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Reminders & Announcements 

•  Homework 5 is due in section on Friday, which will be a 
review session for the final exam 

•  Check the website and catch up on your reading now! 

•  The best way to prepare for the final is to practice working 
through the problems in the book 



Markov Chains 

A Markov chain is specified by: 
•  A set of states S = {1, 2, …, m} 
•  A set of transition probabilities pi, j where 

pi, j = P(Xt+1 = j | Xt = i) 

The key independence assumption is the Markov property: 

P(Xt+1 = j | Xt = i, Xt-1 = xt-1, Xt-2 = xt-2, …, X0 = x0) 
= P(Xt+1 = j | Xt = i) 



Classification of States 

Accessibility: State j is accessible from state i if for some n, 
the n-step transition probability from i to j is positive. 

Recurrence: State i is recurrent if for every state j that is 
accessible from i, i is also accessible from j. 

 If i is not recurrent, then it is transient. 

 The set of all states accessible from a recurrent state form a 
recurrent class.  Note that all of the states in a recurrent 
class are accessible from each other. 



Periodicity 

•  A recurrent class is periodic if it can be broken into d > 1 
disjoint subsets S1, S2, …, Sd in such a way that 
•  All transitions from states in Si lead to states in Si+1 for     

i ∈{1, …, d – 1} 
•  All transitions from states in Sd lead to states in S1 

•  The period of the class is the number d of subsets 



n-Step Transitions 

•  We can efficiently compute the n-step transition 
probability, P(Xn = j | X0 = i), using the recursive formula 

€ 

P(Xn = j | X0 = i) = pk, j P(Xn−1 = k | X0 = i)
k=1

m

∑



Today... 

•  Long-term behavior of Markov chains 
•  Steady state probabilities & the balance equations 

  (Break for course evaluations) 

•  Application: Google’s PageRank algorithm 



Back to the Faulty Router 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

•  What fraction of the time will my router be online in the 
long run? 
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Convergence of Markov Chains 

•  Under what circumstances does P(Xn = i) converge to a 
unique value for each i as n grows large? 

•  Under what circumstances might this not happen? 
•  Multiple recurrent classes 
•  Periodic recurrent class 

•  If these probabilities do converge, what do we know about 
the values they converge to? 



Steady-State Convergence Theorem 

Theorem: Consider any Markov chain with a single 
recurrent class, which is not periodic. Then the steady state 
probabilities of the chain are the unique values π1, ..., πm 
that satisfy the system of equations: 

 These are referred to as the balance equations. € 

π j = π k pk, j
k=1

m

∑ for j =1,...,m
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Steady-State Convergence Theorem 

Theorem: Consider any Markov chain with a single 
recurrent class, which is not periodic. Then the steady state 
probabilities of the chain are the unique values π1, ..., πm 
that satisfy the system of equations: 

 These are referred to as the balance equations. 
 When these conditions hold, X0 doesn’t matter. 
€ 

π j = π k pk, j
k=1

m
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Back to the Faulty Router 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

•  What fraction of the time will my router be online in the 
long run? 

•  Suppose that if the router remains offline for 3 straight 
days, I (temporarily) repair it, resetting it to the online 
state.  What fraction of the time will it be online? 
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Google’s PageRank 

•  Google determines which search results to return based on 
a mix of relevance and quality (“rank”) 

•  How should the rank of a webpage be determined? 
•  High quality webpages link to other high quality 

webpages.  The rank of a webpage should be a function 
of the rank of pages that link to it. 
•  If a webpage links to n other pages, each should inherit 

a 1/n share of its rank. 



Google’s PageRank 

•  Let Si be the set of pages that link to page i, and let nj>0 be 
the number of pages that j links to.  Then we want 

€ 

Ri = R j
j∈Si
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Google’s PageRank 

•  Let Si be the set of pages that link to page i, and let nj>0 be 
the number of pages that j links to.  Then we want 

•  These equations can be interpreted as the balance equations 
of a random surfer Markov chain! 

•  Unfortunately, there might not be a unique solution... 

€ 

Ri = R j
j∈Si

∑ 1
n j

for all pages i
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Google’s PageRank 

•  We can get around this problem by making the random 
surfer a little more random... 
•  At each time step, with probability α, a random link on 

the current page is followed (all equally likely) 
•  With probability 1-α, a new page is chosen uniformly at 

random from all n webpages 

•  This new MC has one recurrent class, and it is not periodic.  

€ 

Ri =α R j
j∈Si

∑ 1
n j

+ (1−α) 1
n

for all pages i



Other Applications 

Similar ideas have been used in a variety of applications: 
•  Measuring the impact of bloggers in the blogosphere 
•  Measuring the impact of scientific journals based on 

citations 
•  Measuring how trustworthy buyers and sellers are on 

eBay or other e-commerce sites 
•  Determining the importance of species in the food chain 


