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Today we are going to continue on the topic of adversarial online leartingarticular, we will examine
an alternative view of online learning based on regularization. We will ghaivby using regularization,
algorithms become more stable, and will derive a regret bound for algoriththis form.

1 Online Convex Optimization

Before jumping into regularization we first review the online convex optimizatésting. The general regret
bound that we prove will hold in this very general setting, though the patiexample we consider later
this lecture will be in the simple expert advice setting.

e For each round

— Algorithm choosesv;, € K, whereK is a convex set.
— Adversary/Nature chooses the convex loss fundtjon
— Algorithm suffers loss; (w;) and observes the full functidp

T T
e Regret:) l;(w;) — min > I;(w)
t=1 weK 4=]

The functioni; chosen by the adversary each round can be an arbitrary conveihasi®n with bounded
output. The results we prove will hold under the assumption that the lossé®anded irff0, 1]. We can
think of regret as the accumulated loss by comparing our result with thepbssible result. Since the
adversary can simply set the loss function to be 1 everywhere on eaict, id would be uninteresting to
try to find an algorithm that minimizes absolute loss. Therefore, we try to findlgggithm that minimizes
regret instead.

2 Follow the Leader

To show how regularization works, we first show an example where amiddm that looks very reasonable
fails in an adversarial setting. We will show that by adding a regularizercan achieve a much better
result.



Consider the simple expert (linear loss) setting. Intuitively, it might seem @ dp@od idea to choose
the distribution with the best performance on previously observed data. This is eguiivalehoosing the
expert with the minimum empirical loss.

t—1

Wy = arg min ls - W
WEA, 1
s=

=arg min L; 1 - .
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However, an adversary knowing our algorithm can choose a bagseguo fool our algorithm. Consider
the following sequence where there are only two options for each step.

1
l = (5,0),12 =(0,1),l3=(1,0),l4 = (0,1), - -

Since our algorithm sets all the weight on the best expert in history, thentve@guence generated by
our algorithm becomes:

11
w1 = (5, 5),102 = (0, 1),w3 = (1,0),11)4 = (0, 1), tee

We can easily see that our algorithm is tricked by the adversary. In fachest expert for this sequence is
either one of the two experts, which each h@ye loss. Thus, the regret for this algorithm would be:

T T
R t: T — —=—
egre 7 =3

which is linear in T.

3 Follow the Regularized Leader

3.1 Observation

In the previous section, the “Follow the Leader” algorithm is proved to kikithan adversarial setting. In
this section we will show a slightly modified algorithm, namely, “Follow the Reguldriz=ader.”

t—1

@ = argmin [77 Sz:; ls(w) + R(w) @)

Here R(w) is the regularizer, which is a convex function @f andn > 0 is a parameter. By adding
this term we can get a more stable algorithm which doesn’t switch wildly. Inafh@ifing sections, we will
try to prove the regret bound for the Follow-the-Regularized-Leaderithm.
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3.2 Be-the-Regularized-Leader Lemma

Before stating the regret bound for Follow the Regularized Leader,raxeeihe following useful lemma.
This lemma can be viewed as a regret bound for a hypothetical algorithmmhthases the point minimiz-

t
ingn > (@) + R(w) at each time. Note that it is not actually possible to run such an algorithm since

s=
Iy is not known to the algorithm when this point is chosen. However, we willdde @ use this bound to
derive the regret bound for FTRL.

Lemma 1 (Be-the-Regularized-Leader Lemmépr any w € K,n > 0,

T T
S o1 - -

D Uli) = Y (@) < —(R(@) — R(h))

t=1 t=1 N
Proof: This prove is done by induction.
ForT = 0, the LH S of the equation is 0. By definition:

wp = argmin [ -0+ R(wW)]
weK

Therefore, for anyy,
RHS = “(R(&#) — R(#1)) > 0 = LHS
n

Therefore the lemma holds fa@r = 0.

Now suppose the equation holds fBr 1, then:

T-1 T-1 1

Vi € K,y () — Y (W) < = (R(@) — R(h))
t=1 t=1 N
T-1 1 T-1 1

Vi € K, ) 1i(iy1) + ;R(Uﬁ) < ) (@) + ER@B)

t=1 t=1
Since the inequality holds for any we replace it withiiz 1

T—1 1 T—1

D (i) + = R() <Y L) + —(R(Wr41))

t=1 N t=1 N
Then adding(wr41) to both sides we get:

T T

> L(W1) + g R(w) < X L(@rn) + 5 (R(wr41))

t=1
By the definition,wr; is thew € K that minimizers the RHS of the equation. Therefore, any athean
only increase the value of RHS. Therefore,
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for any«. Hence the inequality also holds fér Therefore by induction we proved Lemma 1.
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3.3 Follow-the-Regularized-Leader regret bound.

Now by using the Be-the-Regularized-Leader Lemma we just provedaweaget an upperbound on the
regret function.

T
From the Be-the-Regularized-Leader Lemma, addingd,(w;) on both sides of the equality we can get:
t=1

E

T
() = - (i) + C(RE) — R()
t=1
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We can see that the left hand side of the inequality is the regret functidnthanright hand side is its
T

upperbound. Therefore, our goal would be to find the upperbotind @ (w;) — {;(wW;+1)) and R(w) —
t=1

R(wy).

3.4 Jensen’s Inequality

In order to continue deriving the upperbound of our regret, we hafiestointroduce Jensen’s Inequality.
Jensen’s Inequality is very helpful in machine learning.

Theorem 1. ( Jensen’sInequality ) For any convex functionf, f(E[z]) < E[f(z)]; for any concave function,
E[f(z)] < f(E[x]).

To remember which way the inequalities go, it is useful to keep in mind the follopiitgre.

Convex function f Concave function f
—e—
f(E [x])
/ ) X
f(E [x])
X > X
(a) convex graph (b) concave graph
3.5 Entropy

While the Follow the Regularized Leader bound holds for any convex losstibn bounded in [0,1] for
every round, we first turn our attention back to the simple expert (lineg) $&dting again to see an example
of how it can be used.



To find the upperbound of the regret function, we have to define gutagzation term. The regulariza-
tion term works by making the algorithm tend to choosg that is more balanced and does not concentrate
on a single expert. From the Follow the Leader algorithm, we can see thigtaxittan that blindly chooses
the best expert by past data could be easily fooled by an advershitg; an algorithm that sets balanced
weights to each expert would be less vulnerable.

Intuitively, using the negative entropy as the regularization term would Qeita adequate method for
two reasons. First, the entropy gives a measure of how uniform the tseagh, a higher entropy tend to
make the weights less extreme. Second, the entropy has a clear boundiniptifies the process of find-
ing the upperbound of the regret function.

First we introduce the entropy function:
H() = Zn: wilog—  (Define0 - log = = 0)
i—1 Wi 0

We can see that:
e Wheni is uniform— H (&) = n- L logn = logn
e When concentrates on one point H (W) = 1logl =0
Further more we want to show the fact thiat € A,,,0 < H (&) < logn
1. Sinced < w; < 1, we can see that; log .-~ > 0.

2. By using Jensen’s inequality we mentioned in last section we can deeveltbwing upper bound
on entropy:

n n
1 1
H (W) = w;log — <log » w;—
(@) Z; ilog - Z; o
n
:log21zlogn
i=1

Therefore we can see thati € A,,,0 < H(w) < logn.

By using the negative entropy as our regularizer, we can derive peripund on the second term of equa-
tion (3).

- 1
= R(W) = —H (W) = — Y _w;log —
=1

= —logn < R(wW) <0

= ;(R(vﬂ) — R(uh)) < Liogn (3)
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3.6 Randomize Weighted Majority

Before deriving the upperbound of the first term in equation (2) to ggtpeerbound of our regret function,
we will first try to prove that the Randomized Weighted Majority algorithm, whigkelJtalked about last

week, turned out to be the same algorithm as Follow the Regularized Lelgdeitham using a negative
t—1
entropy regularizer. To prove this fact, we first find a lowerbound dn [;(«) + R(w) that holds for all

s=1
W € A,, and then show that Randomized Weighted Majority chooses weights that minimisizapression.

t—1

Y 1s(w) + R(w)

s=1 S

-+
|
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Ny Iy @ — H(w) (4)
1

=nLy_y - % — H(w)

n
= UZLi,t—lwi - Zwi : logul)i

1
—sz nth 1 _IOgi)

=1 Wi

e an t—1
=— Z w; log(———) (5)
an t— l
— log( Z w;——— ¢ :
“log(3 e ) (6)

t—1 t—1
Thereforevw, n > Is(w) + R(w) > equation (6). Hence, if we can show thad _ Is(w;) + R(w;) equals

s=1 s=1
equation (6) for the weightsi; chosen by the Randomized Weighted Majority Algorithm, it must be the
case that the Randomized Weighted Majority Algorithm chooses weights that meniniszexpression.

Before continuing the proof, we first recall that the Randomized Weightajbrity Algorithm chooses
a set of weightss, for every round, where

e*TILl,z—1

Wit = —
Z e—TILj,t—1

)

(7)

Now we will try to prove that the Randomized Weighted Majority algorithm is therélym that chooses
t—1
Wy = argmingei |n Y. ls(W) + R(w)| for every round. By plugging equation (7) into equation (5) we

s=1



get:

e ant 1

nZl_;-tUt Zwltlog — ) (8)
= - Z W ¢ 10%(2 e i)
i=1 j=1

n
—log Z e ki1 )
i=1

t—1
Therefore, we can show that) " I;(w;) + R(w;) equals equation (6) for the weights chosen by the

s=1
Randomized Weighted Majority Algorithm. Hence, it must be the case that théoRdaped Weighted Ma-
jority Algorithm chooses weights that minimize this expression, and we cardumnthat the Randomized
Weighted Majority algorithm is the Regularized Leader algorithm when a rvegatitropy regularizer is
used.

3.7 Upperbound on regret function

Knowing the upperbound of the regularization term derived in sectionri3tee closed form ofj proved
in section 3.6 we can therefore start deriving an upperbound on thet fagction in equation (1). We will
first introduce a Lemma, which we will prove in the next class.

Lemma 2. For Randomized Weighted Majority, for all ¢,
Iy -y — Iy -1 < 21

Assume Lemma 2 is true, we can then obtain the upperbound of the first terguatian (2). To-
gether with the upperbound on the second term in equation (2) derimedefguation (3), we can obtain an
upperbound on the regret function:

Mﬂ

(@) — L(@a)) + 37<R<w> — R())

-
Il

1

1
2Tn + 5(log n) (10)

IN

To obtain the optimal upperbound we choosesnfteat makes the two terms in equation (10) equal. Which

isn = \/log” Plugging back; to equation (10) we geRegret < 2,/2T logn which is proportion to,/T
and consistent with the regret bound we proved for RWM in last weéksses.
In the next class, we will prove lemma 2.




