Efficient Market Making
Via Optimization
& Connections to Online Learning

Jake Abernethy, Yiling Chen, and Jenn Wortman Vaughan

(Jenn’s shides for CS269, Winter 2012)



Information Markets

Mitt Romney to be Republican Presidential Nominee in 2012

Last prediction was: $6.50 / share
Today's Change: 4 +$0.10 (+1.6%)

65.0%
CHANCE

\




Information Markets

Y HY"S - " PN DU MR SR ¥ o “.f._ . " o o
Mitt noMmniey 1o De NRepup

+$0.10 (+1.6%)

Last prediction was: $6.50 / share
‘ Today's Change:

L 2 )

lican P

ilnr

65.0%
CHANCE

u

£l »

residential Nominee in 2012

+1

\

Potential payoff is $10. If I think that the probability of this

event 1s p, I should

e Buy this security at any price less than $10p

 Sell this security at any price greater than $10p
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Potential payoff is $10. If I think that the probability of this
event 1s p, I should

e Buy this security at any price less than $10p
 Sell this security at any price greater than $10p
Current price measures the population’s collective beliefs
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The Caucus

The Politics and Government Blog of The Times

January 20, 2012, 8:21 PM

Gingrich Gets a Boost on Intrade

By RITCHIE S. KING

CHANCES OF WINNING:
South Carolina primary Republican nomination
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Source: inTrade.com
The New York Times

Newt Gingrich’s presidential candidacy is on the upswing in South Carolina, if
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Market Makers for Complete Markets

e In a complete market, a security 1s offered for each
potential state of the world

e Market maker determines prices via a cost function C

* Let g, be the current number of shares of the security
for state i that have been purchased

e Current cost of purchasing a bundle r of shares 1s
C(q+r)-C(q)

-[Instantaneous price of security i = 6C / 5qi]e“predicti0ns”




Example: LMSR

The Logarithmic Market Scoring Rule [Hanson, 2003] uses
an exponential cost function

N
C(q,....qv) =blog Yexp(qi/b)
=1

and has instantaneous prices

exp(q;/b)
2, exp(q;/b)

Pi~



Example: LMSR

The Logarithmic Market Scoring Rule [Hanson, 2003] uses
an exponential cost function

N
C(q,....qv) =blog Yexp(qi/b)
=1

and has instantaneous prices

exp(q;/b)
2, exp(q;/b)

Pi~

Notice that p, 1s increasing in ¢g; and the prices sum to 1
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Complex Outcome Spaces

n! | omn Infinite

e Cannot simply run a standard market like LMSR
e Calculating prices 1s intractable
e Reasoning about probabilities is too hard for traders

e Can run separate, independent markets (e.g., horses to
win, place, or show) but this 1ignores logical dependences
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can be operated efficiently



Complex Outcome Spaces

Our Goal: Given a small set of securities over a very large
(or infinite) state space, design a consistent market that
can be operated efficiently

Key Tools: Convex optimization and conjugate duality
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We would like to offer a menu of securities{l1, ..., K}
specified by a payoff function p
payoff
\ securities
10| oN S5 0 | 17| 0
9 9 (M9 | 0o | 9 9
states 0 42 0 10 10 10
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Example: Pair Betting
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Example: Pair Betting

$1 if and only if horse i finishes ahead of horse j

A<B |B<A |A<C |C<A |B<C |C<B
ABC 1 0 1 0 1 0
ACB 1 0 1 0 0 1
BAC 0 1 1 0 1 0
BCA 0 1 0 ‘ 1 0
CAB 1 0 0 0 1
CBA 0 1 0 0 1
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What are “reasonable” prices?

For complete markets. .. E p;, =1

i

For pair betting... P tDi=1
1Spi<j+pj<k+pk<i Sz

what else?

In general... 777
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An Axiomatic Approach

Path independence: The cost of acquiring a bundle r of
securities must be the same no matter how the trader splits
up the purchase. Formally,

Cost(r+r'|ry, 1y, ..., 1))
=Cost(r | ry, 1y, ..., r) + Cost(r’ | r, 1y, ..., ¥, T)

This alone implies the existence of a cost potential function!

Cost(r | ry, ¥y, ..., Iy)
=C(rytry+...+r,+r)—-C(r;+r,+... +r)



An Axiomatic Approach

e Existence of instantaneous prices: C must be continuous
and differentiable



An Axiomatic Approach

e Existence of instantaneous prices: C must be continuous
and differentiable

e Information incorporation: The purchase of a bundle r
should never cause the price of r to decrease



An Axiomatic Approach

e Existence of instantaneous prices: C must be continuous
and differentiable

e Information incorporation: The purchase of a bundle r
should never cause the price of r to decrease

e No arbitrage: It 1s never possible to purchase a bundle r
with a guaranteed positive profit regardless of outcome



An Axiomatic Approach

Existence of instantaneous prices: C must be continuous
and differentiable

Information incorporation: The purchase of a bundle r
should never cause the price of r to decrease

No arbitrage: It 1s never possible to purchase a bundle r
with a guaranteed positive profit regardless of outcome

Expressiveness: A trader must always be able to set the
market prices to reflect his beliefs
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Theorem: Under these five conditions, costs must be
determined by a convex cost function C such that

/QVC(q) . ¢ € R%})=Hull(p)

reachable
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An Axiomatic Approach

Theorem: Under these five conditions, costs must be
determined by a convex cost function C such that

VC(q) : R&Y )= Hull
reachable /Q @:q € RY=Hulllp)

price vectors

securities

0

states
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How do we find these cost functions?

e Fact: A closed, differentiable function C 1s convex if and
only 1f 1t can be written in the form

C(q) = sup x-q—R(x)

x € dom(R)

for a strictly convex function R called the conjugate.

Furthermore, VC(q) = argmax x-q — R(X)

x € dom(R)

4 )
To generate a convex cost function C, we just have to

choose an appropriate conjugate function and domain!
- /




But how do we choose R?



But how do we choose R?

We can borrow 1deas from online linear optimization, and
in particular, Follow the Regularized Leader algorithms

e Our conjugate function = their regularizer
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Online Linear Opt.

. Learner maintains weights
w, € K over n items

- Items have loss vector 1,
cumulatively L., =L, +1_,

- FTRL selects weights
w,,, =argminw - L + —R(w)

4
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- Learner suffers regret
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Market Making

« Market maker maintains
prices X, €[/ over n contracts

» Contracts are purchased in
bundlesr,and q, ., =q,+r,,;

- Market maker selects prices

X,,, =argmaxx - q, - R(x)
xell

« MM has worst-case loss

+ maxx - (;
x&ll
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More on Choosing R

e Interesting market properties can be described in terms of
the conjugate...

 Worst-case market maker loss can be bounded by

sup R(x) —1inf R(X)

x € Hull(p) x € Hull(p)

e Information loss (or the bid-ask spread, or the speed at
which prices change) can be bounded too

G1ives us a way to optimize trade-offs in market design!
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e Suppose our state space 1s all permutations of # 1tems
(e.g., candidates 1n an election, or horses in a race)

e Pair bets: Bets on events of the form “horse 7 finishes
ahead of horse j” for any i, j

e Subset bets: Bets on events of the form “horse i
finishes 1n position j” for any i, j

e Both known to be #P-hard to price
using LMSR [Chen et al., 2008]

e Qur framework handles both!
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Example: Permutations

Subset bets (“horse i finishes in position ;)

e Hull(p) can be described by a small number of
constraints:

Eprioe(i in slotj) =1 Eprice(i in slotj) =1
J i

e Easily handled by our framework!
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Example: Permutations

Pair bets (“horse i finishes ahead of horse ;)
e Hull(p) 1s a bit uglier...
e Solution: Relax the no-arbitrage axiom

e Allows us to to work with a larger, efficiently
specified price space

e But does 1t increase worst case loss? No!



Summary

e QOur new optimization-based framework allows for the
design of efficient market maker mechanisms for
combinatorial or infinite state spaces

e Properties like worst-case loss and speed of price changes
can be inferred easily

e Using this framework, we can design efficient markets for
betting languages that are intractable to price using LM SR



