
CS269: Machine Learning Theory
Lecture 8: Multiplicative Weights

October 20, 2010

Lecturer: Jennifer Wortman Vaughan
Scribe: Chien-Ju Ho, Liang-Chieh Chen

In today’s lecture, we are going to talk about one more example of online learning: Winnow algorithm,
which has the same assumption as Perceptron algorithm that there exists a perfect target function. In the
second part of the class, we will talk about regret minimization with respect to some comparators.

1 Winnow Algorithm

In the previous lecture, we introduced Perceptron algorithm, which deals with online learning problems
by updating the weight function according to the history of mistakes. In particular, the weight function is
updated additively: ~wt+1 = ~wt + yt ~xt. We now describe Winnow algorithm, which is similar to Perceptron
algorithm. However, Winnow algorithm updates the weight function multiplicatively.

Now, we formally describe the algorithm. Winnow algorithm maintains a weight vector ~wt. Let wi,t =
the weight on feature i at round t, and xi,t = the ith component of ~xt. Suppose yt ∈ {0, 1}, and ~xt ∈ {0, 1}n
is a binary string.

The Winnow Algorithm

1. Initialize all the weights to one: w1,1 = w2,1 = . . . = wn,1 = 1

2. For each example ~xt,

• output 1, if ~wt · ~xt ≥ n.

• output 0, otherwise.

• if the algorithm makes a mistake,

– If yt = 1, then ∀i such that xi,t = 1, wi,t+1 ← wi,t(1 + ε)
– If yt = 0, then ∀i such that xi,t = 1, wi,t+1 ← wi,t

1+ε

– In both cases (yt = 1 or 0), ∀ xi,t = 0, wi,t+1 ← wi,t

• if there is no mistake, then ~wt+1 ← ~wt

Note that in the Winnow algorithm, ε is a parameter. Intuitively, if we make a mistake on a positive example,
we increase the weights of the features for xi,t = 1. Similarly, if we make a mistake on a negative example,
we will decrease the weights of all the xi,t that contribute to ~wi,t · ~xi,t. We show that the Winnow algorithm
grows (updates) faster than Perceptron algorithm, and Winnow algorithm will make fewer mistakes than the
Perceptron algorithm, when the number of relevant feature is much less than the total number of features.

1



1.1 Learning (Monotone) Disjunctions

We consider an example of learning monotone disjunctions using Winnow algorithm. We show the algo-
rithm will make at most O(r log n) mistakes, where n is the number of variables. Note: monotone disjunc-
tion means there is no negative literals in the disjunction. This constraint can be easily relaxed using the
following trick: for each variable i, add ¬i into the variables.

Theorem 1. Suppose that the data sequence can be perfectly labeled by some monotone disjunction of r
variables. Then the Winnow algorithm with ε = 1 makes at most 2 + 3r(1 + log n) mistakes.

Proof: In this proof, we show the mistake bound on positive examples and the mistake bound on negative
examples separately. The results are then combined to yield the overall bound.

• Bound the number of mistakes on positive examples (yt = 1)
Observations:

1. When we make a mistake and yt = 1, at least one relevant weight, the weight of relevant feature,
is doubled.

2. The weights of relevant features never decrease.

The above observations are straightforward. In observation 1, if the weights of all relevant features
are not doubled1, yt should be 0 since yt is the disjunction of all relevant features. In observation 2, if
the weights of relevant features decrease, it means some relevant feature xi,t = 1 when yt = 0, which
is impossible by definition of a disjunction.

Next, we are going to derive the mistake bound on positive examples. We first consider about single
relevant feature. Let l be the number of times the weight of feature i has been doubled, then the weight
of i will be 2l. In addition, the weight can only be doubled when they are smaller than n. If wi,t ≥ n
and xi,t = 1, there will be no mistake. If wi,t ≥ n and xi,t = 0, the weight will not be updated
according to the algorithm. Therefore we can conclude 2l−1 < n, i.e. l < log n+ 1. This means the
weight of each relevant feature can not be doubled for more than log n+ 1 times.

Since at least one relevant weight will be doubled for each mistake on positive examples, and each
wight cannot be doubled for more than log n+ 1 times, the number of mistakes we make on positive
examples in Winnow algorithm will be less than r(log n + 1), where r is the number of relevant
features.

• Bound the number of mistakes on negative examples (yt = 0)
In this proof, we use the sum of the weights,

∑n
i=1wi,t, as a potential function and observe how it

changes over time. Before we state the proof, let’s see how this sum changes when we make mistake
at time t. If we make mistakes on positive examples, we will double the weight of wi,t if xi,t = 1.
Therefore, the sum of weight is increased by

∑
i:xi,t=1wi,t = ~wt · ~xt. Similarly, if we make mistakes

on negative examples, we will decrease the weight by half on the weight wi,t if xi,t = 1. Therefore
the sum of weight is decreased by 1

2

∑
i:xi,t=1wi,t = 1

2 ~wt · ~xt.
Let’s state some observations:

1. Total weight of all features are initially n.

2. Every time we make a mistake and yt = 1, the sum of weights is increased by at most n.
1Since ε = 1, every time we make a mistake, the weights of some features will be either doubled or be cut by half.

2



3. Every time we make a mistake and yt = 0, the sum of weights is decreased by at least n2 .
4. The sum of weights is always bigger than 0.

Observation 1 and 4 are straightforward by definition. In observation 2, each time we make a mistake
on positive example, we will increase the sum of the weight by ~wt · ~xt. Since we make a mistake,
which means we have ~wt· ~xt < n, the sum of weights would be increased at most n. Similarly, in
observation 3, we will decrease the sum of weights by 1

2 ~wt · ~xt, Since we make a mistake, we have
~wt · ~xt ≥ n. Therefore, the sum of weights is decreased by at least n2 .

Given the observations, we are going to derive the mistake bound on negative examples. Let us first
define three variables:

– P is the number of mistakes on positive examples at time t.
– N is the number of mistakes on negative examples at time t.
– W =

∑n
i=1wi,t is the total weights at time t.

According to observation 4, we know that W > 0. In addition, the total increase on the sum of
weight at time t will be less than Pn−N n

2 by observation 2 and 3. Therefore, we can conclude that
0 < W < n + Pn − N n

2 , which implies that N < 2P + 2. Therefore, the number of mistakes we
make on negative examples will be less than 2r(log n+ 1) + 2.

Combining the mistake bounds on positive examples and negative examples, we can show the mistake
bound for learning monotone disjunction using Winnow algorithm will be 2 + 3r(log n+ 1).

Comparison with a naive algorithm

To provide further insight for Winnow algorithm, we compare the performance of Winnow with the perfor-
mance of another simple algorithm for learning disjunctions. We then compare the mistake bounds between
this algorithm and Winnow algorithm.

The Naive Algorithm

1. Start by assuming disjunction over all variables.

2. For every input −→xt :

• Predict with current disjunction
• If we make a mistake on yt = 0:

– Drop all variables i such that xi,t = 1
• Note: we never make a mistake on yt = 1.

Each time we make a mistake, at least one variable will be dropped. In addition, an adversary could
force us to drop only one variable at a time by giving us input points in which xi,t = 1 for only one i.
Therefore the mistake bound for this algorithm is n − r, and this bound is tight. Let’s compare this bound
with the bound of Winnow algorithm O(r log n). When the number of relevant features r is close to the
number of total features n, e.g. r = n

2 , than the mistake bound of Winnow algorithm (O(n log n)) will
be worse than the bound of the naive algorithm (O(n)). However, if r is much smaller than n Winnow
algorithm (O(r log n)) outperforms the naive algorithm (O(n)).

3



1.2 Learning Majority Functions

Recall the class of majority functions that we discussed in the previous lecture. These functions take on
a value 1 if the majority of a specific set of r features are 1, and 0 otherwise. In the previous lecture, we
showed a mistake bound of rn for learning majority functions using the Perceptron algorithm. While we
will not prove it here, it can be shown that Winnow can learn majority functions with a mistake bound of
2r2 log n. Clearly, we can see that the Winnow algorithm again gives a better mistake bound when the
number of relevant features is much smaller than the number of total features.

2 Learning from Expert Advice

So far we have been assuming that there exists a perfect target function. In the next few lectures, we will be
discussing online learning algorithms in adversarial settings in which we make no statistical assumptions at
all about the data.

We begin by introducing the problem of learning from expert advice. Suppose that you are interested
in making a sequence of predictions based on advice from several “experts.” In this context, an expert
could be a weather forecaster, if you are interested in tomorrow’s weather, or a financial analyst, if you
are concerned with the stocks you own. More generally, experts could be individual features, or individual
learning algorithms, or any other predictors you have. At each time step, you must choose an expert to
follow. There is loss associated with each expert, and you receive the loss of the expert you follow.

Formally, the setting can be described as follows.

Learning from Expert Advice

1. There are n experts.

2. At each round t,

• The algorithm chooses an expert.

• Each expert i suffers loss li,t ∈ [0, 1]

• The algorithm suffers loss of the expert it chose.

Note that we do not make any assumption about the quality of the experts. That is, the loss ranges from 0
(perfect) to 1 (lousy). If we are doing binary classification, the loss could be 1 if the expert makes an error or
0 otherwise. But we define it much more generally here. Also note that we cannot make absolute guarantees
about the quality of our predictions, since all experts might have high loss. Instead, we hope to perform as
well as the best expert so far. To be concrete, we define regret as follows.

Regret = total loss of algorithm− min
i∈1,...,n

T∑
t=1

li,t

Our goal is to minimize the regret. In particular, we would like it to be sublinear in the number of rounds T
so that our average regret goes to 0 over time.

It is easy to see that this goal is impossible to achieve if we restrict our attention to deterministic algo-
rithms. An adversary, trying to make the regret large, could set li,t = 1 for whichever expert i we choose,
and lj,t = 0 for all j 6= i. In this case, at round T, the total loss of the algorithm would be T, and since there

4



would be at least one expert having loss ≤ T
n , we have regret > T − T

n , which is linear in T, not what we
want.

Therefore, instead of choosing a single expert, we allow the algorithm to choose a probability distri-
bution over experts (the weights), and define the loss that the algorithm receives to be the expected loss
according to this distribution.

Modified Learning from Expert Advice

1. There are n experts.

2. At each round t,

• The algorithm chooses weights ~wt.

• The adversary chooses losses ~lt.

• The algorithm suffers loss ~wt · ~lt.

Then the Regret is
T∑
t=1

~wt · ~lt − min
i∈1,...,n

T∑
t=1

li,t.

In the next lecture, we will show that there is an algorithm that achieves a regret of O(
√
T log n).

5


