CS 112: Computer System Modeling Fundamentals

> Prof. Jenn Wortman Vaughan May 24, 2011 Lecture 16

Reminders & Announcements

- Homework 4 is due tonight at 11:59pm
- Homework 5 will be posted by Thursday
- All reading assignments for the remainder of the quarter have been posted on the website

Today

- Bayesian Networks
 - Review of what they are
 - D-separation
 - More examples of how to work with Bayesian networks

Bayesian Network

- The first component of a Bayesian network is a directed acyclic graph (or DAG)
 - Nodes represents a random variables
 - Edges represent dependencies

Bayesian Network

• The second component of a Bayesian network is a conditional probability table for each node

• The joint distribution is uniquely specified by these tables

Bayesian Network

Key Assumption: If dependencies are represented accurately, the joint distribution factors in a nice way

$$P(X_{1} = x_{1}, ..., X_{n} = x_{n})$$

= $\prod_{i=1}^{n} P(X_{i} = x_{i} | X_{j} = x_{j} \text{ for } X_{j} \in Pa(X_{i}))$

Don't need to learn or store the whole joint PMF! Can instead learn a small conditional probability table for each random variable.

Causal Chains

- X and Y are conditionally independent given Z
- In general, X and Y are *not* independent

Common Cause

- Again, X and Y are conditionally independent given Z
- In general, X and Y are *not* independent

Common Effect

- X and Y are independent
- X and Y are *not* conditionally independent given Z
- X and Y are *not* conditionally independent given W

Independence Relationships

- To determine if two nodes are independent, we just have to check the path (or paths) between them
- If every path is "blocked", they are independent

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

 $\rightarrow W \rightarrow$

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

 \rightarrow W \rightarrow closed if W \in E

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

 \rightarrow W \rightarrow closed if W \in E

 $\leftarrow W \leftarrow$

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

- \rightarrow W \rightarrow closed if W \in E
- $\leftarrow \mathbf{W} \leftarrow \qquad \text{closed if } \mathbf{W} \in E$

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

- \rightarrow W \rightarrow closed if W \in E
- $\leftarrow \mathbf{W} \leftarrow \qquad \text{closed if } \mathbf{W} \in E$

 $\leftarrow W \rightarrow$

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

$\rightarrow W \rightarrow$	closed if $W \in I$	E
, , , , , , , , , , , , , , , , , , ,		

$\leftarrow W \leftarrow$ closed if $W \leftarrow E$
--

 $\leftarrow W \rightarrow \qquad \text{closed if } W \in E$

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

$\rightarrow W \rightarrow$	closed if $W \subseteq E$
$\rightarrow \gamma\gamma \rightarrow$	closed II w $\subseteq E$

$\leftarrow W \leftarrow \qquad \text{closed if } W \in I$
--

 $\leftarrow W \rightarrow \qquad \text{closed if } W \in E$

 $\rightarrow W \leftarrow$

Let *E* denote a set of observed evidence nodes. Each node in the graph is "closed" or "open" given evidence *E*.

$\leftarrow W \leftarrow closed if W$	$V \in E$	\leftarrow	$\leftarrow W$
---------------------------------------	-----------	--------------	----------------

 $\leftarrow W \rightarrow \qquad \text{closed if } W \in E$

 $\rightarrow W \leftarrow closed if neither W nor any$ descendent of W is in E

D-Separation

• Given evidence *E*, nodes X and Y are d-separated if every path between X and Y contains at least one closed node.

D-Separation

• Given evidence *E*, nodes X and Y are d-separated if every **path** between X and Y contains at least one closed node.

• If X and Y are d-separated given evidence *E*, then X and Y are conditionally independent given *E*.

D-Separation

• Multiple networks can correspond to the same set of independence assumptions...

Reasoning with Bayesian Networks

• Can answer questions of interest using the law of total probability...

