
CS269: Machine Learning Theory
Lecture 7: Perceptron Algorithm

October 18, 2010

Lecturer: Jennifer Wortman Vaughan
Scribe: Shankar Garikapati and Akshay Wadia

In this lecture, we consider the problem of learning the class of linear separators in the online learning
framework. Recall from the previous lecture that an n-dimensional linear separator through the origin can
be represented by an n-dimensional vector u. For any vector x, the label of x is +1 if u · x ≥ 0, and −1
otherwise. In this lecture, we will study the Perceptron algorithm and analyze its mistake bound.

NOTATION. Vectors are represented by lower case bold letters like u,w,x, etc., while scalars are normal
lower case letters. The inner product between two vectors u and x is denoted by u · x. ‖u‖ represents the
length of the vector u.

1 Perceptron Algorithm

Before describing the Perceptron algorithm, we review the notion of margin. We have the following from
the previous lecture.

Definition 1. Given a linear separator u the margin γt of xt with label yt ∈ {+1,−1 } is the distance of
xt from the separator. That is,

γt = yt(u · xt).

Now we present the Perceptron algorithm.

PERCEPTRON ALGORITHM

1. Initialize t := 1 and w1 to be all 0 weight vector.

2. For each xt predict +1 if wt · xt ≥ 0, else −1

3. If there is a mistake (i.e., if yt(wt ·xt) < 0), set wt+1 ← wt+ yt ·xt. Else, set wt+1 ← wt.

4. t← t+ 1

Now we prove the mistake bound for the above algorithm.

Theorem 1. Suppose there exists a u such that ‖u‖ = 1, and γ > 0, such that ∀t yt(xt ·u) ≥ γ, and there
exists a real number D such that ∀t ‖xt‖ ≤ D. Then, the number of mistakes made by the (unnormalized)

Perceptron is ≤
(
D
γ

)2
.

1

Proof: Let m(i) be the round in which the ith mistake is made. Define m(0) = 0. Let k be the total number
of mistakes made in the run of Perceptron algorithm. Finally, let u be the target separator that we are trying
to learn. We prove the theorem through the following two lemmas.

Lemma 1. wm(k)+1 · u ≥ kγ.

Proof: We prove by induction on the number of mistakes that ∀i,wm(i)+1 · u ≥ iγ.
For the base case, note that as the initial weight vector w1 is all 0s, we have w1 · u = 0.
For the induction hypothesis, assume that the above statement holds true for all values less than i.
For the induction step, consider wm(i)+1. We have,

wm(i)+1 · u = (wm(i) + ym(i)xm(i)) · u
= wm(i) · u+ ym(i)(xm(i) · u).

The first equality comes from the Perceptron update rule. We did make a mistake on round m(i), so the
weights at round m(i) + 1 can be computed by applying the update rule to the weights at round m(i).
Now, we know that we did not make a mistake between round m(i − 1) + 1 and round m(i). Since the
Perceptron only updates weights when there is a mistake, we have wm(i) ·u = wm(i−1)+1 ·u. We also have
ym(i)(xm(i) · u) ≥ γ, by the margin requirement in the statement of the theorem. Thus, we have,

wm(i)+1 · u ≥ wm(i−1)+1 · u+ γ

≥ iγ.

The last inequality follows from the induction hypothesis.

Lemma 2. ‖wm(k)+1‖2 ≤ kD2.

Proof: We prove by induction on the number of mistakes that ∀i.‖wm(i)+1‖2 ≤ iD2.
For the base case, we have, ‖wm(0)+1‖2 = ‖w1‖2 = 0.
Let us assume that the statement is true for all values less than some i.
For the induction step, note that,

‖wm(i)+1‖2 = ‖wm(i) + ym(i)xm(i)‖2

= ‖wm(i)‖2 + ‖xm(i)‖2 + 2ym(i)(xm(i) ·wm(i)),

where the first equality holds for the same reason as in Lemma 1 above. Now, as above, we have
‖wm(i)‖2 = ‖wm(i−1)+1‖2. Further, by the bound on the lengths of vectors in the theorem statement, we
have ‖xm(i)‖2 ≤ D2. For the third term in the expression above, note that as there was a mistake in round
m(i), our prediction of the label did not match with the correct label. Thus, ym(i)(xm(i) · wm(i)) < 0.
Therefore, we have,

‖wm(i)+1‖2 ≤ ‖wm(i−1)+1‖2 +D2

≤ iD2.

Here, the last inequality follows from induction. This proves the lemma.

2

To prove Theorem 1, we recall the following simple fact from linear algebra: if z and u are two vectors such
that ‖u‖ = 1 and θ is the angle between z and u, then we have,

z · u = ‖z‖‖u‖cos(θ)
≤ ‖z‖‖u‖ = ‖z‖

Putting all the above together, we have,

D
√
k ≥ ‖wm(k)+1‖
≥ wm(k)+1 · u
≥ kγ.

Thus, k ≤ (D/γ)2. In the above, the first inequality is from Lemma 2, the second from the fact above,
and the third from Lemma 1.

2 The “Normalized” Perceptron Algorithm

In this section, we consider a variation of the Perceptron algorithm. This version, called the normalized
version, differs from the previous version only in its update rule for the weight vector wt when there is a
mistake. As all other steps are the same, we simply state the new update rule:

NORMALIZED UPDATE RULE.
If there is a mistake, that is, if yt(wt · xt) ≤ 0, then set

wt+1 ← wt + yt
xt
‖xt‖

.

Else, set wt+1 ← wt.

For the normalized Perceptron, we have the following mistake bound.

Theorem 2. Suppose there exists a u, ‖u‖ = 1, and γn > 0 such that ∀t, yt(xt
‖x‖ ·u) ≥ γn. Then the number

of mistakes made by the normalized Perceptron is ≤
(

1
γn

)2
.

Proof Sketch: A run of the normalized Perceptron can be thought of as a run of the (unnormalized) Percep-
tron algorithm with a preprocessing step: we can imagine that before the Perceptron algorithm is run, for all
rounds t, the vector xt is normalized to xt

‖xt‖ (the margin bound is suitably modified). Now, the behavior of
the two algorithms in terms of classification of points is identical: all points are labeled consistently by the
two algorithms, and the mistakes also occur at the same points. Thus, we can use Theorem 1 to derive a mis-
take bound for the normalized Perceptron: in the pre-processing version, as all vectors xt are normalized,
D = 1. This gives the bound k ≤ 1

γ2n
.

3

Advantage of Normalized Perceptron. In this sub-section we would like to show that in some situations
the normalized Perceptron might perform better (in terms of mistakes made) than the Perceptron algorithm.
Note that for the Perceptron algorithm, we don’t actually need to know the margin bound γ to run the
algorithm. Consider a particular run of the algorithm. After the run define,

γ := min
t
yt(xt · u).

This margin bound will be consistent with the run of the algorithm. Similarly, we can retrospectively define
the normalized margin bound for the normalized Perceptron. We have,

γn := min
t
yt(

xt
‖xt‖

· u)

= min
t
yt(xt · u)

1

‖xt‖

≥
(
min
t
yt(xt,u)

)(
min
t

1

‖xt‖

)
≥ γ

D
.

Thus, 1
γ2n
≤

(
D
γ

)2
.

The above statement in a way shows that although in some cases the normalized margin assumption may
seem less natural than the original margin assumption, the mistake bound from the normalized Perceptron is
always at least as good as the mistake bound for the regular Perceptron, and sometimes better. In particular,
it is better in cases in which there are points with small ‖xt‖ and small margin, making γ small, and other
different points with big ‖xt‖ and big margin, makingD big. Also note that even though the bound is always
better, the actual empirical performance of the normalized Perceptron isn’t necessarily better in all cases.

3 Learning Majority Functions

From mistake bounds derived in the previous sections, it seemed that the number of mistakes made by the
algorithm does not depend upon the dimension n. This seems counter-intuitive, as one would expect the
mistake bound to grow with n. In this section, we justify this intuition by showing an explicit relation be-
tween mistake bound and the dimension (using the Perceptron algorithm) to learn a special class of linear
separators called majority functions.

For this section, our data points will be n-dimensional vectors in the space {−1,+1 }n. Let r be a non-
negative odd integer of value at most n. Then, a majority function is represented by a vector u of the form
< 0, 0, 1/

√
r, 0, 1/

√
r, ... > with 0’s in n− r positions and 1/

√
r in r positions (r is the number of relevant

features of u, which we don’t need to know in advance). Clearly, ‖u‖ = 1. The labeling rule is: label xt as
+1 if xt · u ≥ 0, and as −1 otherwise.

We want to learn this class using the Perceptron algorithm. Clearly, D =
√
n. Let γ = mint yt(xt ·u). Note

that as each component of xt is either +1 or −1, and r is odd, the dot product is a multiple of 1/
√
r. Thus,

γ ≥ 1/
√
r. Using Theorem 1, we get the mistake bound as (D/γ)2 = nr. It’s easy to verify that we get the

same mistake bound even if the points are first normalized.

4

