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In this lecture we will continue our discussion of the Adaboost algorithm and derive a bound on the gen-
eralization error. We saw last time that the training error decreases exponentially with respect to the number
of rounds T . However, we also want to see the performance of this algorithm on new test data. Today we
will show why the Adaboost algorithm generalizes so well and why it avoids overfitting.

The first part of the lecture will recap the Adaboost algorithm, and introduce an upper bound on the gener-
alization error based on VC dimension. However, it turns out that this bound does not capture the fact that
Adaboost avoids overfitting in practice.
To capture this, we will turn to the notion of large margin. The second part of the lecture will show the
existence of a large margin classifier of the form: h(~x) = sign(

∑T
t=1 αtht(~x))

Finally, we will bound the generalization error of Adaboost by making use of the following two facts:
1. Adaboost will increase the margin as T grows.
2. A large margin on the training data implies a smaller generalization error err(h).

1 Adaboost Algorithm

We first review the Adaboost algorithm.

Input: m labeled data points (~x1, y1)...(~xm, ym) and a weak learning algorithm A that is guaranteed to out-
put a label with error less than 1

2 − γ.

Initialize D1(i) = 1
m ∀i

For t = 1 : T
Run A on a sufficiently large sample drawn i.i.d. from Dt to produce some function ht
Set εt =

∑m
i=1Dt(i)1(ht(~xi) 6= yi)

Set αt = 1
2 ln(1−εt

εt
)

∀i update Dt+1(i) = Dt(i)
Zt

exp(−αtyiht(~xi))

Output h(~x) = sign(
∑T

t=1 αtht(~x))

Here 1(·) is an indicator function that is 1 if its input is true and 0 otherwise, and Zt is the normalization
factor needed to ensure that Dt+1 is a probability distribution.
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Last time we derived the bounds for the empirical error, showing that

êrr(h) ≤ exp(−2γ2T ) if εt ≤
1
2
− γ ∀t

But how well does this function h perform for new samples? In other words, what is the upper bound for
the generalization error of h?

1.1 An upper bound based on VC Dimension

To bound the generalization error of Adaboost, we will look at the class of functions from which it chooses
its output, which we will denote as H ′. From there, we could potentially find a bound on the VC dimension
or growth function for this class, and then apply the generalization error bounds that were discussed in the
first half of the course.

Let H ′ = {h : h(~x) = sign(
∑T

t=1 αtht(~x)) for h1, h2, ..., hT ∈ H}

Let d = V Cdim(H). It is possible to show (though we will not do it here) that with high probability,

err(h) ≤ êrr(h) + Õ

(√
Td
m

)
where Õ() denotes that we are hiding log terms in the Big-O notation.

As T grows, êrr(h) decreases, while the class of functions we are choosing from becomes more complex

and
√

Td
m increases. According to the Occam’s Razor principle, we would expect to find that there is an

optimal value of T that optimizes this trade-off and minimizes err(h).

However in real test situations, people have found that err(h) continues to decrease even after êrr(h)
reaches 0. This is good news in the sense that overfitting does not occur as T increases, but why does it
contradict the Occam’s Razor principle above? (The bound is still valid, it just doesn’t convey the right
intuition.)

The reason is that not only do we have to know whether our hypothesis h is right or wrong, but also with
how much “confidence” it labels our data. Even as êrr(h) reaches 0, the confidence (as measured by the
margin) continues to increase with the number of rounds, which decreases the generalization error err(h).

2 Existence of Large Margin Classifiers

Recall that for a linear separator h(~x) = sign(~w · ~x), if ||~w|| = 1, then we define the margin of a point
(~xi, yi) as:

margin = (~w · ~xi)yi
This is simply the distance between the linear separator and the point ~xi.
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Similarly, when we have h(~x) = sign(
∑T

t=1 αtht(~x)), we can define the margin as

margin =
∑T

t=1 αtht(~xi)yi∑T
t=1 αt

In Theorem 2, we show that if the weak learning assumption holds, then there must exist a large margin
classifier of the form h(~x) = sign(

∑T
t=1 αtht(~x)). The proof is based on the Minimax Theorem.

Recall the Minimax Theorem:

Theorem 1. For any matrix M ∈ Rm×n

min
p∈∆m

max
q∈∆n

~pTM~q = max
q∈∆n

min
p∈∆m

~pTM~q.

This immediately implies that for all M we also have

max
p∈∆m

min
q∈∆n

~pTM~q = min
q∈∆n

max
p∈∆m

~pTM~q.

Using the above, we can define the following theorem, using a finite H for simplicity:

Theorem 2. Consider a finite class H = {h1, · · · , hn} of size n and a set of points (~x1, y1), ..., (~xm, ym).
Suppose ∀ distributions ~p ∈ ∆m,∃h ∈ H such that

m∑
i=1

pi1(h(~xi) 6= yi) ≤
1
2
− γ

Then ∃~q ∈ ∆n such that mini∈{1,··· ,m}
∑n

j=1 qjhj(~xi)yi ≥ 2γ.

Here, ~p corresponds to a distribution over input points and ~q corresponds to a weighting over the func-
tions in H (like ~α will be). The result then says that if the weak learning assumption holds then there exists
a function h(~x) = sign(

∑n
j=1 qjhj(xi)) that has margin ≥ 2γ. This is kind of a sanity check – if it wasn’t

the case that a large margin classifier of this form always existed, then we couldn’t hope to say that Adaboost
is increasing the margin.

Proof: Let us define a matrix M as follows:

Mij = 1(hj(~xi) 6= yi)

Fixing ~p ∈ ∆m, we have:

min
~q∈∆n

~pTM~q = min
~q∈∆n

m∑
i=1

n∑
j=1

piqj1(hj(~xi) 6= yi)

= min
~q∈∆n

n∑
j=1

qj

m∑
i=1

pi1(hj(~xi) 6= yi)

= min
j∈{1,··· ,n}

m∑
i=1

pi1(hj(~xi) 6= yi)

≤ 1
2
− γ
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Since this holds for any distribution ~p, we have

max
~p∈∆m

min
~q∈∆n

~pTM~q ≤ 1
2
− γ

By the Minimax Theorem, this implies that

min
~q∈∆n

max
~p∈∆m

~pTM~q ≤ 1
2
− γ

Fixing ~q ∈ ∆n, leaves us with:

max
~p∈∆m

~pTM~q = max
~p∈∆m

m∑
i=1

pi

n∑
j=1

qj1(hj(~xi) 6= yi)

= max
i∈{1,··· ,m}

n∑
j=1

qj1(hj(~xi) 6= yi)

The expression we derived above implies that there exists a value of ~q such that

max
i∈{1,··· ,m}

n∑
j=1

qj1(hj(~xi) 6= yi) ≤
1
2
− γ

Note that this does not necessarily hold for ∀~q. We are only guaranteed it holds for the value of ~q that mini-
mizes the expression above.

This implies that for this particular value of ~q, ∀i

n∑
j=1

qjhj(~xi)yi

=
n∑
j=1

qj(1− 1(hj(~xi) 6= yi))− qj1(hj(~xi) 6= yi)

=
n∑
j=1

qj(1− 2 ∗ 1(hj(~xi) 6= yi))

= 1− 2
n∑
j=1

qj1(hj(~xi) 6= yi) ≥ 2γ

3 Bounding the Generalization Error of Adaboost

Let’s now turn our attention back to Adaboost. We can prove the following theorem.
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Theorem 3. Let h be the function output by Adaboost after T rounds. Then for any θ:

1
m

m∑
i=1

1(yih(~xi) ≤ θ) ≤
T∏
t=1

2
√
ε1−θt (1− ε1+θ

t )

We see that when θ = 0, this is precisely the bound on the training error of h that we derived in the previous
lecture. Because the proof of this theorem is extremely similar to that proof, we will not go through it in
detail.
We can see that if θ ≤ γ, then the right hand side goes to 0 as T →∞.
Now let us define CO(H), the convex hull, as follows:

CO(H) =

{
f : f(~x) =

T∑
t=1

αtht(~x), T ≥ 1, ~α ∈ ∆T , h1, h2, ...hT ∈ H

}

We state the following without proving it.

Theorem 4. For a sample of size m, for any δ with probability 1− δ, ∀f ∈ CO(H), ∀θ ≥ 0 :

Pr~x∼D[yf(~x) ≤ 0] ≤ 1
m

m∑
i=1

1(yif(~xi) ≤ θ) +O

(
1√
m

√
logm log |H|

θ2
+ log

1
δ

)

Let’s examine this theorem. We see that if h(~x) = sign(f(~x)), then the left hand side of this expression
is precisely err(h). The first term on the right hand side is precisely the fraction of points in our sample that
have margin less than θ (which we know from the previous theorem goes to 0 as T gets big). Therefore, this
theorem provides a bound on err(h) with one term that goes to 0 as T gets big, and one term that doesn’t
depend on T at all. This confirms the empirical observations that the generalization error of Adaboost tends
to decrease as T gets big.

5


