Efficient Market Making Via Optimization & Connections to Online Learning

Jake Abernethy, Yiling Chen, and Jenn Wortman Vaughan

(Jenn's slides for CS269, Winter 2012)

Information Markets

Mitt Romney to be Republican Presidential Nominee in 2012Last prediction was: \$6.50 / share65.0%Today's Change: ▲ +\$0.10 (+1.6%)CHANCE

Information Markets

Potential payoff is \$10. If I think that the probability of this event is *p*, I should

- Buy this security at any price less than \$10*p*
- Sell this security at any price greater than \$10*p*

Information Markets

Potential payoff is \$10. If I think that the probability of this event is *p*, I should

- Buy this security at any price less than \$10*p*
- Sell this security at any price greater than \$10*p* Current price measures the population's collective beliefs

In case you're curious...

2012.REP.NOM.ROMNEY

Nov 09, 2008 - Jan 24, 2012

Newt Gingrich's presidential candidacy is on the upswing in South Carolina, if

• In a complete market, a security is offered for each potential state of the world

• In a complete market, a security is offered for each potential state of the world

• Market maker determines prices via a cost function *C*

• In a complete market, a security is offered for each potential state of the world

- Market maker determines prices via a cost function *C*
 - Let q_i be the current number of shares of the security for state *i* that have been purchased
 - Current cost of purchasing a bundle **r** of shares is

 $C(\mathbf{q} + \mathbf{r}) - C(\mathbf{q})$

• In a complete market, a security is offered for each potential state of the world

- Market maker determines prices via a cost function *C*
 - Let q_i be the current number of shares of the security for state *i* that have been purchased
 - Current cost of purchasing a bundle **r** of shares is

 $C(\mathbf{q} + \mathbf{r}) - C(\mathbf{q})$

• Instantaneous price of security $i = \delta C / \delta q_i$

• In a complete market, a security is offered for each potential state of the world

- Market maker determines prices via a cost function *C*
 - Let q_i be the current number of shares of the security for state *i* that have been purchased
 - Current cost of purchasing a bundle **r** of shares is

 $C(\mathbf{q} + \mathbf{r}) - C(\mathbf{q})$

• Instantaneous price of security $i = \delta C / \delta q_i$ < "predictions"

Example: LMSR

The Logarithmic Market Scoring Rule [Hanson, 2003] uses an exponential cost function

$$C(q_1,...,q_N) = b \log \sum_{i=1}^{N} \exp(q_i/b)$$

and has instantaneous prices

$$p_i = \frac{\exp(q_i/b)}{\sum_j \exp(q_j/b)}$$

Example: LMSR

The Logarithmic Market Scoring Rule [Hanson, 2003] uses an exponential cost function

$$C(q_1,...,q_N) = b \log \sum_{i=1}^{N} \exp(q_i/b)$$

and has instantaneous prices

$$p_i = \frac{\exp(q_i/b)}{\sum_j \exp(q_j/b)}$$

Notice that p_i is increasing in q_i and the prices sum to 1

n!

Infinite

- Cannot simply run a standard market like LMSR
 - Calculating prices is intractable
 - Reasoning about probabilities is too hard for traders

- Cannot simply run a standard market like LMSR
 - Calculating prices is intractable
 - Reasoning about probabilities is too hard for traders
- Can run separate, independent markets (e.g., horses to win, place, or show) but this ignores logical dependences

Our Goal: Given a small set of securities over a very large (or infinite) state space, design a consistent market that can be operated efficiently

Our Goal: Given a small set of securities over a very large (or infinite) state space, design a consistent market that can be operated efficiently

Key Tools: Convex optimization and conjugate duality

Menu of Securities

We would like to offer a menu of securities $\{1, ..., K\}$ specified by a payoff function ρ

Menu of Securities

We would like to offer a menu of securities $\{1, ..., K\}$ specified by a payoff function ρ

Example: Pair Betting

\$1 if and only if horse *i* finishes ahead of horse *j*

Example: Pair Betting

\$1 if and only if horse *i* finishes ahead of horse *j*

	A <b< th=""><th>B<a< th=""><th>A<c< th=""><th>C<a< th=""><th>B<c< th=""><th>C<b< th=""></b<></th></c<></th></a<></th></c<></th></a<></th></b<>	B <a< th=""><th>A<c< th=""><th>C<a< th=""><th>B<c< th=""><th>C<b< th=""></b<></th></c<></th></a<></th></c<></th></a<>	A <c< th=""><th>C<a< th=""><th>B<c< th=""><th>C<b< th=""></b<></th></c<></th></a<></th></c<>	C <a< th=""><th>B<c< th=""><th>C<b< th=""></b<></th></c<></th></a<>	B <c< th=""><th>C<b< th=""></b<></th></c<>	C <b< th=""></b<>
ABC	1	0	1	0	1	0
ACB	1	0	1	0	0	1
BAC	0	1	1	0	1	0
BCA	0	1	0	1	1	0
CAB	1	0	0	1	0	1
CBA	0	1	0	1	0	1

For complete markets...

For complete markets...

$$\sum_{i} p_i = 1$$

For complete markets... $\sum p_i = 1$

For pair betting...

For complete markets...

$$\sum_{i} p_i = 1$$

For pair betting...

 $p_{i < j} + p_{j < i} = 1$

For complete markets...

$$\sum_{i} p_i = 1$$

For pair betting...

$$p_{i < j} + p_{j < i} = 1$$

$$1 \le p_{i < j} + p_{j < k} + p_{k < i} \le 2$$

For complete markets...

$$\sum_{i} p_i = 1$$

For pair betting...

 $p_{i < j} + p_{j < i} = 1$ $1 \le p_{i < j} + p_{j < k} + p_{k < i} \le 2$ what else?

For complete markets...

$$\sum_{i} p_i = 1$$

For pair betting... $p_{i < j} + p_{j < i} = 1$ $1 \le p_{i < j} + p_{j < k} + p_{k < i} \le 2$ what else?

In general...

???

Path independence: The cost of acquiring a bundle **r** of securities must be the same no matter how the trader splits up the purchase.

Path independence: The cost of acquiring a bundle **r** of securities must be the same no matter how the trader splits up the purchase. Formally,

$$Cost(\mathbf{r} + \mathbf{r'} | \mathbf{r_1}, \mathbf{r_2}, ..., \mathbf{r_t}) = Cost(\mathbf{r} | \mathbf{r_1}, \mathbf{r_2}, ..., \mathbf{r_t}) + Cost(\mathbf{r'} | \mathbf{r_1}, \mathbf{r_2}, ..., \mathbf{r_t}, \mathbf{r_t})$$

Path independence: The cost of acquiring a bundle **r** of securities must be the same no matter how the trader splits up the purchase. Formally,

$$Cost(r + r' | r_1, r_2, ..., r_t) = Cost(r | r_1, r_2, ..., r_t) + Cost(r' | r_1, r_2, ..., r_t, r)$$

This alone implies the existence of a cost potential function!

Cost(**r** | **r**₁, **r**₂, ..., **r**_t)
=
$$C(\mathbf{r}_1 + \mathbf{r}_2 + ... + \mathbf{r}_t + \mathbf{r}) - C(\mathbf{r}_1 + \mathbf{r}_2 + ... + \mathbf{r}_t)$$

• Existence of instantaneous prices: *C* must be continuous and differentiable

- Existence of instantaneous prices: *C* must be continuous and differentiable
- Information incorporation: The purchase of a bundle **r** should never cause the price of **r** to decrease

- Existence of instantaneous prices: *C* must be continuous and differentiable
- Information incorporation: The purchase of a bundle **r** should never cause the price of **r** to decrease
- No arbitrage: It is never possible to purchase a bundle r with a guaranteed positive profit regardless of outcome
- Existence of instantaneous prices: *C* must be continuous and differentiable
- Information incorporation: The purchase of a bundle **r** should never cause the price of **r** to decrease
- No arbitrage: It is never possible to purchase a bundle r with a guaranteed positive profit regardless of outcome
- **Expressiveness:** A trader must always be able to set the market prices to reflect his beliefs

Theorem: Under these five conditions, costs must be determined by a convex cost function *C* such that

 $\{\nabla C(\mathbf{q}) : \mathbf{q} \in \mathbf{R}^K\} = \mathrm{Hull}(\boldsymbol{\rho})$

Theorem: Under these five conditions, costs must be determined by a convex cost function *C* such that

reachable
$$\{\nabla C(\mathbf{q}) : \mathbf{q} \in \mathbb{R}^K\}$$
 = Hull($\boldsymbol{\rho}$)
price vectors

Theorem: Under these five conditions, costs must be determined by a convex cost function *C* such that

reachable
$$\{\nabla C(\mathbf{q}) : \mathbf{q} \in \mathbb{R}^K\}$$
 = Hull(ρ)

price vectors

securities

states	10	0	5.5	0	17	0
	.9	.9	.9	0	.9	.9
	0	42	0	10	10	10
	0	0	11.5	8	0	0
	1	0	0	0	0	1

Theorem: Under these five conditions, costs must be determined by a convex cost function *C* such that

reachable
$$\{\nabla C(\mathbf{q}) : \mathbf{q} \in \mathbb{R}^K\}$$
 = Hull(ρ)

price vectors

securities

states	1	0	0	0	0
	0	1	0	0	0
	0	0	1	0	0
	0	0	0	1	0
	0	0	0	0	1

• Fact: A closed, differentiable function *C* is convex if and only if it can be written in the form

$$C(\mathbf{q}) = \sup_{\mathbf{x} \in \operatorname{dom}(R)} \mathbf{x} \cdot \mathbf{q} - R(\mathbf{x})$$

for a strictly convex function *R* called the conjugate.

• Fact: A closed, differentiable function *C* is convex if and only if it can be written in the form

$$C(\mathbf{q}) = \sup_{\mathbf{x} \in \operatorname{dom}(R)} \mathbf{x} \cdot \mathbf{q} - R(\mathbf{x})$$

for a strictly convex function *R* called the conjugate.

Furthermore, $\nabla C(\mathbf{q}) = \underset{\mathbf{x} \in \text{dom}(R)}{\arg \max \mathbf{x} \cdot \mathbf{q}} - R(\mathbf{x})$

• Fact: A closed, differentiable function *C* is convex if and only if it can be written in the form

$$C(\mathbf{q}) = \sup_{\mathbf{x} \in \operatorname{dom}(R)} \mathbf{x} \cdot \mathbf{q} - R(\mathbf{x})$$

for a strictly convex function *R* called the conjugate.

Furthermore, $\nabla C(\mathbf{q}) = \underset{\mathbf{x} \in \text{dom}(R)}{\arg \max \mathbf{x} \cdot \mathbf{q}} - R(\mathbf{x})$

To generate a convex cost function *C*, we just have to choose an appropriate conjugate function and domain!

But how do we choose *R*?

But how do we choose *R*?

We can borrow ideas from online linear optimization, and in particular, Follow the Regularized Leader algorithms

• Our conjugate function \approx their regularizer

• Learner maintains weights $\mathbf{w}_t \in K$ over *n* items

- Learner maintains weights $\mathbf{w}_t \in K$ over *n* items
- Items have loss vector \mathbf{l}_t , cumulatively $\mathbf{L}_{t+1} = \mathbf{L}_t + \mathbf{l}_{t+1}$

- Learner maintains weights $\mathbf{w}_t \in K$ over *n* items
- Items have loss vector \mathbf{l}_t , cumulatively $\mathbf{L}_{t+1} = \mathbf{L}_t + \mathbf{l}_{t+1}$
- FTRL selects weights $\mathbf{w}_{t+1} = \underset{\mathbf{w} \in K}{\operatorname{argmin}} \mathbf{w} \cdot \mathbf{L}_t + \frac{1}{\eta} R(\mathbf{w})$

- Learner maintains weights $\mathbf{w}_t \in K$ over *n* items
- Items have loss vector \mathbf{l}_t , cumulatively $\mathbf{L}_{t+1} = \mathbf{L}_t + \mathbf{l}_{t+1}$
- FTRL selects weights

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in K}{\operatorname{argmin}} \mathbf{w} \cdot \mathbf{L}_t + \frac{1}{\eta} R(\mathbf{w})$$

• Learner suffers regret $\sum_{t=1}^{T} \mathbf{w}_t \cdot \mathbf{l}_t - \min_{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_T$

- Learner maintains weights $\mathbf{w}_t \in K$ over *n* items
- Items have loss vector \mathbf{l}_t , cumulatively $\mathbf{L}_{t+1} = \mathbf{L}_t + \mathbf{l}_{t+1}$
- FTRL selects weights

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in K}{\operatorname{argmin}} \mathbf{w} \cdot \mathbf{L}_t + \frac{1}{\eta} R(\mathbf{w})$$

• Learner suffers regret $\sum_{t=1}^{T} \mathbf{w}_t \cdot \mathbf{l}_t - \min_{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_T$

Market Making

• Market maker maintains prices $\mathbf{x}_t \in \Pi$ over *n* contracts

- Learner maintains weights $\mathbf{w}_t \in K$ over *n* items
- Items have loss vector \mathbf{l}_t , cumulatively $\mathbf{L}_{t+1} = \mathbf{L}_t + \mathbf{l}_{t+1}$
- FTRL selects weights $\mathbf{w} = \operatorname{argmin} \mathbf{w} \cdot \mathbf{I} + \frac{1}{R}\mathbf{R}$

$$\mathbf{w}_{t+1} = \underset{\mathbf{w}\in K}{\operatorname{arg\,min}} \mathbf{w} \cdot \mathbf{L}_t + \frac{1}{\eta} R(\mathbf{w})$$

• Learner suffers regret $\sum_{t=1}^{T} \mathbf{w}_t \cdot \mathbf{l}_t - \min_{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_T$

- Market maker maintains prices $\mathbf{x}_t \in \Pi$ over *n* contracts
- Contracts are purchased in bundles \mathbf{r}_t , and $\mathbf{q}_{t+1} = \mathbf{q}_t + \mathbf{r}_{t+1}$

- Learner maintains weights $\mathbf{w}_t \in K$ over *n* items
- Items have loss vector \mathbf{l}_t , cumulatively $\mathbf{L}_{t+1} = \mathbf{L}_t + \mathbf{l}_{t+1}$
- FTRL selects weights $\mathbf{w}_{t+1} = \underset{\mathbf{w} \in K}{\operatorname{argmin}} \mathbf{w} \cdot \mathbf{L}_t + \frac{1}{\eta} R(\mathbf{w})$
- Learner suffers regret $\sum_{t=1}^{T} \mathbf{w}_t \cdot \mathbf{l}_t - \min_{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_T$

- Market maker maintains prices $\mathbf{x}_t \in \Pi$ over *n* contracts
- Contracts are purchased in bundles \mathbf{r}_t , and $\mathbf{q}_{t+1} = \mathbf{q}_t + \mathbf{r}_{t+1}$

$$\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \Pi}{\operatorname{arg\,max}} \mathbf{x} \cdot \mathbf{q}_t - R(\mathbf{x})$$

- Learner maintains weights $\mathbf{w}_t \in K$ over *n* items
- Items have loss vector \mathbf{l}_t , cumulatively $\mathbf{L}_{t+1} = \mathbf{L}_t + \mathbf{l}_{t+1}$
- FTRL selects weights $\mathbf{w}_{t+1} = \underset{\mathbf{w} \in K}{\operatorname{argmin}} \mathbf{w} \cdot \mathbf{L}_t + \frac{1}{\eta} R(\mathbf{w})$
- Learner suffers regret $\sum_{t=1}^{T} \mathbf{w}_t \cdot \mathbf{l}_t - \min_{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_T$

- Market maker maintains prices $\mathbf{x}_t \in \Pi$ over *n* contracts
- Contracts are purchased in bundles \mathbf{r}_t , and $\mathbf{q}_{t+1} = \mathbf{q}_t + \mathbf{r}_{t+1}$
- Market maker selects prices
 - $\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \Pi}{\operatorname{arg\,max}} \mathbf{x} \cdot \mathbf{q}_t R(\mathbf{x})$
- MM has worst-case loss
 - $C(\mathbf{q}_0) C(\mathbf{q}_T) + \max_{\mathbf{x} \in \Pi} \mathbf{x} \cdot \mathbf{q}_T$

- Learner maintains weights $\mathbf{w}_t \in K$ over *n* items
- Items have loss vector \mathbf{l}_t , cumulatively $\mathbf{L}_{t+1} = \mathbf{L}_t + \mathbf{l}_{t+1}$
- FTRL selects weights $\mathbf{w}_{t+1} = \underset{\mathbf{w} \in K}{\operatorname{argmin}} \mathbf{w} \cdot \mathbf{L}_t + \frac{1}{\eta} R(\mathbf{w})$
- Learner suffers regret $\sum_{t=1}^{T} \mathbf{w}_t \cdot \mathbf{l}_t - \min_{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_T$

- Market maker maintains prices $\mathbf{x}_t \in \Pi$ over *n* contracts
- Contracts are purchased in bundles \mathbf{r}_t , and $\mathbf{q}_{t+1} = \mathbf{q}_t + \mathbf{r}_{t+1}$
- Market maker selects prices
 - $\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \Pi}{\operatorname{arg\,max}} \mathbf{x} \cdot \mathbf{q}_t R(\mathbf{x})$
- MM has worst-case loss $C(\mathbf{q}_0) - C(\mathbf{q}_T) + \max_{\mathbf{x} \in \Pi} \mathbf{x} \cdot \mathbf{q}_T$

• Interesting market properties can be described in terms of the conjugate...

- Interesting market properties can be described in terms of the conjugate...
 - Worst-case market maker loss can be bounded by

 $\sup_{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x}) - \inf_{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x})$

- Interesting market properties can be described in terms of the conjugate...
 - Worst-case market maker loss can be bounded by

 $\sup_{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x}) - \inf_{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x})$

• Information loss (or the bid-ask spread, or the speed at which prices change) can be bounded too

- Interesting market properties can be described in terms of the conjugate...
 - Worst-case market maker loss can be bounded by

 $\sup_{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x}) - \inf_{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x})$

• Information loss (or the bid-ask spread, or the speed at which prices change) can be bounded too

Gives us a way to optimize trade-offs in market design!

• Suppose our state space is all permutations of *n* items (e.g., candidates in an election, or horses in a race)

- Suppose our state space is all permutations of *n* items (e.g., candidates in an election, or horses in a race)
 - Pair bets: Bets on events of the form "horse *i* finishes ahead of horse *j*" for any *i*, *j*
 - Subset bets: Bets on events of the form "horse *i* finishes in position *j*" for any *i*, *j*

- Suppose our state space is all permutations of *n* items (e.g., candidates in an election, or horses in a race)
 - Pair bets: Bets on events of the form "horse *i* finishes ahead of horse *j*" for any *i*, *j*
 - Subset bets: Bets on events of the form "horse *i* finishes in position *j*" for any *i*, *j*
- Both known to be #P-hard to price using LMSR [Chen et al., 2008]

- Suppose our state space is all permutations of *n* items (e.g., candidates in an election, or horses in a race)
 - Pair bets: Bets on events of the form "horse *i* finishes ahead of horse *j*" for any *i*, *j*
 - Subset bets: Bets on events of the form "horse *i* finishes in position *j*" for any *i*, *j*
- Both known to be #P-hard to price using LMSR [Chen et al., 2008]

• Our framework handles both!

Subset bets ("horse *i* finishes in position *j*")

Subset bets ("horse *i* finishes in position *j*")

Hull(p) can be described by a small number of constraints:

$$\sum_{j} \operatorname{price}(i \text{ in slot } j) = 1 \qquad \sum_{i} \operatorname{price}(i \text{ in slot } j) = 1$$

Subset bets ("horse *i* finishes in position *j*")

Hull(p) can be described by a small number of constraints:

$$\sum_{j} \operatorname{price}(i \text{ in slot } j) = 1 \qquad \sum_{i} \operatorname{price}(i \text{ in slot } j) = 1$$

• Easily handled by our framework!

Pair bets ("horse *i* finishes ahead of horse *j*")

Pair bets ("horse *i* finishes ahead of horse *j*")

• Hull(ρ) is a bit uglier...

Pair bets ("horse *i* finishes ahead of horse *j*")

- Hull(ρ) is a bit uglier...
- Solution: Relax the no-arbitrage axiom

Pair bets ("horse *i* finishes ahead of horse *j*")

- Hull(ρ) is a bit uglier...
- Solution: Relax the no-arbitrage axiom
 - Allows us to to work with a larger, efficiently specified price space
Example: Permutations

Pair bets ("horse *i* finishes ahead of horse *j*")

- Hull(ρ) is a bit uglier...
- Solution: Relax the no-arbitrage axiom
 - Allows us to to work with a larger, efficiently specified price space
 - But does it increase worst case loss?

Example: Permutations

Pair bets ("horse *i* finishes ahead of horse *j*")

- Hull(ρ) is a bit uglier...
- Solution: Relax the no-arbitrage axiom
 - Allows us to to work with a larger, efficiently specified price space
 - But does it increase worst case loss? No!

Summary

- Our new optimization-based framework allows for the design of efficient market maker mechanisms for combinatorial or infinite state spaces
- Properties like worst-case loss and speed of price changes can be inferred easily
- Using this framework, we can design efficient markets for betting languages that are intractable to price using LMSR