CS260: Machine Learning Theory
Problem Set 3
Due Monday, November 7, 2011

Ground Rules:

o This problem set is due at the beginning of class on November 7. Slightly late assignments should be
submitted directly to the grader, and will be penalized 25% (i.e., 25 points). No assignments will be
accepted more than 24 hours late.

e You are strongly encouraged to discuss the problem set with other students in the class, as long as you
follow the rules outlined in the course academic honesty policy.

o All solutions must be typed; LaTeX is strongly recommended. Hand-written solutions will be penal-
ized 25%, and unreadable answers will not be graded.

e You will be graded on both correctness and clarity. Be concise and clear, especially when writing
proofs. Please make sure you define any notation that you use or variables that you introduce!!
You will be graded on what you wrote, not what you intended to write.

Problems:

1. The Normalized Perceptron (25 points total)

In the basic version of the Perceptron algorithm that we covered in class, every time a mistake is made
on round ¢, weights are updated according to the formula

W1 — Wy + Yu Ty .

Consider a modified version of the Perceptron algorithm in which, every time a mistake is made on
round ¢, weights are instead updated using the rule

—

Tt

wt+1 < 117,5 + ytm .
t

Call this the Normalized Perceptron. Note that weights are still updated only on rounds in which a
mistake is made.

(a) State and prove a mistake bound for the Normalized Perceptron algorithm that holds under the
assumption that there exist a vector « and value A > 0 such that ||@|| = 1 and for all ¢,

Yt (iﬂt ﬁ) > A
||

Hint: You do not need to modify the Perceptron mistake bound proof that we discussed in class
to solve this problem. (15 points)

(b) Compare the mistake bounds of the Perceptron and the Normalized Perceptron under the typical
Perceptron assumptions (i.e., the assumption there exist a vector & and values v > 0 and D > 0
such that ||| = 1 and for all ¢, y; (& - @) > v and ||Z;|| < D). Does one algorithm yield a
tighter bound? (10 points)

2. Perceptron with No Perfect Target (30 points)

For any fixed value v > 0, we can define the hinge loss of a linear threshold function represented by
its normal vector & on a sequence of points (Z1,y1),- -, (Zr,yr) as

T
Lo (@) =) " max(0,y — (@ - Z1)y).
t=1

In class, we derived a mistake bound for the Perceptron algorithm under the assumption that a perfect
target function with a margin of -y exists. In this problem, we will derive an alternative guarantee for
the Perceptron algorithm that holds even when there is no perfect target. Suppose that we run the
basic Perceptron algorithm on a sequence of 7" points (Z1,y1), - , (Z1,yr), such that ||Z;|| = 1 and
yt € {—1,1} for all t. Define
H = min L.(4).
||| =1

State an upper bound for the number of mistakes made by the Perceptron algorithm on this sequence
in terms of 7 and H. Your bound should reduce to 1/7? when H = 0. Describe how to modify
proofs that we discussed in class to derive this bound. You do net need to provide a full proof, only a
description of the modifications.

3. Variations on Winnow (45 points total)

In class, we showed that when 3 = 1, Winnow achieves a mistake bound of 2 + 3k(1 + logn) on the
class of monotone disjunctions, where n is the total number of variables (i.e., features) and k is the
number of “relevant” variables (i.e., variables that appear in the target disjunction).

(a) Assuming a perfect target disjunction exists, it is possible to achieve a better regret bound by
updating the weights of irrelevant variables more aggressively. In particular, suppose we modify
Winnow so that if a mistake is made on an example that should have been labeled negative (i.e.,
when y; = 0), we set the weights of all positive variables to zero. Give a mistake bound for this
algorithm. Describe how to modify proofs we discussed in class to derive this bound. You do
not need to provide a full proof, only a description of the modifications. (25 points)

(You might ask why we would not always use this version of Winnow if the mistake bound is

better. Well, would you expect this variation to perform better or worse than the original Winnow
if the assumption of a perfect target function were violated?)

(b) Suppose we modified the version of Winnow that we analyzed in class so that it doubled the
weights on positive variables whenever 4, = 1, even on rounds in which no mistake was made.
Show how an adversary could force this algorithm to make an unbounded number of mistakes,
even if there is a monotone disjunction that perfectly labels the data. (20 points)

