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•  In a complete market, a security is offered for each 
potential state of the world 

•  Market maker determines prices via a cost function C 
•  Let qi be the current number of shares of the security 

for state i that have been purchased  
•  Current cost of purchasing a bundle r of shares is 

C(q + r) – C(q) 

•  Instantaneous price of security i = δC / δqi 

Market Makers for Complete Markets 

“predictions” 

$1 iff         $1 iff          $1 iff          



The Logarithmic Market Scoring Rule [Hanson, 2003] uses 
an exponential cost function 

 and has instantaneous prices 
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The Logarithmic Market Scoring Rule [Hanson, 2003] uses 
an exponential cost function 

 and has instantaneous prices 

Notice that pi is increasing in qi and the prices sum to 1 

Example: LMSR 

pi = exp(qi /b) 
Σj exp(qj /b) 

€ 

C(q1,...,qN) = b log exp(qi/b)
i = 1

N
∑
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•  Cannot simply run a standard market like LMSR 
•  Calculating prices is intractable 
•  Reasoning about probabilities is too hard for traders 

•  Can run separate, independent markets (e.g., horses to 
win, place, or show) but this ignores logical dependences 

Complex Outcome Spaces 

Infinite 
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Complex Outcome Spaces 

Our Goal: Given a small set of securities over a very large 
(or infinite) state space, design a consistent market that 
can be operated efficiently 

Key Tools: Convex optimization and conjugate duality 
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specified by a payoff function ρ 

10 0 5.5 0 17 0 
.9 .9 .9 0 .9 .9 
0 42 0 10 10 10 
0 0 11.5 8 0 0 
1 0 0 0 0 1 

securities 

states 

payoff 
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Example: Pair Betting 

$1 if and only if horse i finishes ahead of horse j 

A<B B<A A<C C<A B<C C<B 
ABC 1 0 1 0 1 0 
ACB 1 0 1 0 0 1 
BAC 0 1 1 0 1 0 
BCA 0 1 0 1 1 0 
CAB 1 0 0 1 0 1 
CBA 0 1 0 1 0 1 
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What are “reasonable” prices? 

For complete markets…  

For pair betting… 

In general… 

€ 

pi =1
i
∑

€ 

pi< j + p j< i =1

€ 

1≤ pi< j + p j<k + pk< i ≤ 2

what else? 

??? 
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up the purchase.  Formally,  

 Cost(r + r’ | r1, r2, …, rt)  
 = Cost(r | r1, r2, …, rt) + Cost(r’ | r1, r2, …, rt, r)    

This alone implies the existence of a cost potential function! 

 Cost(r | r1, r2, …, rt)  
 = C(r1 + r2 + … + rt + r) – C(r1 + r2 + … + rt)  
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An Axiomatic Approach 
•  Existence of instantaneous prices: C must be continuous 

and differentiable 

•  Information incorporation: The purchase of a bundle r 
should never cause the price of r to decrease 

•  No arbitrage: It is never possible to purchase a bundle r 
with a guaranteed positive profit regardless of outcome 

•  Expressiveness: A trader must always be able to set the 
market prices to reflect his beliefs  
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An Axiomatic Approach 
Theorem: Under these five conditions, costs must be 

determined by a convex cost function C such that 

{∇C(q) : q ∈ RK} = Hull(ρ) 

 [ 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

states 

securities 

reachable 
price vectors 



How do we find these cost functions? 



•  Fact: A closed, differentiable function C is convex if and 
only if it can be written in the form 

C(q) =   sup  x⋅q – R(x) 

 for a strictly convex function R called the conjugate. 

How do we find these cost functions? 

x ∈ dom(R)   



•  Fact: A closed, differentiable function C is convex if and 
only if it can be written in the form 

C(q) =   sup  x⋅q – R(x) 

 for a strictly convex function R called the conjugate. 

 Furthermore, ∇C(q) = arg max x⋅q – R(x) 

How do we find these cost functions? 

x ∈ dom(R)   

x ∈ dom(R)   



•  Fact: A closed, differentiable function C is convex if and 
only if it can be written in the form 

C(q) =   sup  x⋅q – R(x) 

 for a strictly convex function R called the conjugate. 

 Furthermore, ∇C(q) = arg max x⋅q – R(x) 

To generate a convex cost function C, we just have to 
choose an appropriate conjugate function and domain!  

How do we find these cost functions? 

x ∈ dom(R)   

x ∈ dom(R)   
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 We can borrow ideas from online linear optimization, and 
in particular, Follow the Regularized Leader algorithms 
•  Our conjugate function ≈ their regularizer 
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More on Choosing R 
•  Interesting market properties can be described in terms of 

the conjugate… 

•  Worst-case market maker loss can be bounded by 
sup  R(x) – inf  R(x) 

•  Information loss (or the bid-ask spread, or the speed at 
which prices change) can be bounded too 

Gives us a way to optimize trade-offs in market design! 

x ∈ Hull(ρ)  x ∈ Hull(ρ)  
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•  Suppose our state space is all permutations of n items 

(e.g., candidates in an election, or horses in a race) 

•  Pair bets: Bets on events of the form “horse i finishes 
ahead of horse j” for any i, j 

•  Subset bets: Bets on events of the form “horse i 
finishes in position j” for any i, j 

•  Both known to be #P-hard to price  
 using LMSR [Chen et al., 2008] 

•  Our framework handles both!  
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Example: Permutations 

 Subset bets (“horse i finishes in position j”) 
•  Hull(ρ) can be described by a small number of 

constraints: 

•  Easily handled by our framework! 

€ 

price(
j
∑ i in slot j) =1

€ 

price(
i
∑ i in slot j) =1
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Example: Permutations 

 Pair bets (“horse i finishes ahead of horse j”) 
•  Hull(ρ) is a bit uglier… 
•  Solution: Relax the no-arbitrage axiom 
• Allows us to to work with a larger, efficiently 

specified price space 
• But does it increase worst case loss?  No! 



Summary 

•  Our new optimization-based framework allows for the 
design of efficient market maker mechanisms for 
combinatorial or infinite state spaces 

•  Properties like worst-case loss and speed of price changes 
can be inferred easily 

•  Using this framework, we can design efficient markets for 
betting languages that are intractable to price using LMSR 


