
CS269: Machine Learning Theory
Lecture 13: Boosting

November 8, 2010

Lecturer: Jennifer Wortman Vaughan
Scribe: Kun Huang, Maria Pavlovskaia, Matt Wang

1 Introduction to Boosting and the AdaBoost Algorithm

1.1 Background and Motivation

The idea behind boosting is to construct an accurate hypothesis from a set of hypotheses that are each
guaranteed to perform slightly better than random guessing on particular distributions of data. This idea
originally arose from attempts to prove the robustness of the PAC model. By robustness, we mean the
notion that slight alterations to the model definitions should not result in dramatically different results, such
as the ability to learn different classes of functions.

The question of whether weak learning implies strong learning was first posed in the late 80s by Kearns
and Valiant. The first boosting algorithm was developed by Rob Schapire in order to answer this question.
This paved the way for the immensely popular AdaBoost algorithm, which was developed by Freund and
Schapire a couple of years later.

To formalize this discussion we will first review the basic definition of PAC learnability, which we now
refer to as strong PAC learnability to distinguish it from the weak version. Note that this is the standard
definition that we have discussed in class previously.

Definition 1. Strong PAC Learnability: C is PAC learnable by H if there exists an algorithm A such that
for any concept c ∈ C, for any distribution D, for any ε, δ ∈ (0, 1), given a polynomial number of examples
i.i.d from D and labeled by c, A outputs an h ∈ H such that with probability ≥ 1− δ, err(h) ≤ ε.

Now we will define the notion of weak PAC learnability. This definition essentially says that we can
weakly learn a concept class C if we can produce a hypothesis that does some amount better than random
guessing.

Definition 2. Weak PAC Learnability: C is weakly learnable by H if ∃ algorithm A, ∃γ > 0, such that
∀c ∈ C, ∀D,∀δ > 0, given a polynomial number of examples,A outputs an h ∈ H such that with probability
≥ 1− δ, err(h) ≤ 1

2 − γ.

It should be clear that strong learnability implies weak learnability. The question we want to answer is
whether weak learnability implies strong learnability. We consider two versions of this question:

• Does weak learnability imply strong learnability for a fixed distribution D?

• Does weak learnability imply strong learnability in the general PAC sense?

The answer to the first case is no, which can be illustrated through the following example:

1



Suppose the input space is {0, 1}n (all binary strings of length n). Define the distribution D so that
PD(< 0, 0, · · · , 0 >) = 1

2 , and D is uniform everywhere else. C is all functions {0, 1}n → {0, 1}. Given a
set of examples, the algorithm is likely to learn the label of the string < 0, 0, · · · , 0 > since it is very likely
that it will appear amongst the examples. However, most other new points will pose new information that
we know nothing about, since we are only given a polynomial number of points but there is an exponential
(2n) number of points in total.

The answer to the second case is yes, as we will start to see in the following sections. Let’s first define
this question more formally:

If C is weakly learnable byH, does there existH′ such that C is (strongly) learnable byH′?
That is, suppose we are given examples drawn i.i.d from D and labeled by c ∈ C, and a weak learning

algorithm A for C. Can we produce a new function h such that with high probability, err(h) ≤ ε, for any
fixed ε > 0?

1.2 AdaBoost

The algorithm:
The input to the AdaBoost algorithm is a weak learning algorithm A and a set of points (x1, y1), ..., (xm, ym)

where yi ∈ {−1, 1}. Note that this set of points is fixed. Therefore in order to draw new information from
A, we modify the distribution of these points and run A on a polynomial sized sample chosen over this
distribution. We do this for T rounds, with the idea that each round finds a new weak function to classify
the points in the current sample that previous rounds were unable to classify well. Note that αt below is
a parameter of the algorithm, and we will define this parameter optimally in our analysis. Formally the
algorithm does the following:

• Initialize D1(i) = 1
m ∀i (uniform distribution)

• For t = 1, ..., T

– Draw a polynomial sized sample from Dt

– Run A on this sample to produce ht
– Update the distribution:

Dt+1(i) =
Dt(i)exp (−αtyiht(xi))

Zt

This algorithm produces as output a function h where

h(x) = sign

(
T∑
t=1

αtht(x)

)

It can be noted that, when the algorithm gets the label correctly, yiht(xi) = 1 and yiht(xi) = −1, when
labeled wrong. Zt is the normalization factor and is equal to:

m∑
i=1

Dt(i)exp (−αtyiht(xi))

AdaBoost is popular for a number of reasons:

2



• It has no tricky parameters to set.

• It does not require prior knowledge of γ (which is discussed below).

• It is computationally simple.

• Its training error goes to zero very quickly.

• It generalizes very well and avoids over-fitting.

• It satisfies nice theoretical guarantees.

2 Analysis of AdaBoost

2.1 Goal

The focus of today’s lecture is the traditional analysis of training error. In particular, we will show that the
training error of the algorithm goes to zero exponentially in the number of time steps.

2.2 Some Definitions

Definition 3. Define εt to be the error of ht on the distribution Dt that was used to learn ht

εt := Pr
X∼Dt

(ht(x) 6= c(x)).

Definition 4. Let γt := 1/2− εt. This is a measure of how much better than random guessing we’re doing
using this weak classifier at time t.

2.3 The Main Result

Theorem 1. Let h be the function output by AdaBoost after T rounds. Then

êrr(h) ≤ e−2
PT

t=1 γ
2
t .

In particular, if γt ≥ γ ∀t,
êrr(h) ≤ e−2γ2T .

That is, the training error decreases exponentially as the number of rounds T grows. Since the training
error goes to zero really quickly, the algorithm attains 0 training error in very few time-steps. (Note that the
training error is always a multiple of 1/m, so if the bound gets lower than this, we are guaranteed to have
êrr(h) = 0.)

Notice that while the error bound depends on γ, the algorithm has no γ dependence. Hence we get the
error bound guarantee without having to know γ to run the algorithm.

3



2.4 The Proof

The proof will proceed in three steps:

1. Unravel the recurrence on Dt to show that

DT+1(i) =
e−yi

PT
t=1 αtht(xi)

m
∏T
t=1 Zt

2. Use Step 1 to show that

êrr(h) ≤
T∏
t=1

Zt

3. Show that Zt = 2
√
εt(1− εt) for all t, and plug this into Step 2 to achieve the bound.

Step 1

We unravel the recurrence for Dt to get

DT+1(i) =
DT (i)e−αT yihT (xi)

ZT

=
DT−1(i)e−αT−1yihT−1(xi)e−αT yihT (xi)

ZTZT−1

(continue recurrence substitutions until we reach D1(i))

= D1(i)
∏T
t=1 e

−αtyiht(xi)∏T
t=1 Zt

=
∏T
t=1 e

−αtyiht(xi)

m
∏T
t=1 Zt

=
e

PT
t=1−αtyiht(xi)

m
∏T
t=1 Zt

=
e−yi

PT
t=1 αtht(xi)

m
∏T
t=1 Zt

.

Step 2

Now we try to bound the empirical error êrr(h). To do this, we first consider the exponential term

e−yi
PT

t=1 αtht(xi).

If the final classifier makes a mistake, sign(
∑T

t=1 αtht(xi)) 6= sign(yi). Thus sign(yi
∑T

t=1 αtht(xi)) = −1
and −yi

∑T
t=1 αtht(xi) ≥ 0. Hence

e−yi
PT

t=1 αtht(xi) ≥ 1 if h(xi) 6= yi.

4



Also, since ex ≥ 0 ∀x,
e−yi

PT
t=1 αtht(xi) ≥ 0 if h(xi) = yi.

Hence

êrr(h) =
1
m

m∑
i=1

Ih(xi)6=yi
≤ 1
m

m∑
i=1

e−yi
PT

t=1 αtht(xi)

(substituting from Step 1)

=
1
m

m∑
i=1

m
T∏
t=1

Zt DT+1(i)

=
m∑
i=1

DT+1(i)
T∏
t=1

Zt

(since the sum of the weights is 1)

=
T∏
t=1

Zt.

This gives êrr(h) ≤
∏T
t=1 Zt.

Step 3

Finally, we bound the values of Zt.

Zt =
m∑
i=1

Dt(i)e−αtyiht(xi)

=
∑

i: yi=ht(xi)

Dt(i)e−αt +
∑

i: yi 6=ht(xi)

Dt(i)eαt

Here we have broken up the sum into 2 parts: the first is the sum over all points labeled correctly and the sec-
ond is the sum over all points labeled incorrectly. Now since

∑
i: yi 6=ht(xi)

Dt(i) = εt and
∑

i: yi=ht(xi)
Dt(i) =

1− εt,

Zt = (1− εt)e−αt + εte
αt .

Now, we want to minimize
∏T
t=1 Zt. To do this, we minimize each Zt with respect to αt.

Setting ∂Zt/∂αt = 0, we obtain

0 =
∂Zt
∂αt

= −(1− εt)e−αt + εte
αt .

Solving for αt gives αt = 1
2 ln

(
1−εt
εt

)
. Note: it’s ok to let αt depend on εt because εt can be calculated

from ht alone.
Plugging in αt,

Zt = (1− εt)e−αt + εte
αt = 2

√
(1− εt)εt.

5



Now combining Steps 2 and 3,

êrr(h) ≤
T∏
t=1

Zt =
T∏
t=1

2
√

(1− εt)εt

(using γt =
1
2
− εt)

=
T∏
t=1

2

√
(
1
2
− γt)(

1
2

+ γt)

=
T∏
t=1

√
1− 4γ2

t

(using 1 + x ≤ ex)

≤
T∏
t=1

√
e−4γ2

t =
T∏
t=1

e−2γ2
t = e−2

PT
t=1 γ

2
t ≤ e−2Tγ2

.

This completes the proof.
We will discuss the generalization error of AdaBoost in the next lecture.

6


