Efficient Market Making Via Optimization
 \& Connections to Online Learning

Jake Abernethy, Yiling Chen, and Jenn Wortman Vaughan
(Jenn's slides for CS269, Winter 2012)

Information Markets

Information Markets

Potential payoff is $\$ 10$. If I think that the probability of this event is p, I should

- Buy this security at any price less than $\$ 10 p$
- Sell this security at any price greater than $\$ 10 p$

Information Markets

Potential payoff is $\$ 10$. If I think that the probability of this event is p, I should

- Buy this security at any price less than $\$ 10 p$
- Sell this security at any price greater than $\$ 10 p$

Current price measures the population's collective beliefs

In case you're curious...

The Caucus

The Politics and Government Blog of The Times

January 20, 2012, 8:21 PM

Gingrich Gets a Boost on Intrade

By RITCHIE S. KING

Source: inTrade.com

Newt Gingrich's presidential candidacy is on the upswing in South Carolina, if

Market Makers for Complete Markets

- In a complete market, a security is offered for each potential state of the world

Market Makers for Complete Markets

- In a complete market, a security is offered for each potential state of the world

- Market maker determines prices via a cost function C

Market Makers for Complete Markets

- In a complete market, a security is offered for each potential state of the world

- Market maker determines prices via a cost function C
- Let q_{i} be the current number of shares of the security for state i that have been purchased
- Current cost of purchasing a bundle \mathbf{r} of shares is

$$
C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})
$$

Market Makers for Complete Markets

- In a complete market, a security is offered for each potential state of the world

- Market maker determines prices via a cost function C
- Let q_{i} be the current number of shares of the security for state i that have been purchased
- Current cost of purchasing a bundle \mathbf{r} of shares is

$$
C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})
$$

- Instantaneous price of security $i=\delta C / \delta q_{i}$

Market Makers for Complete Markets

- In a complete market, a security is offered for each potential state of the world

- Market maker determines prices via a cost function C
- Let q_{i} be the current number of shares of the security for state i that have been purchased
- Current cost of purchasing a bundle \mathbf{r} of shares is

$$
C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})
$$

- Instantaneous price of security $i=\delta C / \delta q_{i} \longleftarrow$ "predictions"

Example: LMSR

The Logarithmic Market Scoring Rule [Hanson, 2003] uses an exponential cost function

$$
C\left(q_{1}, \ldots, q_{N}\right)=b \log \sum_{i=1}^{N} \exp \left(q_{i} / b\right)
$$

and has instantaneous prices

$$
p_{i}=\frac{\exp \left(q_{i} / b\right)}{\Sigma_{j} \exp \left(q_{j} / b\right)}
$$

Example: LMSR

The Logarithmic Market Scoring Rule [Hanson, 2003] uses an exponential cost function

$$
C\left(q_{1}, \ldots, q_{N}\right)=b \log \sum_{i=1}^{N} \exp \left(q_{i} / b\right)
$$

and has instantaneous prices

$$
p_{i}=\frac{\exp \left(q_{i} / b\right)}{\Sigma_{j} \exp \left(q_{j} / b\right)}
$$

Notice that p_{i} is increasing in q_{i} and the prices sum to 1

Complex Outcome Spaces

$n!$

2^{n}

Infinite

Complex Outcome Spaces

- Cannot simply run a standard market like LMSR
- Calculating prices is intractable
- Reasoning about probabilities is too hard for traders

Complex Outcome Spaces

$n!$

2^{n}

Infinite

- Cannot simply run a standard market like LMSR
- Calculating prices is intractable
- Reasoning about probabilities is too hard for traders
- Can run separate, independent markets (e.g., horses to win, place, or show) but this ignores logical dependences

Complex Outcome Spaces

Our Goal: Given a small set of securities over a very large (or infinite) state space, design a consistent market that can be operated efficiently

Complex Outcome Spaces

Our Goal: Given a small set of securities over a very large (or infinite) state space, design a consistent market that can be operated efficiently

Key Tools: Convex optimization and conjugate duality

Menu of Securities

We would like to offer a menu of securities $\{1, \ldots, K\}$ specified by a payoff function ρ

Menu of Securities

We would like to offer a menu of securities $\{1, \ldots, K\}$ specified by a payoff function ρ

states	ff securities					
	10	0	5.5	0	17	0
	. 9	. 9	- 9	0	. 9	. 9
	0	42	0	10	10	10
	0	0	11.5	8	0	0
	1	0	0	0	0	1

Example: Pair Betting

$\$ 1$ if and only if horse i finishes ahead of horse j

Example: Pair Betting

$\$ 1$ if and only if horse i finishes ahead of horse j

	$\mathrm{A}<\mathrm{B}$	$\mathrm{B}<\mathrm{A}$	$\mathrm{A}<\mathrm{C}$	$\mathrm{C}<\mathrm{A}$	$\mathrm{B}<\mathrm{C}$	$\mathrm{C}<\mathrm{B}$
ABC	1	0	1	0	1	0
ACB	1	0	1	0	0	1
BAC	0	1	1	0	1	0
BCA	0	1	0	1	1	0
CAB	1	0	0	1	0	1
CBA	0	1	0	1	0	1

What are "reasonable" prices?

What are "reasonable" prices?

For complete markets...

What are "reasonable" prices?

For complete markets...

$$
\sum_{i} p_{i}=1
$$

What are "reasonable" prices?

For complete markets...

$$
\sum_{p} p_{1}=1
$$

For pair betting...

What are "reasonable" prices?

For complete markets...

$$
\sum_{i} p_{1}=1
$$

For pair betting...

$$
p_{i<j}+p_{j<i}=1
$$

What are "reasonable" prices?

For complete markets... $\quad \sum_{i} p_{i}=1$

For pair betting...

$$
\begin{gathered}
p_{i<j}+p_{j<i}=1 \\
1 \leq p_{i<j}+p_{j<k}+p_{k<i} \leq 2
\end{gathered}
$$

What are "reasonable" prices?

For complete markets... $\quad \sum_{i} p_{i}=1$

For pair betting...

$$
\begin{gathered}
p_{i<j}+p_{j<i}=1 \\
1 \leq p_{i<j}+p_{j<k}+p_{k<i} \leq 2 \\
\text { what else? }
\end{gathered}
$$

What are "reasonable" prices?

For complete markets... $\quad \sum_{i} p_{i}=1$

For pair betting...

$$
\begin{gathered}
p_{i<j}+p_{j<i}=1 \\
1 \leq p_{i<j}+p_{j<k}+p_{k<i} \leq 2 \\
\text { what else? }
\end{gathered}
$$

In general...

An Axiomatic Approach

Path independence: The cost of acquiring a bundle \mathbf{r} of securities must be the same no matter how the trader splits up the purchase.

An Axiomatic Approach

Path independence: The cost of acquiring a bundle \mathbf{r} of securities must be the same no matter how the trader splits up the purchase. Formally,

$$
\begin{aligned}
& \operatorname{Cost}\left(\mathbf{r}+\mathbf{r}^{\prime} \mid \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{t}}\right) \\
& \quad=\operatorname{Cost}\left(\mathbf{r} \mid \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{t}}\right)+\operatorname{Cost}\left(\mathbf{r}^{\prime} \mid \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{t}}, \mathbf{r}\right)
\end{aligned}
$$

An Axiomatic Approach

Path independence: The cost of acquiring a bundle \mathbf{r} of securities must be the same no matter how the trader splits up the purchase. Formally,

$$
\begin{aligned}
& \operatorname{Cost}\left(\mathbf{r}+\mathbf{r}^{\prime} \mid \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{t}}\right) \\
& \quad=\operatorname{Cost}\left(\mathbf{r} \mid \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{t}}\right)+\operatorname{Cost}\left(\mathbf{r}^{\prime} \mid \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{t}}, \mathbf{r}\right)
\end{aligned}
$$

This alone implies the existence of a cost potential function!

$$
\begin{aligned}
& \operatorname{Cost}\left(\mathbf{r} \mid \mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathrm{t}}\right) \\
& \quad=C\left(\mathbf{r}_{1}+\mathbf{r}_{2}+\ldots+\mathbf{r}_{\mathbf{t}}+\mathbf{r}\right)-C\left(\mathbf{r}_{1}+\mathbf{r}_{2}+\ldots+\mathbf{r}_{\mathrm{t}}\right)
\end{aligned}
$$

An Axiomatic Approach

- Existence of instantaneous prices: C must be continuous and differentiable

An Axiomatic Approach

- Existence of instantaneous prices: C must be continuous and differentiable
- Information incorporation: The purchase of a bundle \mathbf{r} should never cause the price of \mathbf{r} to decrease

An Axiomatic Approach

- Existence of instantaneous prices: C must be continuous and differentiable
- Information incorporation: The purchase of a bundle \mathbf{r} should never cause the price of \mathbf{r} to decrease
- No arbitrage: It is never possible to purchase a bundle \mathbf{r} with a guaranteed positive profit regardless of outcome

An Axiomatic Approach

- Existence of instantaneous prices: C must be continuous and differentiable
- Information incorporation: The purchase of a bundle \mathbf{r} should never cause the price of \mathbf{r} to decrease
- No arbitrage: It is never possible to purchase a bundle \mathbf{r} with a guaranteed positive profit regardless of outcome
- Expressiveness: A trader must always be able to set the market prices to reflect his beliefs

An Axiomatic Approach

Theorem: Under these five conditions, costs must be determined by a convex cost function C such that

$$
\left\{\nabla C(\mathbf{q}): \mathbf{q} \in \mathrm{R}^{K}\right\}=\operatorname{Hull}(\boldsymbol{\rho})
$$

An Axiomatic Approach

Theorem: Under these five conditions, costs must be determined by a convex cost function C such that
reachable $\left\{\begin{aligned} & \\ &\left\{\nabla C(\mathbf{q}): \mathbf{q} \in \mathrm{R}^{K}\right\}=\operatorname{Hull}(\boldsymbol{\rho})\end{aligned}\right.$
price vectors

An Axiomatic Approach

Theorem: Under these five conditions, costs must be determined by a convex cost function C such that
reachable $\left\{\begin{aligned} & \\ &\left\{\nabla C(\mathbf{q}): \mathbf{q} \in \mathrm{R}^{K}\right\}=\operatorname{Hull}(\boldsymbol{\rho}) \\ & \hline\end{aligned}\right.$
price vectors

> securities

states	10	0	5.5	0	17	0
	. 9	. 9	. 9	0	. 9	. 9
	0	42	0	10	10	10
	0	0	11.5	8	0	0
	1	0	0	0	0	1

An Axiomatic Approach

Theorem: Under these five conditions, costs must be determined by a convex cost function C such that
reachable $\left\{\begin{aligned} &\left.-\mathbf{\nabla C}(\mathbf{q}): \mathbf{q} \in \mathrm{R}^{K}\right\} \\ &\} \operatorname{Hull}(\boldsymbol{\rho}) \\ & \hline\end{aligned}\right.$
price vectors
securities

states | 1 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |

How do we find these cost functions?

How do we find these cost functions?

- Fact: A closed, differentiable function C is convex if and only if it can be written in the form

$$
C(\mathbf{q})=\sup _{\mathbf{x} \in \operatorname{dom}(R)} \mathbf{x} \cdot \mathbf{q}-R(\mathbf{x})
$$

for a strictly convex function R called the conjugate.

How do we find these cost functions?

- Fact: A closed, differentiable function C is convex if and only if it can be written in the form

$$
C(\mathbf{q})=\sup _{\mathbf{x} \in \operatorname{dom}(R)} \mathbf{x} \cdot \mathbf{q}-R(\mathbf{x})
$$

for a strictly convex function R called the conjugate.
Furthermore, $\nabla C(\mathbf{q})=\arg \max \mathbf{x} \cdot \mathbf{q}-R(\mathbf{x})$

$$
\mathbf{x} \in \operatorname{dom}(R)
$$

How do we find these cost functions?

- Fact: A closed, differentiable function C is convex if and only if it can be written in the form

$$
C(\mathbf{q})=\sup _{\mathbf{x} \in \operatorname{dom}(R)} \mathbf{x} \cdot \mathbf{q}-R(\mathbf{x})
$$

for a strictly convex function R called the conjugate.
Furthermore, $\nabla C(\mathbf{q})=\arg \max \mathbf{x} \cdot \mathbf{q}-R(\mathbf{x})$

$$
\mathbf{x} \in \operatorname{dom}(R)
$$

To generate a convex cost function C, we just have to choose an appropriate conjugate function and domain!

But how do we choose R ?

But how do we choose R ?

We can borrow ideas from online linear optimization, and in particular, Follow the Regularized Leader algorithms

- Our conjugate function \approx their regularizer

Market Making

Online Linear Opt.

Market Making

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items

Online Linear Opt.

Market Making

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items
- Items have loss vector \mathbf{I}_{t}, cumulatively $\mathbf{L}_{t+1}=\mathbf{L}_{t}+\mathbf{l}_{t+1}$

Online Linear Opt.

Market Making

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items
- Items have loss vector \mathbf{I}_{t}, cumulatively $\mathbf{L}_{t+1}=\mathbf{L}_{t}+\mathbf{I}_{t+1}$
- FTRL selects weights

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w} \in K}{\arg \min \mathbf{w}} \cdot \mathbf{L}_{t}+\frac{1}{\eta} R(\mathbf{w})
$$

Online Linear Opt.

Market Making

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items
- Items have loss vector \mathbf{I}_{t}, cumulatively $\mathbf{L}_{t+1}=\mathbf{L}_{t}+\mathbf{I}_{t+1}$
- FTRL selects weights

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w} \in K}{\arg \min } \mathbf{w} \cdot \mathbf{L}_{t}+\frac{1}{\eta} R(\mathbf{w})
$$

- Learner suffers regret

$$
\sum_{t=1}^{T} \mathbf{w}_{t} \cdot \mathbf{l}_{t}-\min _{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_{T}
$$

Online Linear Opt.

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items
- Items have loss vector \mathbf{I}_{t}, cumulatively $\mathbf{L}_{t+1}=\mathbf{L}_{t}+\mathbf{I}_{t+1}$
- FTRL selects weights

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w} \in K}{\arg \min } \mathbf{w} \cdot \mathbf{L}_{t}+\frac{1}{\eta} R(\mathbf{w})
$$

- Learner suffers regret

$$
\sum_{t=1}^{T} \mathbf{w}_{t} \cdot \mathbf{l}_{t}-\min _{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_{T}
$$

Market Making

- Market maker maintains prices $\mathbf{x}_{t} \in \Pi$ over n contracts

Online Linear Opt.

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items
- Items have loss vector \mathbf{l}_{t}, cumulatively $\mathbf{L}_{t+1}=\mathbf{L}_{t}+\mathbf{l}_{t+1}$
- FTRL selects weights

$$
\mathbf{w}_{t+1}=\underset{\mathbf{w} \in K}{\arg \min } \mathbf{w} \cdot \mathbf{L}_{t}+\frac{1}{\eta} R(\mathbf{w})
$$

- Learner suffers regret

$$
\sum_{t=1}^{T} \mathbf{w}_{t} \cdot \mathbf{l}_{t}-\min _{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_{T}
$$

Market Making

- Market maker maintains prices $\mathbf{x}_{t} \in \Pi$ over n contracts
- Contracts are purchased in bundles \mathbf{r}_{t}, and $\mathbf{q}_{t+1}=\mathbf{q}_{t}+\mathbf{r}_{t+1}$

Online Linear Opt.

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items
- Items have loss vector \mathbf{l}_{t}, cumulatively $\mathbf{L}_{t+1}=\mathbf{L}_{t}+\mathbf{l}_{t+1}$
- FTRL selects weights
$\mathbf{w}_{t+1}=\underset{\mathbf{w} \in K}{\arg \min } \mathbf{w} \cdot \mathbf{L}_{t}+\frac{1}{\eta} R(\mathbf{w})$
- Learner suffers regret

$$
\sum_{t=1}^{T} \mathbf{w}_{t} \cdot \mathbf{l}_{t}-\min _{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_{T}
$$

Market Making

- Market maker maintains prices $\mathbf{x}_{t} \in \Pi$ over n contracts
- Contracts are purchased in bundles \mathbf{r}_{t}, and $\mathbf{q}_{t+1}=\mathbf{q}_{t}+\mathbf{r}_{t+1}$
- Market maker selects prices

$$
\mathbf{x}_{t+1}=\underset{\mathbf{x} \in \Pi}{\arg \max } \mathbf{x} \cdot \mathbf{q}_{t}-R(\mathbf{x})
$$

Online Linear Opt.

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items
- Items have loss vector \mathbf{l}_{t}, cumulatively $\mathbf{L}_{t+1}=\mathbf{L}_{t}+\mathbf{l}_{t+1}$
- FTRL selects weights
$\mathbf{w}_{t+1}=\underset{\mathbf{w} \in K}{\arg \min } \mathbf{w} \cdot \mathbf{L}_{t}+\frac{1}{\eta} R(\mathbf{w})$
- Learner suffers regret

$$
\sum_{t=1}^{T} \mathbf{w}_{t} \cdot \mathbf{l}_{t}-\min _{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_{T}
$$

Market Making

- Market maker maintains prices $\mathbf{x}_{t} \in \Pi$ over n contracts
- Contracts are purchased in bundles \mathbf{r}_{t}, and $\mathbf{q}_{t+1}=\mathbf{q}_{t}+\mathbf{r}_{t+1}$
- Market maker selects prices

$$
\mathbf{x}_{t+1}=\underset{\mathbf{x} \in \Pi}{\arg \max } \mathbf{x} \cdot \mathbf{q}_{t}-R(\mathbf{x})
$$

- MM has worst-case loss

$$
C\left(\mathbf{q}_{0}\right)-C\left(\mathbf{q}_{T}\right)+\max _{\mathbf{x} \in \Pi} \mathbf{x} \cdot \mathbf{q}_{T}
$$

Online Linear Opt.

- Learner maintains weights $\mathbf{w}_{t} \in K$ over n items
- Items have loss vector \mathbf{l}_{t}, cumulatively $\mathbf{L}_{t+1}=\mathbf{L}_{t}+\mathbf{l}_{t+1}$
- FTRL selects weights
$\mathbf{w}_{t+1}=\underset{\mathbf{w} \in K}{\arg \min } \mathbf{w} \cdot \mathbf{L}_{t}+\frac{1}{\eta} R(\mathbf{w})$
- Learner suffers regret
$\sum_{t=1}^{T} \mathbf{w}_{t} \cdot \mathbf{I}_{t}-\min _{\mathbf{w} \in K} \mathbf{w} \cdot \mathbf{L}_{T}$

Market Making

- Market maker maintains prices $\mathbf{x}_{t} \in \Pi$ over n contracts
- Contracts are purchased in bundles \mathbf{r}_{t}, and $\mathbf{q}_{t+1}=\mathbf{q}_{t}+\mathbf{r}_{t+1}$
- Market maker selects prices

$$
\mathbf{x}_{t+1}=\underset{\mathbf{x} \in \Pi}{\arg \max } \mathbf{x} \cdot \mathbf{q}_{t}-R(\mathbf{x})
$$

- MM has worst-case loss

More on Choosing R

- Interesting market properties can be described in terms of the conjugate...

More on Choosing R

- Interesting market properties can be described in terms of the conjugate...
- Worst-case market maker loss can be bounded by

$$
\sup _{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x})-\inf _{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x})
$$

More on Choosing R

- Interesting market properties can be described in terms of the conjugate...
- Worst-case market maker loss can be bounded by

$$
\sup _{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x})-\inf _{\mathbf{x} \in \operatorname{Hull}(\rho)} R(\mathbf{x})
$$

- Information loss (or the bid-ask spread, or the speed at which prices change) can be bounded too

More on Choosing R

- Interesting market properties can be described in terms of the conjugate...
- Worst-case market maker loss can be bounded by

$$
\sup _{\mathbf{x} \in \operatorname{Hull}(\boldsymbol{\rho})} R(\mathbf{x})-\inf _{\mathbf{x} \in \operatorname{Hull}(\boldsymbol{\rho})} R(\mathbf{x})
$$

- Information loss (or the bid-ask spread, or the speed at which prices change) can be bounded too

Gives us a way to optimize trade-offs in market design!

Example: Permutations

- Suppose our state space is all permutations of n items (e.g., candidates in an election, or horses in a race)

Example: Permutations

- Suppose our state space is all permutations of n items (e.g., candidates in an election, or horses in a race)
- Pair bets: Bets on events of the form "horse i finishes ahead of horse j " for any i, j
- Subset bets: Bets on events of the form "horse i finishes in position j " for any i, j

Example: Permutations

- Suppose our state space is all permutations of n items (e.g., candidates in an election, or horses in a race)
- Pair bets: Bets on events of the form "horse i finishes ahead of horse j " for any i, j
- Subset bets: Bets on events of the form "horse i finishes in position j " for any i, j
- Both known to be \#P-hard to price using LMSR [Chen et al., 2008]

Example: Permutations

- Suppose our state space is all permutations of n items (e.g., candidates in an election, or horses in a race)
- Pair bets: Bets on events of the form "horse i finishes ahead of horse j " for any i, j
- Subset bets: Bets on events of the form "horse i finishes in position j " for any i, j
- Both known to be \#P-hard to price using LMSR [Chen et al., 2008]

- Our framework handles both!

Example: Permutations

Subset bets ("horse i finishes in position j ")

Example: Permutations

Subset bets ("horse i finishes in position j ")

- $\operatorname{Hull}(\boldsymbol{\rho})$ can be described by a small number of constraints:

$$
\sum_{j} \operatorname{price}(i \text { in } \operatorname{slot} j)=1 \quad \sum_{i} \operatorname{price}(i \text { in } \operatorname{slot} j)=1
$$

Example: Permutations

Subset bets ("horse i finishes in position j ")

- $\operatorname{Hull}(\boldsymbol{\rho})$ can be described by a small number of constraints:

$$
\sum_{j} \operatorname{price}(i \text { in } \operatorname{slot} j)=1 \quad \sum_{i} \operatorname{price}(i \text { in slot } j)=1
$$

- Easily handled by our framework!

Example: Permutations

Pair bets ("horse i finishes ahead of horse j ")

Example: Permutations

Pair bets ("horse i finishes ahead of horse j ")

- $\operatorname{Hull}(\rho)$ is a bit uglier...

Example: Permutations

Pair bets ("horse i finishes ahead of horse j ")

- $\operatorname{Hull}(\boldsymbol{\rho})$ is a bit uglier...
- Solution: Relax the no-arbitrage axiom

Example: Permutations

Pair bets ("horse i finishes ahead of horse j ")

- $\operatorname{Hull}(\rho)$ is a bit uglier...
- Solution: Relax the no-arbitrage axiom
- Allows us to to work with a larger, efficiently specified price space

Example: Permutations

Pair bets ("horse i finishes ahead of horse j ")

- $\operatorname{Hull}(\rho)$ is a bit uglier...
- Solution: Relax the no-arbitrage axiom
- Allows us to to work with a larger, efficiently specified price space
- But does it increase worst case loss?

Example: Permutations

Pair bets ("horse i finishes ahead of horse j ")

- $\operatorname{Hull}(\rho)$ is a bit uglier...
- Solution: Relax the no-arbitrage axiom
- Allows us to to work with a larger, efficiently specified price space
- But does it increase worst case loss? No!

Summary

- Our new optimization-based framework allows for the design of efficient market maker mechanisms for combinatorial or infinite state spaces
- Properties like worst-case loss and speed of price changes can be inferred easily
- Using this framework, we can design efficient markets for betting languages that are intractable to price using LMSR

