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Reminders & Announcements 

•  Homework 5 is due in section this Friday, June 8 

•  Course evaluations are available for you to complete online 
– we’ll end a little early on Thursday in case you want to 
use that time to complete them 

•  Friday’s section will be a review session for the final, so 
bring any questions that you have 



Final Exam 

•  Tuesday, June 12, 11:30am – 2:30pm in this room 

•  One double-sided sheet of hand-written notes allowed 

•  No other notes, books, calculators, cell phones, etc. 

•  Best way to study is to practice solving problems like the 
end-of-chapter problems in the book (solutions available 
on the book’s website) 



You should be able to… 

•  Figure out when and how to apply the basic rules and 
definitions of probability, including 
•  the multiplication rule 
•  Bayes’ rule 
•  the total probability theorem 
•  the total expectation theorem 
•  the definition of conditional probability 
•  the definition of independence 
•  the counting principle 
•  the definitions of expectation and variance 



You should be able to… 

•  Translate word problems into math 

•  Define the appropriate random variables or events 

•  Be able to state the quantity that you must solve for in 
terms of these random variables or events 

•  Recognize common random variables (Bernoulli, 
binomial, and geometric) in problem descriptions 



Topics Covered 

•  Sample spaces, events, and basic probability (Chapter 1) 
•  Discrete and continuous random variables (Chapters 2–3) 
•  Covariance and correlation (4.2) 
•  Markov, Chebyshev, law of large numbers (5.1, 5.2) 
•  Information, entropy, coding (as covered in class) 
•  MAP and maximum likelihood (as covered in class) 
•  Naive Bayes (external reading linked from website) 
•  Markov chains (7.1–7.4; see assignments on website) 

You are responsible for any material that was covered in the 
reading, in class (including this week), or in section! 



Back to Markov Chains… 



Steady-State Convergence Theorem 

Theorem: Consider any Markov chain with a single 
recurrent class, which is not periodic. There are unique 
values π1, ..., πm that satisfy the balance equations: 

 and for each j, πj is the long term fraction of time that the 
state is j.  These are called the steady-state probabilities. 
€ 

π j = π k pk, j
k=1
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Convergence of Markov Chains 

•  What if there is only one recurrent class but it is periodic? 
•  Limit of P(Xn = i) is not well defined, but balance 

equations still give us the long term frequencies 

•  What if there are multiple recurrent states? 
•  Once a recurrent state is entered, the same ideas apply 
•  How likely are we to enter each recurrent state? 



Absorption 



The Gambler’s Ruin 

A gambler plays rounds of games in a casino.  At each 
round, he wins $1 with probability p and loses $1 with 
probability 1-p, independent of what happens in other 
rounds.  He continues playing until he either accumulates a 
target amount of money $m, or loses all of his money. 

•  How can we represent this scenario as a Markov chain? 
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A gambler plays rounds of games in a casino.  At each 
round, he wins $1 with probability p and loses $1 with 
probability 1-p, independent of what happens in other 
rounds.  He continues playing until he either accumulates a 
target amount of money $m, or loses all of his money. 

•  How can we represent this scenario as a Markov chain? 
•  What are the recurrent classes? 
•  What is the probability that the gambler accumulates $m? 
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Absorbing States 

•  An absorbing state in a Markov chain is a single-state 
recurrent class — that is, any state i such that pi,i =1 

•  Assume we have a Markov chain in which every state is 
either absorbing or transient 
•  Let s be a particular absorbing state 
•  Let E be the event that Xn = s for any time step n ≥ 0 
•  For each state i, let ai = P(E | X0 = i) 

What do we know about the values ai? 



Absorption Probability Equations 

Theorem: Consider a Markov chain in which each state is 
either absorbing or transient.  Fix a particular absorbing 
state s.  Then the probabilities ai of eventually reaching 
state s after starting at state i are the unique solutions to the 
following system of equations: 
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as =1

€ 

ai = 0 for all absorbing i ≠ s

€ 

ai = pi, ja j
j=1

m

∑ for all transient i
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The Gambler’s Ruin 

A gambler plays rounds of games in a casino.  At each 
round, he wins $1 with probability p and loses $1 with 
probability 1-p, independent of what happens in other 
rounds.  He continues playing until he either accumulates a 
target amount of money $m, or loses all of his money. 

•  What is the probability that the gambler accumulates $m? 

(we’ll just do the case where p = .5, but you can read the 
general solution in example 7.11 in the text) 



Gambler’s Ruin 

   m = 1000  p = 0.4999 
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   m = 1000  p = 0.499 



Gambler’s Ruin 

   m = 1000  p = 0.49 



Gambler’s Ruin 

   m = 1000  p = 0.4 


