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Reminders & Announcements 

•  Homework 5 has been posted on the website 

•  Catch up on your reading now! 
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gave us ways to exploit independence assumptions so that 
we could efficiently reason about complex scenarios 
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Reasoning About Complex Scenarios 

•  Both the Naive Bayes algorithm and Bayesian networks 
gave us ways to exploit independence assumptions so that 
we could efficiently reason about complex scenarios 

•  Markov chains give us another way to do this when we are 
dealing with temporal scenarios, such as… 
•  The sequence of daily prices of a stock 
•  The sequence of websites a web surfer visits (PageRank) 
•  The number of packets in a network buffer over time 
•  The sequence of words in an “English-looking” document 
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Markov Chains 

A Markov chain is specified by: 
•  A set of states S = {1, 2, …, m} 
•  A set of transition probabilities pi, j where 

pi, j = P(Xt+1 = j | Xt = i) 

The key independence assumption is the Markov property, 
which we can represent using a Bayesian network: 

X0 X1 X2 X3 
…	  



A Simple Example 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

•  What are the states? 
•  What are the transition probabilities? 
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Representing Transition Probabilities 

There are multiple useful ways to represent the set of 
transition probabilities: 
•  Transition probability matrices 
•  Transition probability graphs 
 (also called state transition diagrams) 

•  The best representation depends on the problem you are 
trying to solve 



The Markov Property 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

 If it remains offline for four straight days, I get it 
(temporarily) repaired, resetting it to the online state. 
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n-Step Transitions 

•  We can compute the probability of any sequence of states 
using the multiplication rule and the Markov property 

•  We can efficiently compute the n-step transition 
probability, P(Xn = j | X0 = i), using the recursive formula 

Exercise: Derive this recursion yourself using the total 
probably rule and the probability of a sequence of states! € 

P(Xn = j | X0 = i) = pk, j P(Xn−1 = k | X0 = i)
k=1

m

∑



n-Step Transitions 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

 P(X0 = 1 | X0 = 1) = 1    P(X0 = 2 | X0 = 1) = 0 
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n-Step Transitions 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

 P(X0 = 1 | X0 = 1) = 1    P(X0 = 2 | X0 = 1) = 0 
 P(X1 = 1 | X0 = 1) = 0.8   P(X1 = 2 | X0 = 1) = 0.2 
 P(X2 = 1 | X0 = 1) = 0.76   P(X2 = 2 | X0 = 1) = 0.24 
 P(X3 = 1 | X0 = 1) = 0.752   P(X3 = 2 | X0 = 1) = 0.248 
 P(X4 = 1 | X0 = 1) = 0.7504  P(X4 = 2 | X0 = 1) = 0.2496 
 P(X5 = 1 | X0 = 1) = 0.7501  P(X5 = 2 | X0 = 1) = 0.2499 
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n-Step Transitions 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

 P(X0 = 1 | X0 = 2) = 0    P(X0 = 2 | X0 = 2) = 1 
 P(X1 = 1 | X0 = 2) = 0.6   P(X1 = 2 | X0 = 2) = 0.4 
 P(X2 = 1 | X0 = 2) = 0.72   P(X2 = 2 | X0 = 2) = 0.28 
 P(X3 = 1 | X0 = 2) = 0.744   P(X3 = 2 | X0 = 2) = 0.256 
 P(X4 = 1 | X0 = 2) = 0.7488  P(X4 = 2 | X0 = 2) = 0.2512 
 P(X5 = 1 | X0 = 2) = 0.7498  P(X5 = 2 | X0 = 2) = 0.2502 
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Classification of States 

Accessibility: State j is accessible from state i if for some n, 
the n-step transition probability from i to j is positive. 

Recurrence: State i is recurrent if for every state j that is 
accessible from i, i is also accessible from j. 

 If i is not recurrent, then it is transient. 

 The set of all states accessible from a recurrent state form a 
recurrent class.  Note that all of the states in a recurrent 
class are accessible from each other. 



Periodicity 

•  A recurrent class is periodic if it can be broken into d > 1 
disjoint subsets S1, S2, …, Sd in such a way that 
•  All transitions from states in Si lead to states in Si+1 for     

i ∈{1, …, d – 1} 
•  All transitions from states in Sd lead to states in S1 

•  The period of the class is the number d of subsets 


