
CS269: Machine Learning Theory
Lecture 9: Regret Minimization and Randomized Weighted Majority

October 25, 2010

Lecturer: Jacob Abernethy
Scribe: Cesar Romero and Suming Chen

1 Regret

Assume we are playing a game. In this game, we see samples of random variables and we would like to
estimate the value of the next sample. Let’s say that we want to “guess” the value of Xt+1, X̂ . In this game,
we will “suffer” the square distance (X̂ −Xt+1)2. A typical strategy is to set X̂ = 1

T

∑T
i Xt. It turns out

that this is actually pretty good. In fact, if we know that X comes from a Gaussian distribution, this is the
optimal strategy.

Assume we know that Xi is drawn from a distribution X ∼ N(µ, σ2). The optimal thing to do in this
case is to set X̂ = µ. In general, however, we don’t know the true distribution. A common question in
statistics is: How well can I do using the information from my samples compared to how well I could have
done had I known the distribution in advance? This is precisely where the notion of regret comes from,
which we could state as

CostT (Alg)− Cost(OPT )

Clearly, we would like this quantity to be equal to zero in the limit as T gets very large.

2 Comparative Benchmarks

It’s interesting to consider this notion of regret even when the data is not i.i.d. but chosen by an adversary.
That brings us to a general definition. Informally, we can think of the regret of an algorithm on a particular
sequence of data as the difference between how well an optimal algorithm that could observe the sequence
of data in advance could do. A question we would like to answer is: What can the optimal algorithm (OPT)
do with that data?

We cannot define OPT to be the optimal action on each round because that’s not really a fair compara-
tor. Instead, we define it to be the optimal fixed strategy w∗. Imagine that we have some cost function
Cost(Wt, Xt), where Wt is the algorithm’s decision and Xt is the “outcome”.

Regret(Alg) =

T∑
t=1

cost(Wt, Xt)−min
W∗

T∑
t=1

cost(W∗, Xt) = f(T ) (1)

We want f(T ) = o(T ), i.e. f(T )
T → 0. This is similar to the stochastic setting, in which we want error to go

to 0 over time. It turns out that, in many cases, we can actually guarantee this. Let us now define a model.

1



R P S
R 0 1 -1
P -1 0 1
S 1 -1 0

Table 1: matrix of losses for player 1 for rock paper sissors

3 The Expert Advice Model

Recall the expert advice model that we introduced in the last lecture. On a sequence of rounds t =
1, . . . , T a player chooses an action it ∈ {1, . . . , n}. The adversary chooses costs or losses for each ac-
tion lt(1), . . . , lt(n) ∈ [0, 1]. The player pays lt(it), and observes lt.

This is an unfair scenario for the player because the adversary can always choose the function that forces
the player to pay the highest cost. Instead, we change the model by letting the player pick a distribution over
the actions {1, . . . , n}. Then the player pays E[lt(I)], observes lt, updates pt+1 ∈ ∆n, where ∆n is the
probability simplex over the n actions. This is typically called the “Expert” or “Hedge” setting1. The
actions are sometime referred to as “experts”. For this particular setting we define regret as

Regret =

T∑
t=1

pt · lt − min
i∈{1,··· ,n}

T∑
t=1

lt(i)

Claim 1. ∃ Algo : Regret = O(
√
T log n).

In particular we will show that the Randomized Weighted Majority is such an algorithm (see Section 5).
But before we prove Claim 1, we will show that the existence of such an algorithm leads to a simple proof
of a well-known result from game theory called the Minimax Theorem.

4 Proof of the Minimax Theorem

A two player zero-sum game is defined by a matrix M ∈ Rn×m. Player 1 chooses i, and Player 2 chooses
j. The loss (gain) for P1 (P2) is Mij . For example, Table 1 shows the payoff matrix M for the well known
game rock, paper, scissors. Rows represent Player 1 and columns represent Player 2. Each entry is the cost
of the outcome for Player 1 (e.g. Paper beats Rock so MP,R has a cost of −1 for Player 1).

The question posed by Von Neumann was: What if each player has to announce what their strategy
is before they play? Intuitively, it seems that the person who can choose their strategy second has the
advantage. However, one can show mathematically that it doesn’t really matter. (i.e. min max is equal to
max min)2.

Theorem 1 (Von Neumann Minimax Theorem).

min
p∈∆n

max
q∈∆m

∑
i,j

p(i)q(i)Mij = max
q∈∆m

min
p∈∆n

∑
i,j

p(i)q(i)Mij

1As a side note, there is a particular setting calling the “Bandit Setting” where the player only observes lt(I). Even in this
scenario, we can still “do well”.

2The original proof used Brouwer’s fixed-point theorem.

2



Proof: Let’s play repeatedly: I choose pt ∈ ∆n using an algorithm with vanishing regret. Then the opponent
chooses qt ∈ ∆m to be the response that hurts me most. Define lt := Mqt. I know that by Claim 1, for any
ε, it is possible to choose T large enough that the statement holds.

1

T

(
T∑
t=1

pt · lt − min
p∈∆n

T∑
t=1

p · lt

)
≤ ε

This implies that

min
p∈∆n

max
q∈∆m

pTMq ≤ 1

T

T∑
t=1

ptMqt

=
1

T

T∑
t=1

pt · lt

≤ 1

T
min
p∈∆n

T∑
t=1

p · lt + ε

≤ max
q∈∆m

min
p∈∆n

pTMq + ε

The cost of min max is bounded by max min plus ε, which we can set arbitrarily close to 0.

5 Randomized Weighted Majority - Hedge Algorithm

We now introduce the Randomized Weighted Majority algorithm. We define Lt :=
∑t

s=1 ls to be the vector
of cumulative losses of the experts at time t. The algorithm chooses an expert at time t according to the
distribution pt, where

wt(i) := exp(−η · Lt(i)) Weight assigned to expert i at time t

pt(i) :=
wt(i)∑n
j=1wt(j)

Probability of choosing expert i at time t

Here η > 0 is a parameter of the algorithm.

Theorem 2. The regret for the Randomized Weighted Majority Algorithm is O(
√
T log n).

The following are two small facts that will be useful for the proof:

1. For any x, log(1 + x) ≤ x.3

2. For any x ∈ [0, 1], for any α, eαx ≤ (eα − 1)x+ 1.

3We have seen this before, but stated slightly differently. It is equivalent to 1 + x ≤ ex, which we used in Lecture 2 and in the
problem set.

3



Proof Sketch: We define the following potential function, which we will use in the analysis:

Φt = − log
n∑
i=1

wt(i) (2)

We first compute the difference in the potential of any two iterations

Φt+1 − Φt = − log

(∑n
i=1wt+1(i)∑n
i=1wt(i)

)
= − log

(∑n
i=1wt(i)exp(−ηlt(i))∑n

i=1wt(i)

)
= − log

(
n∑
i=1

pt(i)exp(−ηlt(i))

)

≥ − log

(
n∑
i=1

pt(i)((e
−η − 1)lt(i) + 1)

)
By trick 2

= − log

(
1 +

n∑
i=1

pt(i)(e
−η − 1)lt(i)

)
≥ (1− e−η)pt · lt By trick 1

Using this, we can get an upper bound on the total loss of the algorithm. Let i∗ ∈ {1, · · · , n} be the best
performing expert. and let L∗ be an upper bound on the loss of the best expert. (If we don’t have any prior
information about performance, we can set L∗ = T .) We have

T∑
t=1

pt · lt ≤
1

1− e−η
(ΦT+1 − Φ1)

=
1

1− e−η

(
log n− log

n∑
i=1

exp(−ηLt(i))

)

≤ 1

1− e−η
(log n− log(exp(−ηLt(i∗))))

=
1

1− e−η
(log n+ ηLt(i

∗))

≈ (1 + η)Lt(i
∗) +

log n

η
(we’ll see this in the next lecture..)

= Lt(i
∗) + ηLT (i∗) +

log n

η

≤ Lt(i∗) + 2
√

log(n)L∗ where L∗ is bounded by T

4



We obtain the bound on the regret by subtracting Lt(i
∗) on both sides since the left side becomes

the regret and the right is the asymptotic expression we were looking for. This is the result of setting
η =

√
log n/L∗. In the next lecture, we’ll finish the steps of this proof that we skipped.

5


