.2.

Now we define D, a “bad” distribution for C. Let `i

be the total probability of all nodes on level i according to
D. Assume all nodes on level i have the same probability
according to D, and call this pi. By definition, we have pi =

`i/
∏i−1

j=0 cj .
We show that it is possible to define the parameters above

in such a way that for any ε0 > 0, there exists some ε < ε0
such that for some level j, pj = ε and cj−1 ≥ (1/pj)

1/2 =

(1/ε)1/2. This implies that Ω(1/ε1/2) labels are needed to
learn with error less than ε, for the following reason. We
know that there is exactly one node on level j that has label 1,
and that any successful algorithm must identify this node (or
have a lucky guess at which one it is) since it has probability
ε. By the usual probabilistic method trick (picking the target
at random by choosing the positive node at each level i + 1
uniformly from the children of the positive at level i), we
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Figure 5.2: A learning problem where exponential rates are not achievable. The instance space is an infinite-depth tree. The
target labels nodes along a single infinite path as +1, and labels all other nodes−1. When the number of children and probability
mass of each node at each subsequent level are set in a certain way, sample complexities of o (1/

√
ε) are not achievable.

can argue that in order to label that node positive with at
least some constant probability, we need to query at least a
constant fraction of the node’s siblings, so we need to query
on the order of cj−1 nodes on level j.

Thus it is enough to show that we can define the values
above such that for all i, ci−1 ≥ (1/pi)

1/2, and such that pi

gets arbitrarily small as i gets big.
To start, notice that if we recursively define the values of

ci as ci =
∏i−1

j=0 cj/`i+1 then

c2
i−1 = ci−1

(

∏i−2
j=0 cj

`i

)

=

∏i−1
j=0 cj

`i
=

1

pi

and ci−1 ≥ (1/pi)
1/2 as desired.

To enforce that pi gets arbitrarily small as i gets big, we
simply need to set `i appropriately. In particular, we need
limi→∞ `i/

∏i−1
j=0 cj = 0. Since the denominator is increas-

ing in i, it suffices to show limi→∞ `i = 0. Defining the
values of `i to be any positive probability distribution over i
that goes to 0 in the limit completes the proof.

For essentially any function φ = o (1/ε), the tree exam-
ple in the proof can be modified to construct a pair (C,D)
with the VC dimension of C equal to 1 such that no al-
gorithm achieves o(φ(ε)) sample complexity for all targets:
simply choose ci = bφ(pi+1)c, where {pj} is any sequence
strictly decreasing to 0 s.t. pi+1φ(pi+1)

∏

j<i cj ≤ `i+1 and
φ(pi+1) ≥ 1, where as before {`j} is any sequence of pos-
itive values summing to 1; we can (arbitrarily) assign any
left-over probability mass to the root node; φ = o(1/ε) guar-
antees that such a {pj} sequence exists for any φ = ω(1).
Thus, the o (1/ε) guarantee of Corollary 7 is in some sense
the tightest guarantee we can make at that level of generality,
without using a more detailed description of the structure of
the problem beyond the finite VC dimension assumption.

This type of example can be realized by certain nasty dis-
tributions, even for a variety of simple hypothesis classes: for
example, linear separators in R

2 or axis-aligned rectangles
in R

2. We remark that this example can also be modified to
show that we cannot expect intersections of classifiers to pre-
serve exponential rates. That is, the proof can be extended
to show that there exist classes C1 and C2, such that both
(C1, D) and (C2, D) are learnable at an exponential rate, but
(C,D) is not, where C = {h1 ∩ h2 : h1 ∈ C1, h2 ∈ C2}.

6 Discussion and Open Questions

The implication of our analysis is that in many interesting
cases where it was previously believed that active learning
could not help, it turns out that active learning does help
asymptotically. We have formalized this idea and illustrated
it with a number of examples and general theorems through-
out the paper. This realization dramatically shifts our under-
standing of the usefulness of active learning: while previ-
ously it was thought that active learning could not provably
help in any but a few contrived and unrealistic learning prob-
lems, in this alternative perspective we now see that active
learning essentially always helps, and does so significantly
in all but a few contrived and unrealistic problems.

The use of decompositions of C in our analysis also gen-
erates another interpretation of these results. Specifically,
Dasgupta [8] posed the question of whether it would be use-
ful to develop active learning techniques for looking at un-
labeled data and “placing bets” on certain hypotheses. One
might interpret this work as an answer to this question; that
is, some of the decompositions used in this paper can be in-
terpreted as reflecting a preference partial-ordering of the hy-
potheses, similar to ideas explored in the passive learning lit-
erature [16, 15, 3]. However, the construction of a good de-
composition in active learning seems more subtle and quite
different from previous work in the context of supervised or
semi-supervised learning.

It is interesting to examine the role of target- and
distribution-dependent constants in this analysis. As defined,
both the verifiable and true sample complexities may de-
pend heavily on the particular target function and distribu-
tion. Thus, in both cases, we have interpreted these quanti-
ties as fixed when studying the asymptotic growth of these
sample complexities as ε approaches 0. It has been known
for some time that, with only a few unusual exceptions, any
target- and distribution-independent bound on the verifiable
sample complexity could typically be no better than the sam-
ple complexity of passive learning; in particular, this obser-
vation lead Dasgupta to formulate his splitting index bounds
as both target- and distribution-dependent [8]. This fact also
applies to bounds on the true sample complexity as well. In-
deed, the entire distinction between verifiable and true sam-
ple complexities collapses if we remove the dependence on
these unobservable quantities.

There are many interesting open problems within
this framework. Perhaps two of the most interesting are
formulating general necessary and sufficient conditions for



learnability at an exponential rate, and determining whether
Theorem 6 can be extended to the agnostic case.
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Appendix

A Proof of Theorem 8
First note that the total number of label requests used
by the aggregation procedure in Algorithm 1 is at most
t. Initially running the algorithms A1, . . . , Ak requires
∑k

i=1bt/(4i2)c ≤ t/2 labels, and the second phase of the
algorithm requires k2d72 ln(4k/δ)e labels, which by defini-
tion of k is also less than t/2. Thus this procedure is a valid
learning algorithm.

Now suppose that h∗ ∈ Ci, and assume that

t ≥ max
{

4i2 dSi(ε/2, δ/2, h
∗)e , 2i2 d72 ln(4i/δ)e

}

.

We must show that for any such value of t, er(ĥt) ≤ ε with
probability at least 1− δ.

First notice that since t ≥ 2i2 d72 ln(4i/δ)e, k ≥ i. Fur-
thermore, since t/(4i2) ≥ dSi(ε/2, δ/2, h

∗)e, with proba-
bility at least 1 − δ/2, running Ai(bt/(4i2)c, δ/2) returns a
function hi with er(hi) ≤ ε/2.

Let j∗ = argminj er(hj). By Hoeffding’s inequality,
with probability at least 1− δ/4, for all `,

mj∗` ≤
7

12
d72 ln (4k/δ)e ,

and thus

min
j

max
`

mj` ≤
7

12
d72 ln(4k/δ)e .

Furthermore, by Hoeffding’s inequality and a union bound,
with probability at least 1− δ/4, for any ` such that

m`j∗ ≤
7

12
d72 ln(4k/δ)e

we have that

er(h`|h`(x) 6= hj∗(x)) ≤ 2

3
and thus er(h`) ≤ 2er(hj∗). By a union bound over these
three events, we find that, as desired, with probability at least
1− δ,

er(ĥt) ≤ 2er(hj∗) ≤ 2er(hi) ≤ ε .

B Proof of Theorem 9
Assume that (C,D) is learnable at an exponential rate. That
means there exists an algorithm A such that for any target h∗

in C, there exist constants γh∗ = γ(h∗, D) and kh∗ such that
for any ε and δ, with probability at least 1 − δ, for any t ≥
γh∗(log (1/(εδ)))kh∗ , after t label requests, A(t, δ) outputs
an ε-good classifier.

We define Ci = {h ∈ C : γh ≤ i, kh ≤ i}. For every i,
we define an algorithm Ai that achieves the required polylog
verifiable sample complexity as follows. We first run A to
obtain function hA. We then let Ai always output the closest
classifier in Ci to hA. If t ≥ i(log (2/(εδ)))i, then after t la-
bel requests, with probability at least 1−δ, A(t, δ) outputs an
ε/2-good classifier, so by the triangle inequality, with proba-
bility at least 1−δ, Ai(t, δ) outputs an ε-good classifier. Fur-
thermore, Ai can output ε̂t = (2/δ) exp

{

−(t/i)1/i
}

, which
is no more than ε. Combining this with Theorem 8 we get
the desired result.



C Heuristic Approaches to Decomposition

As mentioned, decomposing purely based on verifiable
complexity with respect to (C,D) typically cannot yield a
good decomposition even for very simple problems, such as
unions of intervals. The reason is that the set of classifiers
with high verifiable sample complexity may itself have high
verifiable complexity.

Although we do not yet have a general method that can
provably always find a good decomposition when one exists
(other than the trivial method in the proof of Theorem 9), we
often find that a heuristic recursive technique can be quite
effective. That is, we can define C1 = C. Then for i > 1,
we recursively define Ci as the set of all h ∈ Ci−1 such that
θh = ∞ with respect to (Ci−1, D). Suppose that for some
N , CN+1 = ∅. Then for the decomposition C1, C2, . . . , CN ,
every h ∈ C has θh < ∞ with respect to at least one of
the sets in which it is contained. Thus, the verifiable sample
complexity of h with respect to that set is O(polylog(1/εδ)),
and the aggregation algorithm can be used to achieve polylog
sample complexity.

We could alternatively perform a similar decomposition
using a suitable definition of splitting index [8], or more gen-
erally using

lim sup
ε→0

SCi−1
(ε, δ, h)

(

log
(

1
εδ

))k

for some fixed constant k > 0.
While this procedure does not always generate a good

decomposition, certainly if N < ∞ exists, then this creates
a decomposition for which the aggregation algorithm, com-
bined with an appropriate sequence of algorithms {Ai}, can
achieve exponential rates. In particular, this is the case for all
of the (C,D) described in Section 5. In fact, even if N =∞,
as long as every h ∈ C does end up in some set Ci for finite
i, this decomposition would still provide exponential rates.

D Proof of Theorem 6

We now finally prove Theorem 6. This section is mostly
self-contained, though we do make use of Theorem 8 from
Section 4 in the final step of the proof.

For any V ⊆ C and h ∈ C, define

B̄V (h, r) = {h′ ∈ V̄ : PD(h(x) 6= h′(x)) ≤ r} ,

where V̄ is, as before, a countable dense subset of V . Define
the boundary of h with respect to D and V , denoted ∂V h, as

∂V h = lim
r→0

DIS(B̄V (h, r)).

The proof will proceed according to the following out-
line. We begin in Lemma 13 by describing special conditions
under which a CAL-like algorithm has the property that the
more unlabeled examples it processes, the smaller the frac-
tion of them it requests the labels of. Since CAL always
identifies the target’s true label on any example it processes,
we end up with a set of labeled examples growing strictly
faster than the number of label requests used to obtain it;
we can use this as a training set in any passive learning al-
gorithm. However, the special conditions under which this
happens are rather limiting, so we require an additional step,
in Lemma 14; there, we exploit a subtle relation between

overlapping boundary regions and shatterable sets to show
that we can decompose any finite VC dimension class into
a countable number of subsets satisfying these special con-
ditions. This, combined with the aggregation algorithm, ex-
tends Lemma 13 to the general conditions of Theorem 6.

Lemma 13 Suppose (C,D) is such that C has finite VC di-
mension d, and ∀h ∈ C, P(∂Ch) = 0. Then for any pas-
sive learning sample complexity Sp(ε, δ, h) for (C,D), there
exists an active learning algorithm achieving a sample com-
plexity Sa(ε, δ, h) such that, for any target function h∗ ∈ C
where Sp(ε, δ, h

∗) = ω(1),

Sa(ε, δ/2, h∗) = o(Sp(ε/2, δ, h
∗)) .

Proof:We perform the learning in two phases. The first
is a passive phase: we simply request the labels of
x1, x2, . . . , xbt/3c, and let

V = {h ∈ C̄ : ∀i ≤ bt/3c, h(xi) = h∗(xi)} .

In other words, V is the set of all hypotheses that correctly
label the first bt/3c examples. By standard consistency re-
sults [11], with probability at least 1− δ/8, there is a univer-
sal constant c > 0 such that

sup
h1,h2∈V

PD(h1(x) 6= h2(x)) ≤ c

(

d ln t + ln 1
δ

t

)

.

In particular, on this event, we have

P(DIS(V )) ≤ P

(

DIS

(

B̄

(

h∗, c
d ln t + ln 1

δ

t

)))

.

Let us denote this latter quantity by ∆t. Note that ∆t goes
to 0 as t grows.

If ever we have P(DIS(V )) = 0 for some finite t, then
clearly we can return any h ∈ V , so this case is easy.

Otherwise, let nt = bt/(36P(DIS(V )) ln(8/δ))c, and
suppose t ≥ 3. By a Chernoff bound, with prob-
ability at least 1 − δ/8, in the sequence of examples
xbt/3c+1, xbt/3c+2, . . . , xbt/3c+nt

, at most t/3 of the exam-
ples are in DIS(V ). If this is not the case, we fail and output
an arbitrary h; otherwise, we request the labels of every one
of these nt examples that are in DIS(V ). Now construct
a sequence L = {(x′1, y′1), (x′2, y′2), . . . , (x′nt

, y′nt
)} of la-

beled examples such that x′i = xbt/3c+i, and y′i is either
the label agreed upon by all the elements of V , or it is the
h∗(xbt/3c+i) label value we explicitly requested. Note that
because infh∈V er(h) = 0 with probability 1, we also have
that with probability 1 every y′i = h∗(x′i). We may there-
fore use these nt examples as iid training examples for the
passive learning algorithm.

Specifically, let us split up the sequence L into k = 4
sequences L1,L2, . . . ,Lk, where

Li =
{

(x′(i−1)bnt/kc+1, y
′
(i−1)bnt/kc+1),

(x′(i−1)bnt/kc+2, y
′
(i−1)bnt/kc+2),

. . . , (x′ibnt/kc, y
′
ibnt/kc)

}

.

Suppose A is the passive learning algorithm that guaran-
tees Sp(ε, δ, h) passive sample complexities. Then for i ∈
{1, 2, . . . , k−1}, let hi be the classifier returned by A(Li, δ).



Additionally, let hk be any classifier in V consistent with the
labels in Lk.

Finally, for each i, j ∈ {1, 2, . . . , k}, request the
labels of the first bt/(3k2)c examples in the sequence
{xbt/3c+nt+1, xbt/3c+nt+2, . . .} that satisfy hi(x) 6= hj(x)

and let Rij denote these bt/(3k2)c labeled examples (Rij =
∅ if PD(hi(x) 6= hj(x)) = 0). Let mij denote the number of
mistakes hi makes on the set Rij . Finally, let ĥt = hi where

i = argmin
i

max
j

mij .

This will be the classifier we return.
It is known (see, e.g., [11]) that if bnt/kc ≥

c′((d/ε) log(1/ε) + (1/ε) log(1/δ)) for some finite univer-
sal constant c′, then with probability at least 1−δ/8 over the
draw of Lk, er(hk) ≤ ε. Define

S̄p(ε, δ, h
∗)=min

{

Sp(ε, δ, h
∗), c′

d log(1/ε)+log(1/δ)

ε

}

.

We have chosen k large enough so that, if bnt/kc ≥
S̄p(ε, δ, h

∗), then with probability at least 1 − δ/8 over the
draw of L, mini er(hi) ≤ ε. Furthermore, by a Hoeffding
bound argument (similar to the proof of Theorem 8), for any
t ≥ t0 = 3k2 d72 ln(16k/δ)e, we have that with probability
at least 1− δ/8, er(ĥt) ≤ 2mini er(hi). Define

Sa(2ε, δ/2, h∗) =

1 + inf

{

s ≥ t0 : s ≥ 144k ln
8

δ
S̄p(ε, δ, h

∗)∆s

}

.

Note that if t ≥ Sa(2ε, δ/2, h∗), then (with probability ≥
1− δ/8)

S̄p(ε, δ, h
∗) ≤ t

144k ln 8
δ ∆t

≤ bnt/kc .

So, by a union bound over the possible failure events listed
above (δ/8 for P(DIS(V )) > ∆t, δ/8 for more than t/3 ex-
amples ofL in DIS(V ), δ/8 for mini er(hi) > ε, and δ/8 for
er(ĥt) > 2mini er(hi)), if t ≥ Sa(2ε, δ/2, h∗), then with
probability at least 1− δ/2, er(ĥt) ≤ 2ε. So Sa(ε, δ, h∗) is a
valid sample complexity function, achieved by the described
algorithm. Furthermore,

Sa(ε, δ/2, h∗) ≤ 1

+max

{

t0, 144k ln
8

δ
S̄p(ε/2, δ, h

∗)∆Sa(ε,δ/2,h∗)−2

}

.

Sp(ε, δ, h
∗) = ω(1) implies Sa(ε, δ/2, h∗) = ω(1), so we

know that ∆Sa(ε,δ/2,h∗)−2 = o(1). Thus, Sa(ε, δ/2, h∗) =

o
(

S̄p(ε/2, δ, h
∗)
)

, and thus we have Sa(ε, δ/2, h∗) =
o(Sp(ε/2, δ, h

∗)).

As an interesting aside, it is also true (by essentially the
same argument) that under the conditions of Lemma 13, the
verifiable sample complexity of active learning is strictly
smaller than the verifiable sample complexity of passive
learning in this same sense. In particular, this implies a ver-
ifiable sample complexity that is o (1/ε) under these con-
ditions. For instance, with some effort one can show that
these conditions are satisfied when the VC dimension of C

is 1, or when the support of D is at most countably infi-
nite. However, for more complex learning problems, this
condition will typically not be satisfied, and as such we re-
quire some additional work in order to use this lemma to-
ward a proof of the general result in Theorem 6. Toward this
end, we again turn to the idea of a decomposition of C, this
time decomposing it into subsets satisfying the condition in
Lemma 13.

Lemma 14 For any (C,D) where C has finite VC dimen-
sion d, there exists a countably infinite sequence C1, C2, . . .
such that C = ∪∞i=1Ci and ∀i,∀h ∈ Ci, P(∂Ci

h) = 0.

Proof: The case of d = 0 is clear, so assume d > 0. A
decomposition procedure is given in Algorithm 2. We will
show that, if we let H = Decompose(C), then the maximum
recursion depth is at most d (counting the initial call as depth
0). Note that if this is true, then the lemma is proved, since
it implies that H can be uniquely indexed by a d-tuple of
integers, of which there are at most countably many.

Algorithm 2 Decompose(H)

LetH∞ = {h ∈ H : P(∂Hh) = 0}
ifH∞ = H then

Return {H}
else

For i ∈ {1, 2, . . .}, letHi =
{

h∈H : P(∂Hh)∈((1+2−(d+3))−i, (1+2−(d+3))1−i]
}

Return
⋃

i∈{1,2,...}

Decompose(Hi) ∪ {H∞}

end if

For the sake of contradiction, suppose that the maximum
recursion depth of Decompose(C) is more than d (or is infi-
nite). Thus, based on the first d + 1 recursive calls in one of
those deepest paths in the recursion tree, there is a sequence
of sets

C = H(0) ⊇ H(1) ⊇ H(2) ⊇ · · ·H(d+1) 6= ∅
and a corresponding sequence of finite positive integers
i1, i2, . . . , id+1 such that for each j ∈ {1, 2, . . . , d + 1}, ev-
ery h ∈ H(j) has

P(∂H(j−1)h) ∈
(

(1 + 2−(d+3))−ij , (1 + 2−(d+3))1−ij

]

.

Take any hd+1 ∈ H(d+1). There must exist some r > 0
such that ∀j ∈ {1, 2, . . . , d + 1},
P(DIS(B̄H(j−1)(hd+1, r)))

∈
(

(1 + 2−(d+3))−ij, (1 + 2−(d+2))(1 + 2−(d+3))−ij
]

.

In particular, any set of ≤ 2d+1 classifiers T ⊂
B̄H(j)(hd+1, r/2) must have P(∩h∈T ∂H(j−1)h) > 0.

We now construct a shattered set of points of size d + 1.
Consider constructing a binary tree with 2d+1 leaves as fol-
lows. The root node contains hd+1 (call this level 0). Let
hd ∈ B̄H(d)(hd+1, r/4) be some classifier with P(hd(X) 6=
hd+1(X)) > 0. Let the left child of the root be hd+1 and
the right child be hd (call this level 1). Define A1 = {x :



hd(x) 6= hd+1(x)}, and let ∆1 = 2−(d+2)
P(A1), Now

for each j ∈ {d − 1, d − 2, . . . , 0} in decreasing order,
we define the d − j + 1 level of the tree as follows. Let
Tj+1 denote the nodes at the d − j level in the tree, and let
A′

d−j+1 =
⋂

h∈Tj+1
∂H(j)h. We iterate over the elements

of Tj+1 in left-to-right order, and for each one h, we find
h′ ∈ B̄H(j)(h,∆d−j) with

PD(h(x) 6= h′(x) ∧ x ∈ A′
d−j+1) > 0 .

We then define the left child of h to be h and the right child
to be h′, and we update

A′
d−j+1 ← A′

d−j+1 ∩ {x : h(x) 6= h′(x)} .

After iterating through all the elements of Tj+1 in this man-
ner, define Ad−j+1 to be the final value of A′

d−j+1 and

∆d−j+1 = 2−(d+2)
P(Ad−j+1). The key is that, because

every h in the tree is within r/2 of hd+1, the set A′
d−j+1

always has nonzero measure, and is contained in ∂H(j)h for
any h ∈ Tj+1, so there always exists an h′ arbitrarily close
to h with PD(h(x) 6= h′(x) ∧ x ∈ A′

d−j+1) > 0.
Note that for i ∈ {1, 2, . . . , d + 1}, every node in the left

subtree of any h at level i− 1 is strictly within distance 2∆i

of h, and every node in the right subtree of any h at level i−1
is strictly within distance 2∆i of the right child of h. Since
2∆i2

d+1 = P(Ai), there must be some set A∗
i ⊆ Ai with

P(A∗
i ) > 0 such that for every h at level i − 1, every node

in its left subtree agrees with h on every x ∈ A∗
i and every

node in its right subtree disagrees with h on every x ∈ A∗
i .

Therefore, taking any {x1, x2, . . . , xd, xd+1} such that each
xi ∈ A∗

i creates a shatterable set (shattered by the set of leaf
nodes in the tree). This contradicts VC dimension d, so we
must have that the maximum recursion depth is at most d.

Proof:[Theorem 6] Theorem 6 now follows by a sim-
ple combination of Lemmas 13 and 14, along with Theo-
rem 8. That is, the passive learning algorithm achieving
passive learning sample complexity Sp(ε, δ, h) on (C,D)
also achieves Sp(ε, δ, h) on any (Ci, D), where C1, C2, . . .
is the decomposition from Lemma 14. So Lemma 13 guar-
antees the existence of active learning algorithms A1, A2, . . .
such that Ai achieves a sample complexity Si(ε, δ/2, h) =
o(Sp(ε/2, δ, h)) on (Ci, D) for all h ∈ Ci s.t. Sp(ε, δ, h) =
ω(1). Finally, Theorem 8 tells us that this implies the ex-
istence of an active learning algorithm based on these Ai

combined with Algorithm 1, achieving sample complexity
o(Sp(ε/4, δ, h)) on (C,D).

Note there is nothing special about 4 in Theorem 6. Using a
similar argument, it can be made arbitrarily close to 1.


