Iterative Learning for Reliable Crowdsourcing Systems

Bin Bi, Chen Liu, Yuchen Liu

Agenda

- Introduction
- Crowdsourcing Model
- Proposed Algoirthms
- Performance Guarantee and Optimality
- Density Evolution Analysis Technique (Proof of Thm. 2.1)

Agenda

Introduction

- Crowdsourcing Model
- Proposed Algoirthms
- Performance Guarantee and Optimality
- Density Evolution Analysis Technique (Proof of Thm. 2.1)

What's Crowdsourcing

- Image classification
- Transcription
- Proof reading

- Large number of small and simple tasks
- Difficult for computers
- Easy for human

http://labelme.csail.mit.edu/mt_instructions.html

Characteristics of Crowdsourcing System

Errors are common

- Some workers are not reliable
- Workers are unidentifiable
 - Worker crowd is large
 - No prior knowledge of the worker's reliability
 - Tasks are distributed through open call
- No gold standard
 - Cannot condition payment on correctness of responses

Batches of tasks are distributed to **unidentified** group of people through **open call**.

User give their **possibly inaccurate** answers.

A task may be assigned to multiple workers to overcome the possible errors.

Users make random error based on their own quality.

Final results are **aggregation** of multiple workers' response for each task. **Estimation is performed after all the answers are obtained**. Amount of the payment is according to the number of responses.

Core Optimization Problem

Achieve a certain reliability in answers with minimum cost (i.e. asking fewest possible questions)

Core Optimization Problem

- Achieve a certain reliability in answers with minimum cost (i.e. asking fewest possible questions)
- Challenges
 - Task assignment
 - Inference problem
- Solutions proposed by the paper
 - Task assignment: Random regular bipartite graph
 - Inference problem: Iterative inference algorithm
 - Proved to be optimal given certain amount of budget

Previous Related Work

- Focus on inference problem
- Learning from multiple responses
 - Majority Voting
 - Vulnerable to spammers
 - EM approach to learn reliability
 - Local optimal
 - No theoretical performance guarantee

Agenda

Introduction

- Crowdsourcing Model
- Proposed Algorithms
- Performance Guarantee and Optimality
- Density Evolution Analysis Technique (Proof of Thm. 2.1)

Crowd Sourcing Model

- □ A set of m Tasks $\{t_i\}, i = 1, 2, ..., m$
- Each task associated with an unobserved 'correct' answer $s_i \in \{\pm 1\}$
- **Tasks are assigned to n workers** $\{w_j\}, j = 1, ..., n$
- □ Answer on task t_i from worker w_j : $A_{ij} \in \{\pm 1\}$

Crowd Sourcing Model (cont.)

- **D** Each worker has a reliability $p_j \in [0,1]$
 - The worker j randomly make errors according to
 - \square p_j does not depends on specific task p_j
 - $\{p_j\}, j=1...n$ are i.i.d. random variables of a given distribution

For task i answered by user j, the answer is defined as

 $A_{ij} = \begin{cases} s_i & w.p. & p_j \\ -s_i & w.p. & 1-p_j \end{cases}$ If i is not assigned to $A_{jj} = 0$

Crowd quality $q \equiv E[(2p_j - 1)^2]$

Agenda

- Introduction
- Crowdsourcing Model
- Proposed Algorithms
- Performance Guarantee and Optimality
- Density Evolution Analysis Technique (Proof of Thm. 2.1)

Task Allocation Scheme

Task allocation = Designing a bipartite graph

Random (I,r)-regular bipartite graph

Generate an (I,r)-regular random bipartite graph

- Random bipartite graph has good properties
 - Proved to be sufficient to achieve order-optimal performance

Iterative Inference Algorithm

Iterative Algorithm Input: $E, \{A_{ij}\}_{(i,j)\in E}, k_{\max}$ **Output:** Estimation $\hat{s}(\{A_{ij}\})$ 1: For all $(i, j) \in E$ do Initialize $y_{j \to i}^{(0)}$ with random $Z_{ij} \sim \mathcal{N}(1, 1)$; 2: For $k = 1, ..., k_{\max}$ do $\begin{array}{ll} \text{For all } (i,j) \in E \text{ do } & x_{i \to j}^{(k)} \leftarrow \sum_{j' \in \partial i \setminus j} A_{ij'} y_{j' \to i}^{(k-1)} \text{ ;} \\ \text{For all } (i,j) \in E \text{ do } & y_{j \to i}^{(k)} \leftarrow \sum_{i' \in \partial j \setminus i} A_{i'j} x_{i' \to j}^{(k)} \text{ ;} \end{array}$ 3: For all $i \in [m]$ do $x_i \leftarrow \sum_{j \in \partial i} A_{ij} y_{j \to i}^{(k_{\max}-1)}$; 4: Output estimate vector $\hat{s}(\{A_{ij}\}) = [\operatorname{sign}(x_i)]$.

Iterative Inference Algorithm

- Message passing
 - **I** Task message: $\{x_{i \rightarrow j}\}_{(i,j) \in E}$
 - Worker message: $\{y_{j \rightarrow i}\}_{(i,j) \in E}$

Iterative Inference Algorithm

- Message passing
 - **D** Task message: $\{x_{i \rightarrow j}\}_{(i,j) \in E}$
 - Worker message: $\{y_{j \rightarrow i}\}_{(i,j) \in E}$
- Final estimate

$$\hat{s}_i = sign(\sum_{j \in \partial_i} A_{ij} y_{j \to i})$$
Neiborhood of i

Worker j's reliability on item i

A weighted sum of answers weighted by each worker's reliability.

Iterative algorithm for inference

Update Process

Compute the item likelihood to be positive

$$x_{i \to j}^{(k)} \leftarrow \sum_{j' \in \partial i \setminus j} A_{ij'} y_{j' \to i}^{(k-1)}$$

Tasks are more likely to be positive if reliable workers say it is positive

Compute the reliability of users

$$y_{j \to i}^{(k)} \leftarrow \sum_{i' \in \partial j \setminus i} A_{i'j} x_{i' \to j}^{(k)}$$

Workers are reliable if their labels consistent with the likelihood of tasks

Agenda

- Introduction
- Crowdsourcing Model
- Proposed Algorithms
- Performance Guarantee and Optimality
- Density Evolution Analysis Technique (Proof of Thm. 2.1)

Define:

$$\mu \equiv \mathbb{E}[2\mathbf{p}_j - 1] \qquad q = \mathbb{E}[(2\mathbf{p}_j - 1)^2].$$

let $\hat{l} \equiv l - 1$ and $\hat{r} \equiv r - 1$.

Define:

$$\begin{split} \mu &\equiv \mathbb{E}[2\mathbf{p}_j - 1] \quad q = \mathbb{E}[(2\mathbf{p}_j - 1)^2].\\ \text{let } \hat{l} &\equiv l - 1 \text{ and } \hat{r} \equiv r - 1. \end{split}$$

$$\rho_k^2 &\equiv \frac{2q}{\mu^2 (q^2 \hat{l} \hat{r})^{k-1}} + \left(3 + \frac{1}{q\hat{r}}\right) \frac{1 - (1/q^2 \hat{l} \hat{r})^{k-1}}{1 - (1/q^2 \hat{l} \hat{r})}$$

Define: $\mu \equiv \mathbb{E}[2\mathbf{p}_j - 1] \qquad q = \mathbb{E}[(2\mathbf{p}_j - 1)^2].$ $\det \hat{l} \equiv l - 1 \text{ and } \hat{r} \equiv r - 1.$ $\rho_k^2 \equiv \frac{2q}{\mu^2 (q^2 \hat{l} \hat{r})^{k-1}} + \left(3 + \frac{1}{q\hat{r}}\right) \frac{1 - (1/q^2 \hat{l} \hat{r})^{k-1}}{1 - (1/q^2 \hat{l} \hat{r})}.$

$$\rho_{\infty}^2 = \left(3 + \frac{1}{q\hat{r}}\right) \frac{q^2 \hat{l}\hat{r}}{q^2 \hat{l}\hat{r} - 1}$$

Define: $\mu \equiv \mathbb{E}[2\mathbf{p}_j - 1] \qquad q = \mathbb{E}[(2\mathbf{p}_j - 1)^2].$ let $\hat{l} \equiv l-1$ and $\hat{r} \equiv r-1$. $\rho_k^2 \equiv \frac{2q}{\mu^2 (q^2 \hat{l} \hat{r})^{k-1}} + \left(3 + \frac{1}{q \hat{r}}\right) \frac{1 - (1/q^2 l \hat{r})^{k-1}}{1 - (1/q^2 \hat{l} \hat{r})} \,.$ For $q^2 \hat{l} \hat{r} > 1$, let $\rho_{\infty}^2 \equiv \lim_{k \to \infty} \rho_k^2$ such that $\rho_{\infty}^{2} = \left(3 + \frac{1}{a\hat{r}}\right) \frac{q^{2}l\hat{r}}{a^{2}l\hat{r} - 1}.$

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers according to a random (l, r)-regular graph drawn from the configuration model. If the distribution of the worker reliability satisfy $\mu \equiv \mathbb{E}[2\mathbf{p}_j - 1] > 0$ and $q^2 > 1/(\hat{l}\hat{r})$, then for any $s \in \{\pm 1\}^m$, the estimates from k iterations of the iterative algorithm achieve

$$\lim_{m \to \infty} \frac{1}{m} \sum_{i=1}^{m} \mathbb{P}\left(s_i \neq \hat{s}_i \left(\{\mathbf{A}_{ij}\}_{(i,j)\in E}\right)\right) \leq e^{-lq/(2\rho_k^2)} .$$

$$\tag{1}$$

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers according to a random (l, r)-regular graph drawn from the configuration model. If the distribution of the worker reliability satisfy $\mu \equiv \mathbb{E}[2\mathbf{p}_j - 1] > 0$ and $q^2 > 1/(\hat{l}\hat{r})$, then for any $s \in \{\pm 1\}^m$, the estimates from k iterations of the iterative algorithm achieve

$$\lim_{m \to \infty} \frac{1}{m} \sum_{i=1}^{m} \mathbb{P}\left(s_i \neq \hat{s}_i \left(\{\mathbf{A}_{ij}\}_{(i,j)\in E}\right)\right) \leq e^{-lq/(2\rho_k^2)} .$$

$$\tag{1}$$

Corollary 2.2. Under the hypotheses of Theorem 2.1,

$$\lim_{k \to \infty} \lim_{m \to \infty} \frac{1}{m} \sum_{i=1}^{m} \mathbb{P}\left(s_i \neq \hat{s}_i \left(\{\mathbf{A}_{ij}\}_{(i,j)\in E}\right)\right) \leq e^{-lq/(2\rho_\infty^2)} .$$
⁽²⁾

This iterative algorithm could converge quickly.
 computationally efficient as majority voting.

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to achieve the bound in Corollary 2.2 up to any constant factor in the exponent is $O(ml \log(q/\mu^2)/\log(q^2\hat{l}\hat{r}))$.

- \square It's necessary to assume $\mu > 0$
 - Knowing the overall quality of the crowd
 - either most of people make a correct label
 - or most of people make a wrong label (flip the results)

- Do not require more information on the reliability distribution Pj.
 - EM algorithm is sensitive to initialization.
 - This iterative algorithm does not depend on initialization and could get to converge to the solution.

- **D** Transition phase at $\hat{l}\hat{r}q^2 = 1$.
 - when $\hat{l}\hat{r}q^2 > 1$, we show that this algorithm is order-optimal and significantly improve majority voting.
 - when $\hat{l}\hat{r}q^2 < 1$, we observe from experiments that the error rate increases with k increases. It's better to select k = 1, which essentially become the majority voting.
 - recall that if $\hat{l}\hat{r}q^2 < 1$, ρ_k^2 does not have a limitation.
- Same transition phase observed in EM.

Majority Voting

decide the result on what the majority of workers agree on.

in formula:

$$\hat{s}_i = \operatorname{sign}(\sum_{j \in \partial i} A_{ij}),$$

• Evaluation Metrics • Error rate P_error = $\frac{1}{m} \sum_{i=1}^{m} \mathbb{P}(s_i \neq \hat{s}_i)$.

- Simulation Data (10 iteration, I = r, q = 0.3)
 - transition phase: I = 1 + 1/0.3 = 4.33

- Real crowd Amazon Mechanical Turk
 - color comparison, 50 tasks, 28 workers.
 - ground truth = color space distance
 - **q** = 0.175, transition phase = 5

One-shot scenario

- all task assignments are done simultaneously.
- then an estimation is performed after all the answers are obtained.
- Given a target accuracy $\epsilon \in (0, 1/2)$, how many assignments per task we need to achieve this goal?
- Order-optimal
 - better than majority voting
 - unavoidable

Notations:

- distribution f is chosen from a set of all distributions on [0,1]which satisfy $\mathbb{E}_f[(2\mathbf{p}_j - 1)^{\check{2}}] = q$. we use $\mathcal{F}(q)$ to donate this set.
- let $\mathcal{G}(m, l)$ denote the set of all bipartite graphs, including irregular graphs, having m task nodes and ml total edges.
- Δ_{LB} is minimum cost per task necessary to achieve a target accuracy ϵ using any graph and the best possible algorithm on that graph.

Min. error rate for all possible assignments and all possible inference algorithm: (using oracle estimator)

Lemma 2.4. The minimax error rate achieved by the best possible graph $G \in \mathcal{G}(m, l)$ using the best possible inference algorithm is at least

$$\inf_{\text{Algo},G\in\mathcal{G}(m,l)} \sup_{s,f\in\mathcal{F}(q)} d_m(s,\hat{s}_{G,\text{Algo}}) \geq \frac{1}{2}(1-q)^l ,$$

 \Box when $q \leq C_1$ for some numerical constant $C_1 < 1$.

$$\inf_{\text{Algo},G\in\mathcal{G}(m,l)} \sup_{s,f\in\mathcal{F}(q)} d_m(s,\hat{s}_{G,\text{Algo}}) \geq \frac{1}{2} e^{-(lq+C_2lq^2)},$$

$$\Delta_{\rm LB} = \Theta\left(\frac{1}{q}\log\left(\frac{1}{\epsilon}\right)\right)$$

Majority voting

Lemma 2.5. In the regime where where $q \leq C_2 < 1$, there exists a numerical constant C_3 such that

$$\inf_{G \in \mathcal{G}(m,l)} \sup_{s,f \in \mathcal{F}(q)} d_m(s, \hat{s}_{G,Majority}) \geq e^{-C_3(lq^2+1)}$$

$$\Delta_{\text{Majority}} = \Omega\left(\frac{1}{q^2}\log\left(\frac{1}{\epsilon}\right)\right).$$

Iterative inference algorithm with random regular (l,r)bipartite graph.

For
$$\hat{l}q \ge C_4$$
, $\hat{r}q \ge C_5$ and $C_4C_5 > 1$

$$\lim_{m \to \infty} \sup_{s, f \in \mathcal{F}(q)} d_m(s, \hat{s}_{\text{Iter}}) \leq e^{-C_6 l q}$$

Then minimum coast per task sufficient to achieve target error rate is:

$$\Delta_{\text{Iter}} = \Theta\left(\frac{1}{q}\log\left(\frac{1}{\epsilon}\right)\right) \,.$$

Agenda

- Introduction
- Crowdsourcing Model
- Proposed Algorithms
- Performance Guarantee and Optimality
- Density Evolution Analysis Technique (Proof of Thm. 2.1)

Relations to low-rank matrix approximation

Gap between first singular value and the second

Use SVD to approximate the adjacency matrix

Low-rank matrix approximation

Power iteration

for all
$$i$$
, $u_i = \sum_{j \in \partial i} A_{ij} v_j$, and for all j , $v_j = \sum_{i \in \partial j} A_{ij} u_i$

Not strong enough bound:

Theorem II.1. For fixed l and r which are independent of m, assume that m tasks are assigned to n = ml/r workers under the spammer-hammer model according to a random (l,r)-regular graph drawn from the configuration model. Then, for any $s \in \{\pm 1\}^m$, with probability $1 - m^{-\Omega(\sqrt{l})}$, the low-rank approximation algorithm achieves

$$d(s, \hat{s}(\mathbf{A})) \leq \frac{C(\rho)}{lq},$$
 (4)

where q is the probability that a randomly chosen worker is a hammer and $C(\rho)$ is a constant that only depends on $\rho \equiv l/r$.

source: D.R.Karger, S. Oh, and D. Shah, Budget-optimal crowdsourcing using low-rank matrix approximation, 2011

Assessing quality of the workers (gold standard units)

- Using 'seed gold units'?
 - no help due to order-optimal
- Using 'pilot gold unites'?

only change the distribution of participating workers.

- Workers with different reliabilities and their prices
 - K classes of workers: 1, ..., k
 - reliability distribution parameter q_k and payment c_k
 - if only one class of workers is used:
 - **D** per-task cost scales as $c_k/q_k \log(1/\epsilon)$
 - if a mix of workers from different classes
 - lacksquare $lpha_k$ is the fraction with $\sum_k lpha_k = 1$
 - optimal per-task cost scales as $(\sum_k \alpha_k c_k)/(\sum_k \alpha_k q_k)\log(1/\epsilon)$
 - implies only select workers with minimal ratio of ck/qk

What if we don't know about q in selecting the degree?

 $l = \Theta(1/q \log(1/\epsilon))$

- incremental design in which at step a the system is designed assuming $q = 2^{-a}$.
- design two replicas of the task allocation.
- compare the estimates obtained by these two replicas for all m tasks, if they agree amongst $m(1-2\epsilon)$ tasks, then stop and declare the final answer. Or else, increase a to a+1.

References

- D. R. Karger, S. Oh, D. Shah. Iterative Learning for Reliable Crowdsourcing Systems. NIPS 2011
- D. R. Karger, S. Oh, D. Shah. Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems. CoRR, abs/1110.3564, 2011
- D.R. Karger, S. Oh, D. Shah. Budget-optimal crowdsourcing using low-rank matrix optimizations. Proc. of Allerton Conf. on Commun., Control and Computing, 2011