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Quiz #3 



Reminders & Announcements 

•  Homework 4 will be a programming assignment – we 
will cover the algorithm that you need to implement in 
class this Thursday 



Types of Inference 

Hypothesis testing:  Decide which of two or more 
hypotheses is more likely to true based on some data. 
•  Determine whether an email containing a particular set of 

words is more likely to be spam or not spam 
•  Given a student’s test score, decide if he studied or not 
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Hypothesis testing:  Decide which of two or more 
hypotheses is more likely to true based on some data. 
•  Determine whether an email containing a particular set of 

words is more likely to be spam or not spam 
•  Given a student’s test score, decide if he studied or not 

Parameter estimation:  Model is fully specified except some 
unknown parameters we need to estimate. 
•  Estimate the bias of a coin from a sequence of flips 
•  Estimate the fraction of the population who prefers 

candidate A to candidate B based on polling data 
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Hypothesis Testing 

Let D be the event that we observed some particular data 
•  D = event that I observed an email containing the words 

“ca$h” and “viagra” 

Let H1, …, Hk be disjoint and exhaustive events representing 
hypotheses we are choosing among 
•  H1 = event that the email is spam 
•  H2 = event that the email is not spam 

What is the most likely hypothesis given the data? 
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Multiple Options 

•  The maximum likelihood (ML) hypothesis is the 
hypothesis that makes the data most likely 

HML = argmaxi P(D | Hi) 

•  The maximum a posteriori (MAP) hypothesis is the 
hypothesis with the maximum posterior probability 

HMAP = argmaxi P(Hi | D) = argmaxi P(D | Hi) P(Hi) 

MAP additionally requires P(Hi) 
(can be a subjective probability)  



Maximum Likelihood 

There are two boxes of cookies.  One contains half chocolate 
chip cookies and half oatmeal raison cookies.  The other 
contains one third chocolate chip cookies and two thirds 
oatmeal raison.  I select a box and pull a random cookie 
from it.  You observe that the cookie is chocolate chip.   

 Which box is most likely to be the one I chose from? 



Maximum Likelihood 

There are two boxes of cookies.  One contains half chocolate 
chip cookies and half oatmeal raison cookies.  The other 
contains one third chocolate chip cookies and two thirds 
oatmeal raison.  I select a box and pull a random cookie 
from it.  You observe that the cookie is chocolate chip.   

 Which box is most likely to be the one I chose from? 
•  D = event that I chose a chocolate chip cookie 
•  P(D | H1) = 0.5, P(D | H2) = 0.33 
•  HML = H1 



MAP 

There are two boxes of cookies.  One contains half chocolate 
chip cookies and half oatmeal raison cookies.  The other 
contains one third chocolate chip cookies and two thirds 
oatmeal raison.  I select a box and pull a random cookie 
from it.  You observe that the cookie is chocolate chip.   

 If you know that box 2 is on the table and box 1 is put 
away, which box is most likely to be the one I chose from? 



MAP 

There are two boxes of cookies.  One contains half chocolate 
chip cookies and half oatmeal raison cookies.  The other 
contains one third chocolate chip cookies and two thirds 
oatmeal raison.  I select a box and pull a random cookie 
from it.  You observe that the cookie is chocolate chip.   

 If you know that box 2 is on the table and box 1 is put 
away, which box is most likely to be the one I chose from? 
•  P(H1) = 0.1, P(H2) = 0.9  (for example..) 
•  HMAP = H2 



Next Couple Weeks… 

•  Classical statistical inference 
•  Parameter estimation with maximum likelihood 
•  Bias, confidence bounds, other desirable properties 

•  Bayesian statistical inference 
•  Using priors and posteriors 
•  MAP estimation 

•  Example application: Naive Bayes classifier (which you 
will implement for homework 4!) 
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Parameter Estimation 

Suppose that we would like to estimate the unknown bias p 
of a coin based on observations of the outcomes X1, …, Xn 
of n independent tosses of the coin 

 (This is just like our polling question…) 

 We can define analogs of both ML and MAP here 
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Parameter Estimation 

•  The maximum likelihood (ML) estimate is the parameter 
value that makes the data most likely 

•  If X1, …, Xn are independent observations, then 

“log 
likelihood” 
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Parameter Estimation 

Suppose that we would like to estimate the unknown bias p 
of a coin based on observations of the outcomes X1, …, Xn 
of n independent tosses of the coin 

 What is the maximum likelihood estimate? 



Parameter Estimation 

Suppose that the time it takes for a certain model of hard 
drive to fail is an exponential random variable 

 We would like to estimate the unknown parameter λ based 
on n independent observations X1, …, Xn 

 What is the maximum likelihood estimate? 
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Parameter Estimation 

•  The maximum likelihood (ML) estimate is the parameter 
value that makes the data most likely 

•  If X1, …, Xn are independent observations, then 

€ 

= argmax
θ

log fX i
(xi ; θ )( )

i=1

n

∑

€ 

ˆ θ = argmax
θ

fX1 ,...,Xn
(x1,x2,...,xn; θ)

€ 

ˆ θ = argmax
θ

fX i
(xi ; θ)

i=1

n

∏



Parameter Estimation 

Suppose that the time it takes for a certain model of hard 
drive to fail is an exponential random variable 

 We would like to estimate the unknown parameter λ based 
on n independent observations X1, …, Xn 

 What is the maximum likelihood estimate? 

(we didn’t get to work through the answer in class before 
time ran out, but we will come back to this…) 



Maximum Likelihood is Consistent 

Consistency: If θ is the true value of the parameter and θn is 
the maximum likelihood estimate after n observations, then 
for any ε > 0, 

€ 

lim
n→∞

P θn −θ ≥ε( ) = 0



Maximum Likelihood is Consistent 

Consistency: If θ is the true value of the parameter and θn is 
the maximum likelihood estimate after n observations, then 
for any ε > 0, 

 Translation: As the number of observations gets large, the 
maximum likelihood estimate gets closer and closer to the 
true parameter value – clearly desirable for an estimate. 

€ 

lim
n→∞

P θn −θ ≥ε( ) = 0


