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Reminders & Announcements 

•  Homework 3 is due this Friday, May 18 

•  Minor updates to the skeleton code and sample files have 
been posted on Piazza 



Today… 

•  Bounding random variables 
•  Markov Inequality 
•  Chebyshev Inequality 

•  The Law of Large Numbers 

•  The Central Limit Theorem 



Motivation: The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

How accurate is our estimate as a function of n? 



Motivation: The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

How accurate is our estimate as a function of n? 

What if we want to know more than just mean and variance? 



Bounding Random Variables 



Markov Inequality 

Theorem: If a random variable X can only take nonnegative 
values, then for all a > 0, 

€ 

P(X ≥ a) ≤ E[X]
a



Markov Inequality 

Theorem: If a random variable X can only take nonnegative 
values, then for all a > 0, 

Translation: If a nonnegative random variable has a small 
mean, then the probability that it takes on a large value 
must also be small. 

€ 

P(X ≥ a) ≤ E[X]
a



Shuffle Mode 

Suppose you have n songs on your MP3 player.  In shuffle 
mode, songs are picked uniformly at random.  Let X be a 
random variable representing the number of songs that play 
in shuffle mode before you have heard each of the n songs 
once. 



Shuffle Mode 

Suppose you have n songs on your MP3 player.  In shuffle 
mode, songs are picked uniformly at random.  Let X be a 
random variable representing the number of songs that play 
in shuffle mode before you have heard each of the n songs 
once. 

 What is E[X]? 



Shuffle Mode 

Suppose you have n songs on your MP3 player.  In shuffle 
mode, songs are picked uniformly at random.  Let X be a 
random variable representing the number of songs that play 
in shuffle mode before you have heard each of the n songs 
once. 

 What is E[X]? 

 What is the probability that X ≥ a? 



Shuffle Mode 

Suppose n = 1000 
Then E[X] ≈ n ln(n) = 6908, and we have… 

P(X ≥ 10,000) ≤ 0.7 
P(X ≥ 20,000) ≤ 0.35 
P(X ≥ 50,000) ≤ 0.14 



Markov Inequality Is Not Tight 

Suppose X is uniformly distributed in [0,4] 

•  What does the Markov inequality say about P(X ≥ 2)?  
•  What about P(X ≥ 3) and P(X ≥ 4)? 



Markov Inequality Is Not Tight 

Suppose X is uniformly distributed in [0,4] 

•  What does the Markov inequality say about P(X ≥ 2)?  
•  What about P(X ≥ 3) and P(X ≥ 4)? 

But it can still be useful! 



Chebyshev Inequality 

Theorem: If X is a random variable with mean µ and 
variance σ2, then for any c > 0, 

€ 

P(| X − µ | ≥ c) ≤ σ
2

c 2



Chebyshev Inequality 

Theorem: If X is a random variable with mean µ and 
variance σ2, then for any c > 0, 

Translation: If a random variable has small variance, then 
the probability that it takes a value far from its mean must 
also be small. 

€ 

P(| X − µ | ≥ c) ≤ σ
2

c 2



Chebyshev Inequality 

Theorem: If X is a random variable with mean µ and 
variance σ2, then for any c > 0, 

Translation: If a random variable has small variance, then 
the probability that it takes a value far from its mean must 
also be small. 

(Note that X does not have to be nonnegative here) 

€ 

P(| X − µ | ≥ c) ≤ σ
2

c 2



Back to Shuffle Mode 

Suppose you have n songs on your MP3 player.  In shuffle 
mode, songs are picked uniformly at random.  Let X be a 
random variable representing the number of songs that play 
in shuffle mode before you have heard each of the n songs 
once. 

 How likely is it that |X – E[X]| ≥ c? 



Shuffle Mode 

Suppose n = 1000 
Then E[X] ≈ n ln(n) = 6908, and we have… 

P(|X-E[X]| ≥ 2000) ≤ 0.42 
P(|X-E[X]| ≥ 5000) ≤ 0.07 



Back to Shuffle Mode 

Suppose you have n songs on your MP3 player.  In shuffle 
mode, songs are picked uniformly at random.  Let X be a 
random variable representing the number of songs that play 
in shuffle mode before you have heard each of the n songs 
once. 

 How likely is it that |X – E[X]| ≥ c? 

 Can use this to get much tighter bounds on P(X ≥ a) 



Shuffle Mode 

Suppose n = 1000 
Then E[X] ≈ n ln(n) = 6908, and we have… 

P(|X-E[X]| ≥ 2000) ≤ 0.42 
P(|X-E[X]| ≥ 5000) ≤ 0.07 

P(X ≥ 10,000) ≤ P(|X-E[X]| ≥ 3092) ≤ 0.17 
P(X ≥ 20,000) ≤ P(|X-E[X]| ≥ 13,092) ≤ 0.001 

Much tighter than Markov in this case… 



Chebyshev is Still Not Tight 

Suppose X is uniformly distributed in [0,4] 

•  What does Chebyshev say about P(|X – 2| ≥ 1)?  



The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

•  What is the probability that our estimate differs from the 
true approval rating by more than ε? 



The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

•  What is the probability that our estimate differs from the 
true approval rating by more than ε? 

•  If we would like to have high confidence (say, 95%) that 
our estimate is very accurate (say, within 0.01 of the true 
approval rating), how many random voters must we poll? 



The Sample Mean 

We can generalize the idea of the sample mean to other 
sequences of independent identically distributed random 
variables X1, X2, … , Xn too… 



Law of Large Numbers 

Theorem: Let X1, X2, … be independent identically 
distributed random variables with mean µ.  For every ε > 0, 

€ 

P X1 + ... + Xn

n
− µ ≥ε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ → 0 as n→∞



Law of Large Numbers 

Theorem: Let X1, X2, … be independent identically 
distributed random variables with mean µ.  For every ε > 0, 

Translation: As the size of our sample gets very large, the 
probability that the sample mean is very close to the true 
mean goes to 1. € 

P X1 + ... + Xn

n
− µ ≥ε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ → 0 as n→∞



Law of Large Numbers 

Theorem: Let X1, X2, … be independent identically 
distributed random variables with mean µ.  For every ε > 0, 

Translation: As the size of our sample gets very large, the 
probability that the sample mean is very close to the true 
mean goes to 1. 

(Note that we can make ε as small as we want.) 

€ 

P X1 + ... + Xn

n
− µ ≥ε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ → 0 as n→∞



The Central Limit Theorem 

Loosely stated: Let X1, X2, … be independent identically 
distributed random variables with mean µ.  As n → ∞, the 
cumulative distribution function of the sample mean Mn 
approaches the cumulative distribution function of a 
normal random variable. 

Translation: As n gets large, the average (or sum) of n i.i.d. 
random variables is approximately normal. 


