
CS269: Machine Learning Theory
Lecture 10: Weighted Majority and Online Convex Optimization

October 27, 2010

Lecturer: Jake Abernethy
Scribe: Karan Chaudhry and Sendie Hudaya

1 Randomized Weighted Majority

In the last lecture, we introduced the Randomized Weighted Majority algorithm and began to prove a regret
bound. Recall that Randomized Weighted Majority assigns an exponential weight wt(i) to each expert i at
time t defined as follows:

wt(i) = e−ηLt−1(i)

where η is a learning parameter, lt ∈ [0, 1]n is the vector of expert losses at time t, and Lt is the vector of
cumulative losses,

Lt =

t∑
s=1

ls

We initialize each w1(i) to 1 and for each round t, the weight wt(i) is updated according to learning param-
eter η and loss at t − 1. We wish to decrease the weight of an expert if it has high loss, and increase the
weight if its loss is low. Also recall that in Randomized Weighted Majority algorithm, the player chooses
predictions at random among experts. The probability of choosing an expert is simply the weight of that
expert’s prediction normalized by the sum of all expert weights:

pt(i) = wt(i)
W

W =
n∑
i=1

wt(i)

In the last lecture, we started to prove the following regret bound for Randomized Weighted Majority.

Theorem 1. Let L∗ be a known upper bound on the loss of the best performing expert, and assume L∗ ≥
2 log n. The regret of Randomized Weighted Majority run with parameter η =

√
2 log n/L∗ is no more than

2
√

2L∗ log n.

Note that we can set L∗ = T if no other information is known.1 This bound implies that the regret of
Randomized Weighted Majority is O(

√
T log n). Last time we introduced two tricks that will help us prove

the bound on regret:

Fact 1. log(1 + x) ≤ x,∀x (Note this is equivalent to 1 + x ≤ ex from lecture 2)

1Of course we still need to know T to do this. There are tricks for achieving low regret when T is not known in advance,
including the common “doubling trick”, but we won’t get to those here.

1



Fact 2. eαx − 1 ≤ (eα − 1)x,∀α,∀x ∈ [0, 1]

Let us now complete the proof of the regret bound for Randomized Weighted Majority.
Proof: By the end of last lecture, we arrived at the following inequality, where i∗ is the “best” expert, that
is, the expert with the lowest cumulative loss:

T∑
t=1

pt · lt ≤
1

1− e−η

(
log

(
n∑
i=1

w1(i)

)
− log

(
n∑
i=1

wT+1(i)

))
Using this, we can bound the cumulative loss of the algorithm as follows:2

T∑
t=1

pt · lt ≤
1

1− e−η

(
log

(
n∑
i=1

w1(i)

)
− log

(
n∑
i=1

wT+1(i)

))

=
1

1− e−η

(
log(n)− log

[
n∑
i=1

e−ηLT (i)

])
(1)

≤ 1

1− e−η
(

log(n)− log
(
e−ηLT (i∗)

))
=

1

1− e−η
(log(n) + ηLT (i∗))

≤ 1

1− e− log(1+η)
(log(n) + ηLT (i∗)) (2)

=
1

1− 1
1+η

(log(n) + ηLT (i∗))

=
1 + η

η
(log(n) + ηLT (i∗))

Remember that w1 is initialized to 1 for all i, so
∑n

i=1w1(i) = n. Equation 2 follows from the fact that the
sum of expert losses is less than the loss of any single expert. Equation 2 is true by Fact 1.

Assume that η ≤ 1. (This will be true by the assumptions we have made in the theorem statement.) In
this case, the above gives us that

T∑
t=1

pt · lt ≤ LT (i∗) + ηLT (i∗) +
2

η
log(n)

and so
T∑
t=1

pt · lt − LT (i∗) ≤ ηLT (i∗) +
2

η
log(n) ≤ ηL∗ +

2

η
log(n) .

This holds for any value of η ∈ (0, 1]. It is minimized when we set η =
√

2 log n/L∗, so we will use
this value of η. The bound above then becomes

T∑
t=1

pt · lt − LT (i∗) ≤ 2
√

2L∗ log n.

2Note that this bound is presented slightly differently than it was in class. This presentation is a bit more simple, and doesn’t
require introducing an additional parameter β.

2



1.1 Using a Prior Over the Experts

Alternatively, we can change the initial weights to be non-uniform. Let w1 ∈ ∆n be the initial weights.
Then wt(i) = e−ηLt−1(i)w1(i). The calculation for new total loss becomes:

1

1− e−η

(
log(1)− log

(
n∑
i=1

wT+1(i)

))
=

1

1− e−η

(
0− log

[
n∑
i=1

e−ηLT (i)w1(i)

])

≤ 1

1− e−η
(log(1/w1(i

∗)) + ηLT (i∗))

Now, the new bound on regret becomes:

2

√
2L∗ log

(
1

w1(i∗)

)

This bound is better if the best expert has a high initial weight.

2 Online Convex Optimization

We now consider a generalization of the expert advice setting. A convex programming problem consists of
a convex feasible set K ⊆ Rn and a convex cost function f : K → R. In online convex optimization, an
algorithm faces a sequence of convex programming problems, each with the same feasible set but different
cost functions. Each time the algorithm must choose a point before it observes the cost function. This is a
generalization of both work in minimizing error online and of the experts problem.

In the experts problem, one has n experts, each of which has a loss in [0, 1] at each round. At each round, the
algorithm selects a probability distribution over experts. The set of all probability distributions is a convex
set. Also, the cost function on this set is linear, and therefore convex.

The online convex optimization problem can be formulated as a repeated game between a player and an
adversary. At round t, the player chooses an action wt from some convex subset K of Rn, and the adversary
chooses a convex loss function ft. The players goal is to ensure that the total loss,

∑T
t=1 ft(wt), does not

differ from the smallest total loss
∑T

t=1 ft(w) for any fixed action w by too much. The difference between
the total loss and its optimal value for a fixed action is termed regret, and denoted as

RT =
T∑
t=1

ft(wt)− min
w∈K

T∑
t=1

ft(w)

Recall the following definitions, which we will use in our analysis.

Definition 1. In Euclidean space, a set K is said to be convex if,
∀x, y ∈ K, (1− α)x+ αy ∈ K for any α ∈ [0, 1]

3



Definition 2. A function f is convex, if,
∀x, y ∈ K, αf(x) + (1− α)f(y) ≥ f(αx+ (1− α)y) for any α ∈ [0, 1]

Geometrically, this means that if you draw a line segment between the points(x, f(x)) and (y, f(y)), the
function lies below this line segment.

Fact 3. For a convex differentiable function f,
f(x)− f(y) ≤ ∇f(x)(x− y)

Geometrically, the above statement means that if you draw the tangent plane to the function at point x, the
function lies above it. Recall also that ‖ a− b ‖2=‖ a ‖2 + ‖ b ‖2 −2ab.

2.1 Online Gradient Descent (Zinkevich ’03)

We now introduce and analyze the Online Gradient Descent algorithm for online convex optimization. The
algorithm is as follows:

1. Arbitrarily set w1

2. for t = 1 to T do

3. Choose wt, observe ft

4. Update w̃t+1 = wt − η∇ft(wt) where η > 0 is a learning parameter

5. Set wt+1= Euclidean projection of w̃t+1on the convex set K

6. end for

We set w̃t+1 = wt − η∇ft(wt) because the gradient of a function gives the direction of steepest increase.
Thus a natural minimization algorithm is to go in the direction opposite the gradient a certain amount. The
above rule may lead us to choose a point w /∈ K, which is a problem. A common trick is to move to the
closest point to w in the set K and that is why we set wt+1 to be the Euclidean projection of w̃t+1on the
convex set K.

Note that the Perceptron algorithm is a special case of online gradient descent when loss is measured by
the hinge loss ft(wt) = max(−wt · xtyt, 0).

Let D denote the diameter of K. This means that for every x, x′ ∈ K,‖ x − x′ ‖≤ D. Zinkevich showed
that the regret of this algorithm grows as

√
T , where T is the number of rounds of the game.

Theorem 2. Let G = maxt∈[T ] ‖ ∇ft(wt) ‖ (i.e. G is an upper bound on the gradient magnitudes) and
D = diameter K. The online gradient descent algorithm attains regret RT ≤ GD

√
T

Proof: Let w∗ = arg minw∈K
∑T

t=1 ft(w)
Let∇t = ∇ft(wt)
The distance between wt+1 and w∗ would be less than or equal to the distance
between w̃t+1 and w∗

4



‖ wt+1 − w∗ ‖2≤‖ w̃t+1 − w∗ ‖2
=‖ wt − η∇ft(wt)− w∗ ‖2
=‖ wt − w∗ ‖2 +η2 ‖ ∇t ‖2 −2η∇t(wt − w∗)

Rearranging terms, it can be seen that,
∇t(wt − w∗) ≤ ‖wt−w∗‖2−‖wt+1−w∗‖2

2η + η
2 ‖ ∇t ‖

2

Fact 3⇒f t(wt)− ft(w∗) ≤∇t(wt − w∗)

Summing over t = 1, 2, . . . , T ,∑T
t=1(f t(wt)− ft(w∗))≤

∑T
t=1∇t(wt − w∗)

≤ ‖w1−w∗‖2
2η +

∑T
t=1

η
2 ‖ ∇t ‖

2

≤ D2

2η + η
2TG

2

Setting η = D
G
√
T

, we get RT ≤ GD
√
T

Why is this not a good bound for the Expert Setting ?

In the expert setting Diameter of (4n) =
√

2 and G =
√
n

⇒ RT ≤
√

2nT
which is not as good a bound when compared with the regret bound we derived for Weighted Majority since
the dependence on n is now linear.

5


