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Reminders & Announcements 

•  Any midterm re-grade requests must be submitted in 
writing by Friday 

•  New ruby script on courseweb can be used to get extra 
Twitter data for your classifier, e.g., run 

  > ruby getTweets.rb trump en de fr es 
 to get recent tweets on Trump in English, German, French, 
and Spanish 



Today… 

•  More about parameter estimation 
•  Using maximum likelihood 
•  Using MAP 

•  Next time: graphical models 
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•  The maximum a posteriori (MAP) hypothesis is the 
hypothesis with the maximum posterior probability 

HMAP = argmaxi P(Hi | D) = argmaxi P(D | Hi) P(Hi) 



ML Parameter Estimation 

•  The maximum likelihood (ML) estimate is the parameter 
value that makes the data most likely 
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Parameter Estimation 

Suppose that the time it takes for a certain model of hard 
drive to fail is an exponential random variable 

 We would like to estimate the unknown parameter λ based 
on n independent observations X1, …, Xn 

 What is the maximum likelihood estimate? 



Log Likelihood for Computation 

•  The log likelihood has a computational benefit too… 
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observations gets large, the maximum likelihood estimate 
gets closer and closer to the true parameter value 



The Good and the Bad of ML 

•  Maximum likelihood is consistent – as the number of 
observations gets large, the maximum likelihood estimate 
gets closer and closer to the true parameter value 

•  But what if we don’t have much data? 
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The Bayesian Point of View 

•  Instead of treating parameters as fixed but unknown values 
θ, Bayesians treat them as random variables Θ 

•  Can then define the notions of prior and posterior… 

•  Prior: 

•  Posterior: 

•  As before, priors may be subjective or estimated from data 
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fΘ(θ )
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P(Θ = θ | X1 = x1,...,Xn = xn )
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(θ | x1,...,xn )



MAP Parameter Estimation 

•  The maximum a posteriori (MAP) estimate is the most 
likely parameter value given the data 

€ 

ΘMAP = argmax
θ

P(Θ = θ | X1 = x1,...,Xn = xn )



MAP Parameter Estimation 

•  The maximum a posteriori (MAP) estimate is the most 
likely parameter value given the data 

€ 

ΘMAP = argmax
θ

P(Θ = θ | X1 = x1,...,Xn = xn )

€ 

= argmax
θ

P(X1 = x1,...,Xn = xn |Θ = θ )P(Θ = θ )



MAP Parameter Estimation 

•  The maximum a posteriori (MAP) estimate is the most 
likely parameter value given the data 

•  If X1, …, Xn are independent given Θ, then € 

ΘMAP = argmax
θ

P(Θ = θ | X1 = x1,...,Xn = xn )

€ 

ΘMAP = argmax
θ

P(Θ = θ ) P(Xi = xi |Θ = θ )
i=1

n

∏€ 

= argmax
θ

P(X1 = x1,...,Xn = xn |Θ = θ )P(Θ = θ )



MAP Parameter Estimation 

•  The maximum a posteriori (MAP) estimate is the most 
likely parameter value given the data 

•  If X1, …, Xn are independent given Θ, then 

•  Can use the same log trick here too 
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MAP Parameter Estimation 

•  If Θ is continuous, then 

•  If X1, …, Xn are independent given Θ, then 

•  Can define similar estimates for continuous X1, …, Xn 
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Parameter Estimation 

Suppose that we would like to estimate the unknown bias of 
a coin based on observations of the outcomes X1, …, Xn of 
n independent tosses of the coin 

 Suppose our prior on the parameter is  
fΘ(θ) = 2 – 4 |½ - θ| ,     θ ∈ [0,1] 

 What is the MAP estimate? 
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n independent tosses of the coin 

 Suppose our prior on the parameter is  
fΘ(θ) = 2 – 4 |½ - θ| ,     θ ∈ [0,1] 

 What is the MAP estimate? 

(we skipped some of the messy details of this derivation in 
class – see Problem 5, page 446, or try to finish it yourself) 



Parameter Estimation 

Suppose that we would like to estimate the unknown bias of 
a coin based on observations of the outcomes X1, …, Xn of 
n independent tosses of the coin 

 Suppose our prior on the parameter is  
fΘ(θ) = 2 – 4 |½ - θ| ,     θ ∈ [0,1] 

 What is the MAP estimate? 
 How does this compare to the smoothed ML estimate? 
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•  In addition to using the posterior to calculate MAP 
estimates, we can also use it to calculate expectations 



The Posterior Distribution 

•  In addition to using the posterior to calculate MAP 
estimates, we can also use it to calculate expectations 

•  Example: Consider again our biased coin.  Suppose we 
play the following game:  
•  You flip the coin.   
•  If the result is heads, you get $1. 
•  If the result is tails, you get nothing. 

How much profit do you expect to make from this game? 


