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Uncertainty in Computer Science 



Uncertainty is everywhere in computer science. 

In this course, you will develop foundational, mathematical 
reasoning skills that will help you deal with it. 



Course Overview 



Part I: Probability Theory 

•  Sample space and events 
•  Probability laws and their basic properties 
•  Conditional probability and independence 
•  Bayes’ rule 
•  Counting problems 
•  Random variables 
•  Expectation, mean, and variance 
•  Covariance and correlation 
•  Limit theorems 
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Part II: On to something new! 

Markov Chains: How can we reason about random 
processes that evolve over time? 
•  Example: Random surfer used in Google’s PageRank  

Statistical Inference: How can we estimate properties of 
random variables or model parameters from observations?   
•  Example: Estimating parameters of a spam filter 
•  Might cover some basic ideas from machine learning if 

we have time… 



Course Logistics 



Course Staff 

Instructor: Jenn Wortman Vaughan (jenn@cs.ucla.edu) 
  Office Hours: Wednesday, 1–3pm, Boelter 4532H 
  No office hours this week! 

TA: Ethan Schreiber (ethan@cs.ucla.edu) 
  Office Hours: Monday, 11:30–1:30, Boelter 2432 
  Discussions: Friday, 4–5:50pm, in this room 

Grader: Brian Geffon (briangeffon@gmail.com) 



Textbook and Material 

Required textbook: 
Introduction to Probability (2nd Edition) 
 by Dimitri P. Bertsekas and John N. Tsitsiklis 

Other materials, including reading assignments, problem 
sets, and any lecture slides, will be posted at: 

http://www.cs.ucla.edu/~jenn/courses/S11.html 



Breakdown of Grades 

Five Homework Assignments (30%) 
•  Mostly pencil-and-paper, a little programming 

In-class Quizzes (10%) 
•  Given at the start of class, lowest quiz dropped 

Midterm (30%) 
•  Tuesday, May 3, one sheet of hand-written notes allowed 

Final Exam (30%) 
•  Thursday, June 9, cumulative, same rules as midterm 
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Homework Policies 

Grading: On each assignment, a subset of problems will be 
graded. Your grade will be based on these problems only. 

Late Assignments: No late assignments will be accepted. 

Regrades: Requests for regrades must be submitted in 
writing. Requests will not be accepted until 48 hours after 
assignments are returned, and all requests must be 
submitted within one week. 

Academic Honesty: Collaboration is encouraged, but you 
must follow the academic honesty policy! 



Academic Honesty 

•  Each student must write down his or her own solutions 
independently in his or her own words. 

•  Each student must submit a list of anyone with whom the 
assignment was discussed. 

•  All sources (internet included) must be properly credited. 

•  Solution sets from this course or any other course cannot 
be used under any circumstances. 
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Interpretation: Relative Frequency 

Example: If we say a well-manufactured coin lands on heads 
with probability 0.5, we might mean that if we flip the coin 
a large (infinite) number of times, the coin should land on 
heads about half the time. 

What is the probability that a card randomly selected from a 
deck is a spade? 

What is the probability that a spaceship will remain 
operational during a mission to Mars?  Hmmm…. 
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Interpretation: Subjective Belief 

Example: A detective believes that a particular suspect 
committed the crime with probability 0.7 

Can be useful when we need a principled, systematic way to 
make choices in the presence of uncertainty  

Related to gambling odds… 
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Basic Definitions 

•  An experiment is an activity (real or conceptual) that 
results in exactly one of several possible outcomes. 

•  The set of all possible outcomes of an experiment is called 
the sample space, typically denoted Ω. 

•  Examples: 
•  Flipping a single coin. 
•  Flipping two coins in a row. (Multiple alternatives..) 
•  Pulling a random card from a deck. 
•  Running a computer program. 
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Samples Spaces 

There can be more than one right way to define the sample 
space for a particular experiment. 

Always has to satisfy two properties: 
•  Elements must be mutually exclusive 

 (only one can be the real outcome) 
•  Elements must be exhaustive 

 (we always obtain an outcome from the sample space) 
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Events 

•  An event is a collection of outcomes – that is, a subset of 
the sample space. 

•  If the experiment is a toss of a die, events could include: 
 “the number is odd” 

 “the number is less than 3” 
 “the number is 2” 

•  Each of these can be represented as a set of atomic events – 
the basic elements of the sample space. 
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  A = {1,3,5}  “the number is odd” 
  B = {1,2,3}  “the number is ≤ 3” 
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Probability Axioms 

Probability Axioms: 
•  Nonnegativity: P(A) ≥ 0 for every event A 
•  Additivity: If A and B are disjoint events, then  

P(A∪B) = P(A) + P(B) 
•  Normalization: P(Ω) = 1 

Other properties can be derived from these axioms… 
•  Suppose that A, B, and C are all disjoint events.  What is 

P(A∪B∪C)? 
•  What is P(∅)? 
•  What is P(Ac)? 
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Other Properties of Probability Laws 

For any events A and B, 
•  If A⊂B then P(A) ≤ P(B) 
•  P(A∪B) = P(A) + P(B) – P(A∩B) 
•  P(A∪B) ≤ P(A) + P(B) 

Challenge: Try to prove these properties on your own using 
the axioms of probability and the rules of set theory! 
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Conditional Probability 

•  Suppose we have a fair die.  If we are told that the number 
rolled is odd, what is the probability that it is 3? 

P(number is 3 | number is odd) 

•  When all outcomes are equally likely, we can define 
P(A | B) = # elements in A∩B / # elements in B 

•  Generalizing this idea, we can define 
P(A | B) = P(A∩B) / P(B) 

•  Can show that conditional probabilities satisfy our 3 
axioms with B playing the role of Ω 


