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1 General Learning Bound for the Unrealizable Setting

In the last lecture, we had established the following theorem.

Theorem 1. For any concept classH, suppose that we have access to an algorithm that, for any joint distri-
butionD over input-label pairs, given access tom pairs drawn i.i.d. fromD, outputŝh = argminh∈H êrr(h)
(whereêrr(h) is the empirical error ofh on them points). Then for anyǫ ∈ (0,1),δ ∈ (0,1), with probability
≥ 1− δ,

err(ĥ) ≤ min
h∈H

err(h) +O





√

ln|H|+ ln2
δ

m





We proved this theorem in the previous lecture usingHoeffding’s Inequality. We state and prove this in-
equality now.

2 Hoeffding’s Inequality

Before statingHoeffding’s Inequality, we recall two intermediate results that we will use in order to prove it.
One isMarkov’s Inequalityand other isHoeffding’s Lemma. (Note that in class we did not cover Hoeffding’s
Lemma, and only gave a brief outline of the Chernoff Bounding Techniquesand how they are used to prove
Hoeffding’s Inequality. Here we give a full proof of Hoeffding’s Inequality for completeness.)

Theorem 2. (Markov’s Inequality)
LetX be a non negative random variable, for anyK > 0,

Pr[X ≥ K] ≤
E[X]

K

Lemma 1. (Hoeffding’s Lemma)
LetZ be a random variable so thatZ ∈ [a, b]. Then, for anyt ≥ 0,

E(etZ) ≤ e
t
2(b−a)2

8

The proof of this lemma will not be stated here, but can be found, for example, in the course notes from
Peter Bartlett’s Statistical Learning Theory course at Berkeley1.

We now stateHoeffding’s Inequality.
1http://www.cs.berkeley.edu/∼bartlett/courses/281bsp08/13.pdf
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Theorem 3. (Hoeffding Inequality)
LetZ1, Z2, ...., Zm be independent random variables withZi ∈ [ai, bi] ∀ i. Define

p̂ = 1
m

m
∑

i

Zi andp = E[p̂] =
1

m

m
∑

i

E[Zi],

Then,

Pr(| p− p̂ |≥ ǫ) ≤ 2e
−2ǫ2m2

∑
m
i=1

(bi−ai)
2

We prove this by using the Chernoff Bounding Techniques and Hoeffding’s Lemma.
Proof: For anyt > 0, etx is non-negative and monotone increasing with respect tox. This very simple
observation allows us to improve on the Markov’s Inequality.
For any random variableX(that doesn’t have to be non-negative), Markov’s Inequality leads to

Pr(X ≥ ǫ) = P(etX ≥ etǫ) ≤ E(etX)
etǫ

, for anyt > 0

SubstitutingX = p− p̂,

Pr(p− p̂ ≥ ǫ) ≤ e−tǫE(et(p−p̂))

Pr(p− p̂ ≥ ǫ) ≤ e−tǫE(et(
1
m

∑
i=1(Zi−EZi)))

SinceZ1, Z2, ...., Zm are independent, the random variableset(
1
m

∑
i=1(Zi−EZi) for eachi are also indepen-

dent. Then,

Pr(p− p̂ ≥ ǫ) ≤ e−tǫE(
∏

i=1

et(
1
m
(Zi−EZi)))

Pr(p− p̂ ≥ ǫ) ≤ e−tǫ
∏

i=1

E(et(
1
m
(Zi−EZi)))

Applying Hoeffding’s Lemma toZi − EZi for anyi, we obtain

Pr(p− p̂ ≥ ǫ) ≤ e−tǫ
∏

i=1

e
t
2(bi−ai)

2

8m2 = e−tǫe
t
2 ∑

i=1(bi−ai)
2

8m2

Since this inequality is true for anyt > 0, it is also true for thet that minimizes the bound, which is
t = 4ǫm2

∑
i=1(bi−ai)2

. This value fort allows us to get the best possible bound. We then obtain

Pr(p− p̂ ≥ ǫ) ≤ e
− 2ǫ2m2

∑
i=1(bi−ai)

2

By a symmetric argument, we also have

Pr(p̂− p ≥ ǫ) ≤ e
− 2ǫ2m2

∑
i=1(bi−ai)

2
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which, by the union bound, gives

Pr(|p̂− p| ≥ ǫ) ≤ 2e
− 2ǫ2m2

∑
i=1(bi−ai)

2

and concludes the proof.

3 CaseH Infinite

We have proved useful theorems for the case whenH is finite. But there are many cases where we encounter
hypothesis classes having infinite number of functions. The general learning bounds we have considered
grow to infinity when|H| grows to infinity. In this section, we discuss cases whenH is infinite and try
finding the general learning bounds.

We have already encountered examples of infinite hypothesis case. One was the threshold problem
which involved finding an optimal separation in(0, 1). The set of all the hypothesis might be infinite, but it
is still simple to describe as only one parameter (the threshold) is enough to characterize each hypothesis.

Figure 1: 1-D Threshold

Figure 2: 2-D Threshold

We initially present a ’bad’ argument to introduce the domain.Better argumentsexist (we discuss these
later in the notes), but we still discuss the ’bad’ argument to make the concept more receptive to intuition.
Suppose we have anH parameterized byd real numbers. We can think of 2-D threshold function where an
input vector−→x = {x1, x2} can be labeled 1 or 0 by evaluatingw0 + w1x1 + w2x2 ≥ 0. We can see that
H is infinite in this case and has three parameters for two dimensions. We can generalize this argument and
say we haved parameters ford − 1 dimensions. Suppose we would like to store a representation of such a
function on a computer with finite memory. If each of these parameters is represented by sayb bits, we have
a total ofdb bits. This modified hypothesis classH′ would then consist of a finite set of only2db different

3



hypothesis, so|H′| = 2db.

If we substitute this value in the bound we obtained for number of samplesm that we need to guarantee
error less thanǫ with probability1 − δ, 2 we observe thatm = O

(

1
ǫ
(d+ ln(1/δ))

)

. We are able to show
that the number of training samples needed is at mostlinear in the number of parameters of the class.

The argument we have used may not be completely satisfying, but the conclusion we have arrived at is
roughly accurate. If our goal is to minimize training error, then in order to learn a hypothesis class withd
parameterswell, we will frequently (though not always) need order of number of training examples to be
linear ind.

3.1 The Growth Function

We now move onto giving moreconcretearguments for cases where we encounter infiniteH. Let’s now
give some definitions for the general infinite case.

We will assume that we are working in a model of computation in which we can store and manipulate
real numbers in constant space and time. This is crucial if we want to say anything about efficient algorithms
in this setting.

Let S be a vector ofm examplesx1, . . . , xm. x1, . . . , xm are justm arbitrarily chosen examples that
don’t have anything to do with the target distributionD. Givenh ∈ H we defineh(S) = (h(x1), . . . , h(xm)).
There might be anotherh′ ∈ H such thath(S) = h′(S). A way to measure how complex a problem is to
consider the different behavior ofh(x) whenh ∈ H.

Definition 1. (Behavior Set)

ΠH(S) = {h(S)|h ∈ H}

In the case whereh(xi) ∈ {0, 1} for anyxi, we have|ΠH(S)| ≤ 2m.

Definition 2. (Growth Function)

ΠH(m) = max{S:|S|=m}|ΠH(S)|

We observe that|ΠH(m)| ≤ 2m

Let’s look at the growth function in the cases discussed before.

Threshold problem:H is the class of one-dimensional threshold functions.
Given3 distinct points in(0, 1), there are4 different possibilities forh(S), so thatΠH(3) = 4.

- - -

- - +

- + +

+ + +
2Refer toTheorem 5of Lecture 2notes.
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If m points are given,|ΠH(m)| = m+ 1, which is far less that the general bound2m.
Suppose we are now given aH which is a class of interval functions. Each function in the class is

parameterized by two threshold values, a lower threshold (call thisl) and an upper threshold (call thisu). A
pointx is labeled positive ifx ∈ [l, u] and labeled negative otherwise.

Figure 3: Intervals

If we are givenm distinct points in(0, 1). How many different behaviors can we observe? To answer
this question, it doesn’t matter where exactly the interval boundaries lie, what matters is which pairs of
points they lie between. Ourm points definem + 1 regions in(0, 1). Then the number of different be-
haviors equals the number of ways we can choose these regions (which is

(

m+1
2

)

) plus1 (which is the case
obtained if the two boundaries are in the same region and so all the points are labeled negative), which is
O(m2) and is again far less than the most pessimist bound.

We now show that learning depends really on the number of behaviors. Note that we are back to considering
the realizable (perfect target) setting for now.

Theorem 4. For anyC,H, letA be an algorithm such that from anyc ∈ C and any distributionD, for any
δ ∈ (0, 1), if A is givenm samples drawn i.i.d. fromD, labeled byc, A returns a consistent hypothesis of

H. Then, with probability more than1− δ, err(h) ≤ O(
ln|ΠH(m)|+ln 1

δ

m
)

The bound inTheorem 4is nice since it involves the growth function which is, as we saw in some
examples, sometimes really less than the the worst case2m. Nevertheless, this bound is meaningless if the
growth function is2m. We are particularly interested when value is something smaller and it tightly bounds
theerr(h). But the growth function is still hard to calculate in general and therefore we would like to find
another complexity measure that we can use in its place that is easier to calculate. This leads us to introduce
theVC-dimension.

4 Vapnik-Chervonenkis(VC) Dimension

Definition 3. (Shattered points)
We say thatS = (x1, . . . , xm) of sizem is shattered by classH if |ΠH(m)| = 2m, ie if all states of{0, 1}m

can be achieved by someh ∈ H.

Definition 4. (VC Dimension)
TheV C dimension is the cardinality of the largest setS that can be shattered byH.

The VC dimension is a quantity that we can easily calculate for most of the classesH that we use.

Example 1: Linear Threshold (1-D)
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It is easy to see that1 point can be shattered (trivial), but2 cannot. Indeed, it is not possible to achieve the
+ - configuration. Thus,V C(H) = 1.

Figure 4: This configuration is not possible

Example 2: Intervals
Similarly, We observe that2 points can be shattered, but3 cannot. The + - + configuration is not possible.
Thus,V C(H) = 2.

Figure 5: This configuration is not possible

Example 3: Linear Threshold (2-D)
We can observe that any3 points that do not lie in a line can be shattered.

If the 3 points lie on the same line, one can easily see that they cannot be shattered.

This fact, however, has no influence on theVC-dimensionsince we have already proved that there is at least
one set of3 points that can be shattered. Instead, no set of four points can be shattered. We can break this
down into two cases: If one of the4 points lies in the convex hull of the other three, that point cannot get a
different label than the rest.

If no point lies in the convex hull of the other three, then draw a square withthe points as the four corners.
Pick one pair of points that are diagonally across from each other. It is impossible to label these two points
+ and the other two -.
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Figure 6: All the configurations possible

Figure 7: This configuration is not possible

Figure 8: This configuration is not possible

Figure 9: This configuration is not possible
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We now give a classical but still a remarkable result.

Lemma 2. If H = {linear thresholds in a d-dimensional space}, thenV C(H) = d+ 1.

We now connect the VC-dimension with the Growth function.

5 Sauer’s Lemma

Lemma 3. (Sauer’s Lemma) For anyH with finite VC-dimensiond,

ΠH(m) ≤
∑d

i=0 (
m
i ) = O(md)

This lemma is very powerful. It tells us that all hypothesis classes fall into oneof two categories: Ifd
is infinite, thenΠH(m) = 2m. The bound inTheorem 4is then meaningless. On the other hand, ifd is
finite, thenΠH(m) = O(md). In this case,Theorem 4gives us something very nice sincelog |ΠH(m)| =
O(d logm). Then the bound is linear ind and decreases to0 asm goes to infinity.
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