
Efficient Market Making
Via Optimization

& Connections to Online Learning

Jake Abernethy, Yiling Chen, and Jenn Wortman Vaughan

(Jenn’s slides for CS269, Winter 2012)

Information Markets

Potential payoff is $10. If I think that the probability of this
event is p, I should
•  Buy this security at any price less than $10p
•  Sell this security at any price greater than $10p

Information Markets

Potential payoff is $10. If I think that the probability of this
event is p, I should
•  Buy this security at any price less than $10p
•  Sell this security at any price greater than $10p

 Current price measures the population’s collective beliefs

Information Markets

In case you’re curious…

•  In a complete market, a security is offered for each
potential state of the world

Market Makers for Complete Markets

$1 iff $1 iff $1 iff

•  In a complete market, a security is offered for each
potential state of the world

•  Market maker determines prices via a cost function C

Market Makers for Complete Markets

$1 iff $1 iff $1 iff

•  In a complete market, a security is offered for each
potential state of the world

•  Market maker determines prices via a cost function C
•  Let qi be the current number of shares of the security

for state i that have been purchased
•  Current cost of purchasing a bundle r of shares is

C(q + r) – C(q)

Market Makers for Complete Markets

$1 iff $1 iff $1 iff

•  In a complete market, a security is offered for each
potential state of the world

•  Market maker determines prices via a cost function C
•  Let qi be the current number of shares of the security

for state i that have been purchased
•  Current cost of purchasing a bundle r of shares is

C(q + r) – C(q)

•  Instantaneous price of security i = δC / δqi

Market Makers for Complete Markets

$1 iff $1 iff $1 iff

•  In a complete market, a security is offered for each
potential state of the world

•  Market maker determines prices via a cost function C
•  Let qi be the current number of shares of the security

for state i that have been purchased
•  Current cost of purchasing a bundle r of shares is

C(q + r) – C(q)

•  Instantaneous price of security i = δC / δqi

Market Makers for Complete Markets

“predictions”

$1 iff $1 iff $1 iff

The Logarithmic Market Scoring Rule [Hanson, 2003] uses
an exponential cost function

 and has instantaneous prices

Example: LMSR

pi = exp(qi /b)
Σj exp(qj /b)

€

C(q1,...,qN) = b log exp(qi/b)
i = 1

N
∑

The Logarithmic Market Scoring Rule [Hanson, 2003] uses
an exponential cost function

 and has instantaneous prices

Notice that pi is increasing in qi and the prices sum to 1

Example: LMSR

pi = exp(qi /b)
Σj exp(qj /b)

€

C(q1,...,qN) = b log exp(qi/b)
i = 1

N
∑

Complex Outcome Spaces

Infinite

•  Cannot simply run a standard market like LMSR
•  Calculating prices is intractable
•  Reasoning about probabilities is too hard for traders

Complex Outcome Spaces

Infinite

•  Cannot simply run a standard market like LMSR
•  Calculating prices is intractable
•  Reasoning about probabilities is too hard for traders

•  Can run separate, independent markets (e.g., horses to
win, place, or show) but this ignores logical dependences

Complex Outcome Spaces

Infinite

Complex Outcome Spaces

Our Goal: Given a small set of securities over a very large
(or infinite) state space, design a consistent market that
can be operated efficiently

Complex Outcome Spaces

Our Goal: Given a small set of securities over a very large
(or infinite) state space, design a consistent market that
can be operated efficiently

Key Tools: Convex optimization and conjugate duality

Menu of Securities
We would like to offer a menu of securities{1, …, K}

specified by a payoff function ρ

Menu of Securities
We would like to offer a menu of securities{1, …, K}

specified by a payoff function ρ

10 0 5.5 0 17 0
.9 .9 .9 0 .9 .9
0 42 0 10 10 10
0 0 11.5 8 0 0
1 0 0 0 0 1

securities

states

payoff

Example: Pair Betting

$1 if and only if horse i finishes ahead of horse j

Example: Pair Betting

$1 if and only if horse i finishes ahead of horse j

A<B B<A A<C C<A B<C C<B
ABC 1 0 1 0 1 0
ACB 1 0 1 0 0 1
BAC 0 1 1 0 1 0
BCA 0 1 0 1 1 0
CAB 1 0 0 1 0 1
CBA 0 1 0 1 0 1

What are “reasonable” prices?

What are “reasonable” prices?

For complete markets…

What are “reasonable” prices?

For complete markets…

€

pi =1
i
∑

What are “reasonable” prices?

For complete markets…

For pair betting…
€

pi =1
i
∑

What are “reasonable” prices?

For complete markets…

For pair betting…
€

pi =1
i
∑

€

pi< j + p j< i =1

What are “reasonable” prices?

For complete markets…

For pair betting…
€

pi =1
i
∑

€

pi< j + p j< i =1

€

1≤ pi< j + p j<k + pk< i ≤ 2

What are “reasonable” prices?

For complete markets…

For pair betting…
€

pi =1
i
∑

€

pi< j + p j< i =1

what else?

€

1≤ pi< j + p j<k + pk< i ≤ 2

What are “reasonable” prices?

For complete markets…

For pair betting…

In general…

€

pi =1
i
∑

€

pi< j + p j< i =1

€

1≤ pi< j + p j<k + pk< i ≤ 2

what else?

???

An Axiomatic Approach

Path independence: The cost of acquiring a bundle r of
securities must be the same no matter how the trader splits
up the purchase.

An Axiomatic Approach

Path independence: The cost of acquiring a bundle r of
securities must be the same no matter how the trader splits
up the purchase. Formally,

 Cost(r + r’ | r1, r2, …, rt)
 = Cost(r | r1, r2, …, rt) + Cost(r’ | r1, r2, …, rt, r)

An Axiomatic Approach

Path independence: The cost of acquiring a bundle r of
securities must be the same no matter how the trader splits
up the purchase. Formally,

 Cost(r + r’ | r1, r2, …, rt)
 = Cost(r | r1, r2, …, rt) + Cost(r’ | r1, r2, …, rt, r)

This alone implies the existence of a cost potential function!

 Cost(r | r1, r2, …, rt)
 = C(r1 + r2 + … + rt + r) – C(r1 + r2 + … + rt)

An Axiomatic Approach
•  Existence of instantaneous prices: C must be continuous

and differentiable

An Axiomatic Approach
•  Existence of instantaneous prices: C must be continuous

and differentiable

•  Information incorporation: The purchase of a bundle r
should never cause the price of r to decrease

An Axiomatic Approach
•  Existence of instantaneous prices: C must be continuous

and differentiable

•  Information incorporation: The purchase of a bundle r
should never cause the price of r to decrease

•  No arbitrage: It is never possible to purchase a bundle r
with a guaranteed positive profit regardless of outcome

An Axiomatic Approach
•  Existence of instantaneous prices: C must be continuous

and differentiable

•  Information incorporation: The purchase of a bundle r
should never cause the price of r to decrease

•  No arbitrage: It is never possible to purchase a bundle r
with a guaranteed positive profit regardless of outcome

•  Expressiveness: A trader must always be able to set the
market prices to reflect his beliefs

An Axiomatic Approach
Theorem: Under these five conditions, costs must be

determined by a convex cost function C such that

{∇C(q) : q ∈ RK} = Hull(ρ)

 [

An Axiomatic Approach
Theorem: Under these five conditions, costs must be

determined by a convex cost function C such that

{∇C(q) : q ∈ RK} = Hull(ρ)

 [

reachable
price vectors

An Axiomatic Approach
Theorem: Under these five conditions, costs must be

determined by a convex cost function C such that

{∇C(q) : q ∈ RK} = Hull(ρ)

 [

10 0 5.5 0 17 0
.9 .9 .9 0 .9 .9
0 42 0 10 10 10
0 0 11.5 8 0 0
1 0 0 0 0 1

securities

states

reachable
price vectors

An Axiomatic Approach
Theorem: Under these five conditions, costs must be

determined by a convex cost function C such that

{∇C(q) : q ∈ RK} = Hull(ρ)

 [

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

states

securities

reachable
price vectors

How do we find these cost functions?

•  Fact: A closed, differentiable function C is convex if and
only if it can be written in the form

C(q) = sup x⋅q – R(x)

 for a strictly convex function R called the conjugate.

How do we find these cost functions?

x ∈ dom(R)

•  Fact: A closed, differentiable function C is convex if and
only if it can be written in the form

C(q) = sup x⋅q – R(x)

 for a strictly convex function R called the conjugate.

 Furthermore, ∇C(q) = arg max x⋅q – R(x)

How do we find these cost functions?

x ∈ dom(R)

x ∈ dom(R)

•  Fact: A closed, differentiable function C is convex if and
only if it can be written in the form

C(q) = sup x⋅q – R(x)

 for a strictly convex function R called the conjugate.

 Furthermore, ∇C(q) = arg max x⋅q – R(x)

To generate a convex cost function C, we just have to
choose an appropriate conjugate function and domain!

How do we find these cost functions?

x ∈ dom(R)

x ∈ dom(R)

But how do we choose R?

But how do we choose R?

 We can borrow ideas from online linear optimization, and
in particular, Follow the Regularized Leader algorithms
•  Our conjugate function ≈ their regularizer

Online Linear Opt. Market Making

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

Market Making

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

•  Items have loss vector lt,
cumulatively Lt+1 = Lt + lt+1

Market Making

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

•  Items have loss vector lt,
cumulatively Lt+1 = Lt + lt+1

•  FTRL selects weights

€

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)

Market Making

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

•  Items have loss vector lt,
cumulatively Lt+1 = Lt + lt+1

•  FTRL selects weights

•  Learner suffers regret
€

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)

€

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

Market Making

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

•  Items have loss vector lt,
cumulatively Lt+1 = Lt + lt+1

•  FTRL selects weights

•  Learner suffers regret
€

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)

€

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

Market Making

•  Market maker maintains
prices xt∈Π over n contracts

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

•  Items have loss vector lt,
cumulatively Lt+1 = Lt + lt+1

•  FTRL selects weights

•  Learner suffers regret
€

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)

€

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

Market Making

•  Market maker maintains
prices xt∈Π over n contracts

•  Contracts are purchased in
bundles rt, and qt+1 = qt + rt+1

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

•  Items have loss vector lt,
cumulatively Lt+1 = Lt + lt+1

•  FTRL selects weights

•  Learner suffers regret
€

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)

€

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

Market Making

•  Market maker maintains
prices xt∈Π over n contracts

•  Contracts are purchased in
bundles rt, and qt+1 = qt + rt+1

•  Market maker selects prices

€

x t+1 = argmax
x∈Π

x ⋅ qt − R(x)

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

•  Items have loss vector lt,
cumulatively Lt+1 = Lt + lt+1

•  FTRL selects weights

•  Learner suffers regret
€

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)

€

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

Market Making

•  Market maker maintains
prices xt∈Π over n contracts

•  Contracts are purchased in
bundles rt, and qt+1 = qt + rt+1

•  Market maker selects prices

•  MM has worst-case loss
€

x t+1 = argmax
x∈Π

x ⋅ qt − R(x)

€

C(q0) −C(qT) +max
x∈Π

x ⋅ qT

Online Linear Opt.

•  Learner maintains weights
wt ∈ K over n items

•  Items have loss vector lt,
cumulatively Lt+1 = Lt + lt+1

•  FTRL selects weights

•  Learner suffers regret
€

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)

€

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

Market Making

•  Market maker maintains
prices xt∈Π over n contracts

•  Contracts are purchased in
bundles rt, and qt+1 = qt + rt+1

•  Market maker selects prices

•  MM has worst-case loss
€

x t+1 = argmax
x∈Π

x ⋅ qt − R(x)

€

C(q0) −C(qT) +max
x∈Π

x ⋅ qT

More on Choosing R
•  Interesting market properties can be described in terms of

the conjugate…

More on Choosing R
•  Interesting market properties can be described in terms of

the conjugate…

•  Worst-case market maker loss can be bounded by
sup R(x) – inf R(x)

x ∈ Hull(ρ) x ∈ Hull(ρ)

More on Choosing R
•  Interesting market properties can be described in terms of

the conjugate…

•  Worst-case market maker loss can be bounded by
sup R(x) – inf R(x)

•  Information loss (or the bid-ask spread, or the speed at
which prices change) can be bounded too

x ∈ Hull(ρ) x ∈ Hull(ρ)

More on Choosing R
•  Interesting market properties can be described in terms of

the conjugate…

•  Worst-case market maker loss can be bounded by
sup R(x) – inf R(x)

•  Information loss (or the bid-ask spread, or the speed at
which prices change) can be bounded too

Gives us a way to optimize trade-offs in market design!

x ∈ Hull(ρ) x ∈ Hull(ρ)

Example: Permutations
•  Suppose our state space is all permutations of n items

(e.g., candidates in an election, or horses in a race)

Example: Permutations
•  Suppose our state space is all permutations of n items

(e.g., candidates in an election, or horses in a race)

•  Pair bets: Bets on events of the form “horse i finishes
ahead of horse j” for any i, j

•  Subset bets: Bets on events of the form “horse i
finishes in position j” for any i, j

Example: Permutations
•  Suppose our state space is all permutations of n items

(e.g., candidates in an election, or horses in a race)

•  Pair bets: Bets on events of the form “horse i finishes
ahead of horse j” for any i, j

•  Subset bets: Bets on events of the form “horse i
finishes in position j” for any i, j

•  Both known to be #P-hard to price
 using LMSR [Chen et al., 2008]

Example: Permutations
•  Suppose our state space is all permutations of n items

(e.g., candidates in an election, or horses in a race)

•  Pair bets: Bets on events of the form “horse i finishes
ahead of horse j” for any i, j

•  Subset bets: Bets on events of the form “horse i
finishes in position j” for any i, j

•  Both known to be #P-hard to price
 using LMSR [Chen et al., 2008]

•  Our framework handles both!

Example: Permutations

 Subset bets (“horse i finishes in position j”)

Example: Permutations

 Subset bets (“horse i finishes in position j”)
•  Hull(ρ) can be described by a small number of

constraints:

€

price(
j
∑ i in slot j) =1

€

price(
i
∑ i in slot j) =1

Example: Permutations

 Subset bets (“horse i finishes in position j”)
•  Hull(ρ) can be described by a small number of

constraints:

•  Easily handled by our framework!

€

price(
j
∑ i in slot j) =1

€

price(
i
∑ i in slot j) =1

Example: Permutations

 Pair bets (“horse i finishes ahead of horse j”)

Example: Permutations

 Pair bets (“horse i finishes ahead of horse j”)
•  Hull(ρ) is a bit uglier…

Example: Permutations

 Pair bets (“horse i finishes ahead of horse j”)
•  Hull(ρ) is a bit uglier…
•  Solution: Relax the no-arbitrage axiom

Example: Permutations

 Pair bets (“horse i finishes ahead of horse j”)
•  Hull(ρ) is a bit uglier…
•  Solution: Relax the no-arbitrage axiom
• Allows us to to work with a larger, efficiently

specified price space

Example: Permutations

 Pair bets (“horse i finishes ahead of horse j”)
•  Hull(ρ) is a bit uglier…
•  Solution: Relax the no-arbitrage axiom
• Allows us to to work with a larger, efficiently

specified price space
• But does it increase worst case loss?

Example: Permutations

 Pair bets (“horse i finishes ahead of horse j”)
•  Hull(ρ) is a bit uglier…
•  Solution: Relax the no-arbitrage axiom
• Allows us to to work with a larger, efficiently

specified price space
• But does it increase worst case loss? No!

Summary

•  Our new optimization-based framework allows for the
design of efficient market maker mechanisms for
combinatorial or infinite state spaces

•  Properties like worst-case loss and speed of price changes
can be inferred easily

•  Using this framework, we can design efficient markets for
betting languages that are intractable to price using LMSR

