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Reminders & Announcements 

•  The course midterm is one week from today in class 
•  The exam will cover all of Chapters 1–3 except for 3.3 
•  Emphasis will be on Chapters 1 and 2 
•  One double-sided sheet of hand-written notes allowed 
•  No other notes, books, calculators, cell phones, etc. 
•  Best way to prep is to practice problems from the book 

•  Homework 3 will be posted by Thursday and due in two 
weeks – also will be good practice for the exam! 



Last Time 

•  Relationship between exponential random variables and 
geometric random variables 

•  Joint probability density functions 



Today… 

•  More examples of how to work with continuous random 
variables and joint PDFs 

•  Independence, Bayes’ rule, and conditional expectation for 
continuous random variables 

•  The Total Expectation Theorem for continuous random 
variables & an application to searching sorted linked lists 



The Probability Density Function 

The probability density function (or PDF) is denoted fX.  

To satisfy normalization, we need 
€ 

P(a ≤ X ≤ b) = fX (k)dka

b
∫

€ 

fX (k)dk−∞

∞

∫ =1



Cumulative Distribution Functions 

A cumulative distribution function (CDF), denoted FX, 
“accumulates” probability up to a certain value of X 

FX(k) = P(X ≤ k) 



Exponential Random Variables 

Exponential random variables model the amount of time 
until an incident of interest takes place 
•  Length of time before a message arrives at the computer 
•  Length of time before a light bulb burns out 

PDF: fX(k) = λe-λk 

CDF: FX(k) = 1 – e-λk 

E[X] = λ-1    var(X) = λ-2 



Joint PDFs 

€ 

fX ,Y (x,y)

€ 

fX (x) = fX ,Y (x,y)−∞

∞

∫ dy

€ 

fX |Y (x | y) =
fX ,Y (x,y)
fY (y)

€ 

fX ,Y (x,y) = fX |Y (x | y) fY (y)

Joint density function: 

Marginalization: 

Conditional PDF: 

Multiplication rule: 



Example: Memoryless Variables 

 The time T until a light bulb burns out is an exponential 
random variable with parameter λ.  Suppose you turn the 
light bulb on, leave the room, and come back t minutes 
later to find the light bulb still on.  Let X be the additional 
time until the light bulb burns out.  What is the CDF of X 
given that the light bulb was still on at time t? 
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Example: Memoryless Variables 

 The time T until a light bulb burns out is an exponential 
random variable with parameter λ.  Suppose you turn the 
light bulb on, leave the room, and come back t minutes 
later to find the light bulb still on.  Let X be the additional 
time until the light bulb burns out.  What is the CDF of X 
given that the light bulb was still on at time t? 

P(X ≤ k | T > t) = 1 – e-λk 

 Same CDF as T!!  Exponential RVs are memoryless. 

 Geometric random variables satisfy this property too… 



Independence 

X and Y are independent if for all x, y 

€ 

pX ,Y (x,y) = pX (x)pY (y)
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Independence 

X and Y are independent if for all x, y 

The analogs of the alternate tests hold too, e.g., X and Y are 
independent if for all x, and all y such that fY(y) > 0, 

€ 

fX |Y (x | y) = fX (x)

€ 

fX ,Y (x,y) = fX (x) fY (y)



Independence 

Suppose you throw a dart at a circular target of radius r.  
Assume that you always hit the target, and you are equally 
likely to hit any point (x, y) on the target. Let X and Y 
denote the coordinates of the point that you hit. 

 Are X and Y independent? 



Independence 

Suppose you throw a dart at a circular target of radius r.  
Assume that you always hit the target, and you are equally 
likely to hit any point (x, y) on the target. Let X and Y 
denote the coordinates of the point that you hit. 

 Are X and Y independent? 

 What if the target was a square? 



Bayes’ Rule 

•  Bayes’ rule can also be extended in the natural way to hold 
for continuous random variables: 

€ 

pY |X (y | x) =
pX |Y (x | y)pY (y)

pX (x)
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Bayes’ Rule 

•  Bayes’ rule can also be extended in the natural way to hold 
for continuous random variables: 

•  Example: What is fX|Y in the circular target experiment? € 

fY |X (y | x) =
fX |Y (x | y) fY (y)

fX (x)



Bayes’ Rule 

•  Bayes’ rule can also be extended in the natural way to hold 
for continuous random variables: 

•  Example: What is fX|Y in the circular target experiment? 

•  Alternate versions can be derived for the case when one of 
X and Y is discrete and the other continuous too… 

€ 

fY |X (y | x) =
fX |Y (x | y) fY (y)

fX (x)



Conditional Expectation 

€ 

E[X |Y = y] = x
x
∑ pX |Y (x | y)

 When X is discrete:   



Conditional Expectation 

€ 

E[X |Y = y] = x
−∞

∞

∫ fX |Y (x | y)dx

 When X is discrete:   

 When X is continuous: 
€ 

E[X |Y = y] = x
x
∑ pX |Y (x | y)



Conditional Expectation 

 When X is discrete:   

 When X is continuous: 

 For an event A, E[X | A] is defined similarly... 

€ 

E[X |Y = y] = x
x
∑ pX |Y (x | y)

€ 

E[X |Y = y] = x
−∞

∞

∫ fX |Y (x | y)dx



Total Expectation Theorem 

 For events A1, ..., An that partition the sample space: 

€ 

E[X] = P(Ai)
i=1

n

∑ E[X | Ai]
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€ 

E[X] = pY (y)
y
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 For events A1, ..., An that partition the sample space: 
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€ 

E[X] = P(Ai)
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Total Expectation Theorem 

€ 

E[X] = pY (y)
y
∑ E[X |Y = y]

€ 

E[X] = fY (y)−∞

∞

∫ E[X |Y = y] dy

 For events A1, ..., An that partition the sample space: 
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Total Expectation Theorem 

€ 

E[X] = pY (y)
y
∑ E[X |Y = y]

€ 

E[X] = fY (y)−∞

∞

∫ E[X |Y = y] dy

 For events A1, ..., An that partition the sample space: 

 When Y is discrete:   

 When Y is continuous: 

These hold regardless of whether X is discrete or continuous 

€ 

E[X] = P(Ai)
i=1

n

∑ E[X | Ai]



Searching a Sorted Linked List 

Consider a (very long) singly linked list with entries sorted 
in ascending order.   
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Searching a Sorted Linked List 

Consider a (very long) singly linked list with entries sorted 
in ascending order.  Although entries are in discrete 
positions in the list, we can approximate their locations as 
continuous values… 

X∈{1, 2, …, L} 

X∈[0, L] 0 L 



Searching a Sorted Linked List 

Let X be a random variable denoting the location of the last 
item we found.  Let Y denote the location of the next item 
that we need to search for.  We can either search for the 
next item starting at position 0 or starting at position X. 

X 0 L Y 
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Searching a Sorted Linked List 

Let X be a random variable denoting the location of the last 
item we found.  Let Y denote the location of the next item 
that we need to search for.  We can either search for the 
next item starting at position 0 or starting at position X. 

If X and Y are both uniform in [0, L], then what is the 
expected length of our search? 

X 0 L Y 



Total Expectation Theorem 

€ 

E[X] = pY (y)
y
∑ E[X |Y = y]

€ 

E[X] = fY (y)−∞

∞

∫ E[X |Y = y] dy

 For events A1, ..., An that partition the sample space: 

 When Y is discrete:   

 When Y is continuous: 

These hold regardless of whether X is discrete or continuous 

€ 

E[X] = P(Ai)
i=1

n

∑ E[X | Ai]



 (One important idea that we discussed here that was not on 
the slides is that any rules that apply to probabilities apply 
to conditional probabilities too since conditional 
probabilities obey the probability axioms… so for example 
we get the following from the first version of the total 
expectation theorem) 

For events A1, ..., An that partition the sample space and any 
event B: 

€ 

E[X |B] = P(Ai |B)
i=1

n

∑ E[X | Ai ∩ B]


