CS 112: Computer System Modeling Fundamentals

> Prof. Jenn Wortman Vaughan June 2, 2011 Lecture 19

Reminders & Announcements

- Tomorrow's section will be a review session for the final
- Homework 5 is due at the start of section
- I will be traveling next week and will not have office hours
- Ethan's office hours for next week:
 - Monday, 11:30 12:30
 - Wednesday, 11:30 12:30

Final Exam

- Thursday, June 9, 3 6pm, in this room
- One double-sided sheet of hand-written notes allowed
- No other notes, books, calculators, cell phones, etc.
- Best way to study is to practice solving problems like the end-of-chapter problems in the book (solutions available on the book's website)

You should be able to...

Figure out when and how to apply the basic rules and definitions of probability, including

- the multiplication rule
- Bayes' rule
- the total probability rule
- the total expectation rule
- the definition of conditional probability
- the definition of independence
- the counting principle
- the definitions of expectation and variance

You should be able to...

- Translate word problems into math
 - Define the appropriate random variables or events
 - Be able to state the quantity that you must solve for in terms of these random variables or events
 - Recognize common random variables (such as Bernoulli, binomial, and geometric) in problem descriptions

Topics Covered

- Sample spaces, events, and basic probability (Chapter 1)
- Discrete and continuous random variables (Chapters 2–3)
- Covariance and correlation (4.2)
- Markov, Chebyshev, law of large numbers (5.1, 5.2, 5.4)
- MAP and maximum likelihood (8.1, 8.2, parts of 9.1)
- Naive Bayes (see link on website)
- Bayesian networks (see link on website)
- Markov chains (7.1–7.4)

You are responsible for anything covered in the book or class!

Theorem: Consider any Markov chain with a single recurrent class, which is not periodic. Then the steady state probabilities of the chain are the unique values $\pi_1, ..., \pi_m$ that satisfy the system of equations:

$$\pi_{j} = \sum_{k=1}^{m} \pi_{k} p_{k,j} \quad \text{for } j = 1, \dots, m$$
$$\sum_{k=1}^{m} \pi_{k} = 1$$

These are referred to as the balance equations. When these conditions hold, X_0 doesn't matter.

• What if there is only one recurrent class but it is periodic?

- What if there is only one recurrent class but it is periodic?
 - Limit of $P(X_n = i)$ is not well defined, but balance equations still give us the long term frequencies

- What if there is only one recurrent class but it is periodic?
 - Limit of $P(X_n = i)$ is not well defined, but balance equations still give us the long term frequencies
- What if there are multiple recurrent states?

- What if there is only one recurrent class but it is periodic?
 - Limit of $P(X_n = i)$ is not well defined, but balance equations still give us the long term frequencies
- What if there are multiple recurrent states?
 - Once a recurrent state is entered, the same ideas apply

- What if there is only one recurrent class but it is periodic?
 - Limit of $P(X_n = i)$ is not well defined, but balance equations still give us the long term frequencies
- What if there are multiple recurrent states?
 - Once a recurrent state is entered, the same ideas apply
 - How likely are we to enter each recurrent state?

- A gambler plays rounds of games in a casino. At each round, he wins \$1 with probability p and loses \$1 with probability 1-p, independent of what happens in other rounds. He continues playing until he either accumulates a target amount of money \$m, or loses all of his money.
 - How can we represent this scenario as a Markov chain?

- A gambler plays rounds of games in a casino. At each round, he wins \$1 with probability p and loses \$1 with probability 1-p, independent of what happens in other rounds. He continues playing until he either accumulates a target amount of money \$m, or loses all of his money.
 - How can we represent this scenario as a Markov chain?
 - What are the recurrent classes?

- A gambler plays rounds of games in a casino. At each round, he wins \$1 with probability p and loses \$1 with probability 1-p, independent of what happens in other rounds. He continues playing until he either accumulates a target amount of money \$m, or loses all of his money.
 - How can we represent this scenario as a Markov chain?
 - What are the recurrent classes?
 - What is the probability that the gambler accumulates m?

• An absorbing state in a Markov chain is a single-state recurrent class — that is, any state *i* such that $p_{i,i}=1$

- An absorbing state in a Markov chain is a single-state recurrent class that is, any state *i* such that $p_{i,i}=1$
- Assume we have a Markov chain in which every state is either absorbing or transient

- An absorbing state in a Markov chain is a single-state recurrent class that is, any state *i* such that $p_{i,i}=1$
- Assume we have a Markov chain in which every state is either absorbing or transient
 - Let *s* be a particular absorbing state

- An absorbing state in a Markov chain is a single-state recurrent class that is, any state *i* such that $p_{i,i}=1$
- Assume we have a Markov chain in which every state is either absorbing or transient
 - Let *s* be a particular absorbing state
 - Let E be the event that $X_n = s$ for some time step n

- An absorbing state in a Markov chain is a single-state recurrent class that is, any state *i* such that $p_{i,i}=1$
- Assume we have a Markov chain in which every state is either absorbing or transient
 - Let *s* be a particular absorbing state
 - Let E be the event that $X_n = s$ for some time step n
 - For each state *i*, let $a_i = P(E | X_0 = i)$

- An absorbing state in a Markov chain is a single-state recurrent class that is, any state *i* such that $p_{i,i}=1$
- Assume we have a Markov chain in which every state is either absorbing or transient
 - Let *s* be a particular absorbing state
 - Let E be the event that $X_n = s$ for some time step n
 - For each state *i*, let $a_i = P(E | X_0 = i)$

What do we know about the values a_i ?

Absorption Probability Equations

Theorem: Consider a Markov chain in which each state is either absorbing or transient. Fix a particular absorbing state *s*. Then the probabilities a_i of eventually reaching state *s* after starting at state *i* are the unique solutions to the following system of equations:

$$a_{s} = 1$$

$$a_{i} = 0 for all absorbing i \neq s$$

$$a_{i} = \sum_{j=1}^{m} p_{i,j} a_{j} for all transient i$$

Absorption Probability Equations

• What if we would like to calculate the probability of entering a multi-state recurrent class?

Absorption Probability Equations

- What if we would like to calculate the probability of entering a multi-state recurrent class?
- By merging states, we are able to apply the same ideas...

- A gambler plays rounds of games in a casino. At each round, he wins \$1 with probability p and loses \$1 with probability 1-p, independent of what happens in other rounds. He continues playing until he either accumulates a target amount of money \$m, or loses all of his money.
 - What is the probability that the gambler accumulates m?

- A gambler plays rounds of games in a casino. At each round, he wins \$1 with probability p and loses \$1 with probability 1-p, independent of what happens in other rounds. He continues playing until he either accumulates a target amount of money \$m, or loses all of his money.
 - What is the probability that the gambler accumulates m?

(we'll just do the case where p = .5, but you can read the general solution in example 7.11 in the text)

$$m = 1000$$
 $p = 0.4999$

$$m = 1000$$
 $p = 0.499$

$$m = 1000$$
 $p = 0.49$

$$m = 1000 \quad p = 0.4$$

Good luck on the final & enjoy the summer!