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Lecture 4: Infinite Function Classes
October 6, 2010

Lecturer: Jennifer Wortman Vaughan
Scribe: Luca Valente, Palash Agrawal

1 General Learning Bound for the Unrealizable Setting

In the last lecture, we had established the following theorem.

Theorem 1. For any concept clas#, suppose that we have access to an algorithm that, for any joint distri-
bution D over input-label pairs, given accessitopairs drawn i.i.d. fromD, outputsh = arg minge gy etr(h)
(whereerr(h) is the empirical error of. on them points). Then for any € (0,1),6 € (0,1), with probability

2 1 - 61
A l In?
err(h) < minerr(h) + O (H M)
heH m

We proved this theorem in the previous lecture udiaeffding’s Inequality We state and prove this in-
equality now.

2 Hoeffding’s Inequality

Before statingHoeffding’s Inequalitywe recall two intermediate results that we will use in order to prove it.
One isMarkov’s Inequalityand other itHoeffding’s Lemma(Note that in class we did not cover Hoeffding’s
Lemma, and only gave a brief outline of the Chernoff Bounding Technigond$iow they are used to prove
Hoeffding’s Inequality. Here we give a full proof of Hoeffding’sdquality for completeness.)

Theorem 2. (Markov’s Inequality)
Let X be a non negative random variable, for aiy> 0,

E[X]
PriX > K| < ——
X > K] < =2
Lemma 1. (Hoeffding’s Lemma)
Let Z be a random variable so th&f € [a, b]. Then, for anyt > 0,
t2(b—a)?
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E(e'?) <e

The proof of this lemma will not be stated here, but can be found, for ebearmpthe course notes from
Peter Bartlett’s Statistical Learning Theory course at Berkkley
We now statdHoeffding’s Inequality
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Theorem 3. (Hoeffding Inequality)
LetZy, Zs, ...., Z,, be independent random variables with € [a;, b;] ¥ i. Define
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D= %ZZl andp = E[p] — EZE[ZJ’
' Then, '
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Pr(|p—p|>€) < 2e=itabi—a)®

We prove this by using the Chernoff Bounding Techniques and Hogf&liremma.
Proof: For anyt > 0, ¢ is non-negative and monotone increasing with respeet tdhis very simple
observation allows us to improve on the Markov’s Inequality.
For any random variabl& (that doesn’t have to be non-negative), Markov’s Inequality leads to

Pr(X > ¢€) = P(e!X > ¢elf) < E(:ftx) foranyt > 0

SubstitutingX = p — p,

efte E (et(p—ﬁ) )
6_t€E(et(% Z,-Zl(Zi—EZZ-)))

Pr(p —
Prip —p
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SinceZy, Zs, ...., Z,, are independent, the random variabiés: Zi-1(Zi—EZi) for eachi are also indepen-
dent. Then,

Prip—p>e¢) < e—teE(H et(%(Zi—EZi)))

i=1
Prip —p>¢) <e™™ H E(et(%(zi—EZi)))
i=1

Applying Hoeffding’s Lemma taZ; — EZ; for any+, we obtain

t2(b;—a;)? 25 1(bi—a)?
Prip—p >¢) <e ™ H e sm?  =e e Sm?
i=1
Since this inequality is true for any > 0, it is also true for the that minimizes the bound, which is

t= % This value fort allows us to get the best possible bound. We then obtain
i=1\0i =G
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Pilp—p>e) <e Simalia)?
By a symmetric argument, we also have
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Pr(ﬁ —p > E) < 6_ Ti=1(b;—a)?



which, by the union bound, gives
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Pr(|p — p| > €) < 2e Tim1(i—ai)?

and concludes the proof. O

3 CaseH Infinite

We have proved useful theorems for the case wkiesfinite. But there are many cases where we encounter
hypothesis classes having infinite number of functions. The generaingabounds we have considered
grow to infinity when|?| grows to infinity. In this section, we discuss cases wiérs infinite and try
finding the general learning bounds.

We have already encountered examples of infinite hypothesis case. &nthevthreshold problem
which involved finding an optimal separation(if, 1). The set of all the hypothesis might be infinite, but it
is still simple to describe as only one parameter (the threshold) is enoughréwtdreze each hypothesis.
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Figure 1: 1-D Threshold
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Figure 2: 2-D Threshold

We initially present a 'bad’ argument to introduce the domaietter argumentsxist (we discuss these
later in the notes), but we still discuss the 'bad’ argument to make the comoep receptive to intuition.
Suppose we have g parameterized by real numbers. We can think of 2-D threshold function where an
input vector? = {z1,z2} can be labeled 1 or 0 by evaluating + w;z; + waze > 0. We can see that
‘H is infinite in this case and has three parameters for two dimensions. We camnalignthis argument and
say we havel parameters fod — 1 dimensions. Suppose we would like to store a representation of such a
function on a computer with finite memory. If each of these parameters issesgiegl by say bits, we have
a total ofdb bits. This modified hypothesis clagt would then consist of a finite set of on®y® different
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hypothesis, s¢#’| = 2.

If we substitute this value in the bound we obtained for number of samplbsit we need to guarantee
error less tham with probability 1 — 6, 2 we observe that, = O (1(d + In(1/5))). We are able to show
that the number of training samples needed is at ivosdr in the number of parameters of the class.

The argument we have used may not be completely satisfying, but the simmciue have arrived at is
roughly accurate. If our goal is to minimize training error, then in order tmleahypothesis class witl
parametersvell, we will frequently (though not always) need order of number of trgjirémamples to be
linear ind.

3.1 The Growth Function

We now move onto giving moreoncretearguments for cases where we encounter infikiteLet’s now
give some definitions for the general infinite case.

We will assume that we are working in a model of computation in which we caa atw manipulate
real numbers in constant space and time. This is crucial if we want to g#lyitsgnabout efficient algorithms
in this setting.

Let S be a vector ofn examplesey, ..., z,. ©1,...,x,, are justm arbitrarily chosen examples that
don't have anything to do with the target distributibn Givenh € ‘H we definei(S) = (h(z1), ..., h(zm)).
There might be anothér’ € # such that:(S) = A/(S). A way to measure how complex a problem is to
consider the different behavior 6{z) whenh € H.

Definition 1. (Behavior Set)
I3 (S) = {h(5)|h € H}
In the case wherg(z;) € {0, 1} for anyz;, we havellly (S)| < 2™.
Definition 2. (Growth Function)
[Ty (m) = mazs.)5/=m} 113 (S)]
We observe thaflly (m)| < 2™

Let's look at the growth function in the cases discussed before.

Threshold problem# is the class of one-dimensional threshold functions.
Given3 distinct points in(0, 1), there aret different possibilities for(.S), so thatll(3) = 4.

Refer toTheorem 5f Lecture 2notes.



If m points are given|Ily(m)| = m + 1, which is far less that the general bou2iti.

Suppose we are now given? which is a class of interval functions. Each function in the class is
parameterized by two threshold values, a lower threshold (call)taisd an upper threshold (call thig. A
pointz is labeled positive ifc € [, u] and labeled negative otherwise.

Figure 3: Intervals

If we are givenm distinct points in(0,1). How many different behaviors can we observe? To answer
this question, it doesn't matter where exactly the interval boundaries liaf mhtters is which pairs of
points they lie between. Ourn points definen + 1 regions in(0,1). Then the number of different be-
haviors equals the number of ways we can choose these regions (WI@?&}ﬁli)Q plus1 (which is the case
obtained if the two boundaries are in the same region and so all the pointbalediaegative), which is
O(m?) and is again far less than the most pessimist bound.

We now show that learning depends really on the number of behaviots.tiNd we are back to considering
the realizable (perfect target) setting for now.

Theorem 4. For anyC, H, let A be an algorithm such that from amye C and any distributionD, for any
d € (0,1), if Ais givenm samples drawn i.i.d. fronD, labeled byc, A returns a consistent hypothesis of

. .. _ ln|HH(m)|+ln%
‘H. Then, with probability more thah— ¢, err(h) < O(——————%)

m

The bound inTheorem 4is nice since it involves the growth function which is, as we saw in some
examples, sometimes really less than the the worstZasd&levertheless, this bound is meaningless if the
growth function i2™. We are particularly interested when value is something smaller and it tightlydsoun
theerr(h). But the growth function is still hard to calculate in general and thereferevauld like to find
another complexity measure that we can use in its place that is easier to calthlateads us to introduce
theVC-dimension

4 Vapnik-Chervonenkis(VC) Dimension

Definition 3. (Shattered points)
We say thalS = (z1, ..., z,,) of sizem is shattered by clas¥ if |IIy(m)| = 2™, ie if all states of0, 1}
can be achieved by somec H.

Definition 4. (VC Dimension)
TheV C dimension is the cardinality of the largest sethat can be shattered .

The VC dimension is a quantity that we can easily calculate for most of the si&stat we use.

Example 1: Linear Threshold (1-D)



It is easy to see thdtpoint can be shattered (trivial), bRtcannot. Indeed, it is not possible to achieve the
+ - configuration. Thusy'C(#H) = 1.

Figure 4: This configuration is not possible

Example 2: Intervals
Similarly, We observe th&t points can be shattered, litannot. The + - + configuration is not possible.
Thus,VC(H) = 2.

Figure 5: This configuration is not possible

Example 3: Linear Threshold (2-D)
We can observe that aBypoints that do not lie in a line can be shattered.

If the 3 points lie on the same line, one can easily see that they cannot be shattered.

This fact, however, has no influence on ¥e-dimensiorsince we have already proved that there is at least
one set of3 points that can be shattered. Instead, no set of four points can bestiaifée can break this
down into two cases: If one of thepoints lies in the convex hull of the other three, that point cannot get a
different label than the rest.

If no point lies in the convex hull of the other three, then draw a squarethétipoints as the four corners.
Pick one pair of points that are diagonally across from each other. It isssilgle to label these two points
+ and the other two -.
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Figure 6: All the configurations possible
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Figure 7: This configuration is not possible
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Figure 8: This configuration is not possible
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Figure 9: This configuration is not possible



We now give a classical but still a remarkable result.

Lemma 2. If % = {linear thresholds in a d-dimensional spgc¢henV C(H) = d + 1.
We now connect the VC-dimension with the Growth function.

5 Sauer's Lemma

Lemma 3. (Sauer’s Lemma) For arj{ with finite VC-dimensiod,
My (m) < 32700 (") = O(m?)

This lemma is very powerful. It tells us that all hypothesis classes fall intoobh&o categories: 1l
is infinite, thenIly (m) = 2. The bound inTheorem 4s then meaningless. On the other hand] i§
finite, thenIly (m) = O(m%). In this caseTheorem 4gives us something very nice sinkg |11y (m)| =
O(dlogm). Then the bound is linear ithand decreases tbasm goes to infinity.



