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1 General Learning Bound (Continued)

Here are a few things to note about the general learning bound.

• The general learning bound applies only when the hypothesis class is finite. We have looked at some
examples of this like the class of monotone conjunctions and the class of DNFs.

• No assumptions are made about the algorithm other than that it returns a hypothesis that is consistent
with the samples. In particular, it says nothing about the efficiency of the algorithm. An algorithm
that is exponential (in 1/ε, or 1/δ, or n) will still apply to the general learning bound.

• The bound on the number of examples involves a factor of ln(|C|). We are better off if we have a C of
smaller size. Bounds with this property are called Occam’s razor bounds (the simpler the better). This
is an intuitive result. If C is large, it would seem like there are more hypotheses that just happen to
agree with the sample (and hence are consistent), but are not the target concept. So we would need a
larger number of examples to rule these out. In contrast if C is small then if a hypothesis is consistent
it is more likely to actually be the target function.

1.1 Applying the General Learning Bound

Since the general learning bound applies when we have algorithms that return consistent hypotheses, we can
use this result to investigate the algorithms that we studied under the consistency model. In particular we
can try to see what learnability of a class under the consistency model tells us about learnability of the class
under the PAC model.

If we have a class that is learnable under the consistency model this means that there is an algorithm
for that class that returns a consistent hypothesis if one exists. We are dealing with the case that the target
function is a member of the hypothesis class, so we are guaranteed that there will always be at least one
consistent hypothesis. We can now immediately apply the general learning bound to bound the number of
samples needed to get Pr(err(h) > ε) < δ.

1.1.1 The Class of Monotone Conjunctions

Consider the class of monotone conjunctions. We showed earlier that this is learnable under the consistency
model. For this hypothesis class we have |C| = 2n. This gives us that

m ≥ (1/ε) · (n+ ln[1/δ]).
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This means that a polynomial number of samples will do to get a good enough hypothesis with high enough
probability. Therefore the class of monotone conjunctions is PAC learnable.

1.1.2 The Class of DNFs

Consider the class of DNFs. Here we have |C| = 22
n

, so the bound we get is

m ≥ (1/ε) · (2n + ln[1/δ])

This does not tell us that the class is PAC learnable. Note that it also does not tell us that the class is not PAC
learnable, since the bound is not a tight bound. It only shows that we cannot use the general learning bound
to show PAC learnability. The question of whether this class is PAC learnable or not is an open problem.1

1.2 PAC Learning and Consistency Learning

We can also relate the consistency model to the PAC model in another way. Specifically, we can show that
a slightly altered version of consistency learning reduces to PAC learning.

Assume we have an algorithm A that PAC-learns C by C. Define a new algorithm A′, which, given a set
S of m labeled examples, operates as follows:

1. Set ε to some value smaller than 1/m

2. Define a distribution D which is uniform over S

3. Run A, giving it (1/ε) · (ln[|C|] + ln[1/δ]) samples drawn from D

4. If A returns an hypothesis h ∈ C such that err(h) < 1/m, return h. Otherwise, return “none.”

Note that we give A a number of samples determined by the general learning bound, which means that A
will return a hypothesis such that err(h) < ε < 1/m with at least probability 1 − δ. Because we have a
finite number of samples and we definedD to be uniform, it must be the case that for every h ∈ C, err(h) ∈
{0/m, 1/m, 2/m, . . .m/m}, depending on how many of the samples in S it misclassifies. Therefore, if
err(h) < 1/m, the error must actually be zero, or equivalently, h must be consistent with S. This means
thatA′ learns a consistent hypothesis with probability at least 1− δ. This is very similar to learning C in the
consistency model, except that we now have a probability of failure δ.

2 The Unrealizable Case

So far, we have been working with the assumption that we have a perfect target function. That is, we assume
that the data is being labeled consistently by a specific function in the concept class. This is not always a
valid assumption to make. It may be the case that there is indeed a perfect target function, but it is not in the

1Some variations of the PAC model allow the algorithm to run in time poly(1/ε, 1/δ, n, #bits required to store target function
c). You may have come across one of these definitions in your reading. For DNFs, this would mean that we might allow the
algorithm time polynomial in the number of terms in the minimal DNF representation of the target c. For some particular functions,
the number of terms in a minimal DNF could be as many as 2n, in which case we would allow the algorithm time exponential in
the size of an example. However, for many simpler target functions, the size of the representation is much smaller and we would
not allow this exponential dependence. Since the algorithm must run in polynomial time in these parameters for every c ∈ C, the
Occam’s razor bound does not imply PAC learnability of DNFs in these variants of the PAC model either. (See Chapter 7.1 of
Kearns and Vazirani for some discussion of this.)
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concept class that we are considering. Or there might be noise in the data. The data might get mislabeled
occasionally, giving rise to some randomness. In view of this, we would like to loosen this assumption and
see how that affects the results we have obtained so far. This is often referred to as the unrealizable setting,
whereas the setting in which there is a perfect target function is referred to as the realizable setting.

By dropping the assumption of perfect target functions, we also need to update our assumptions about
how data is provided to the algorithm. Recall that earlier we assumed that the data was generated from a
distributionD and was labeled by the target function. We model this now as a joint distribution over pairs of
values (~x, y) where ~x is the data and y is the labeling of ~x, so we no longer refer to a target function labeling
the data.

This gives us a new definition of the error of a hypothesis. Recall that earlier we had

err(h) = Pr~x∼D [h(~x) 6= c(~x)] .

The new definition of error is

err(h) = Pr(~x,y)∼D [h(~x) 6= y] .

Note that this is a strictly more general way to define the error. We can still model a perfect target
function as a joint probability distribution for which the label y is deterministic conditioned on the data ~x
and corresponds to the target function’s labeling of ~x.

In the results that we had before we talked about the probability of finding a hypothesis h such that
err(h) < ε. We are no longer guaranteed that such a function even exists, so we need to relax this. The
corresponding notion that we will use is how close the error of the hypothesis is to that of the hypothesis
that has the least error in the hypothesis class.

Our earlier results also talked about the idea of a consistent hypothesis. It is no longer the case that
there is necessarily any consistent hypothesis in the hypothesis class, so we relax this notion as well by
considering instead the hypothesis that is best or most consistent with the sample data. We measure the
extent of the consistency of a hypothesis by its empirical error, which is defined as

êrr(h) = (1/m) · |{i : h(~xi) 6= yi}|

This value converges to the true error err(h):

E[êrr(h)] = err(h).

We denote the hypothesis with least empirical error as ĥ:

ĥ = argmin
h∈H

(êrr[h]) .

2.1 General Learning Bound in the Unrealizable Setting

In this section we are going to derive a general learning bound without assuming perfect target functions.
Assume that we have an algorithm A that, given m independent samples from an arbitrary distribution D,
outputs the hypothesis ĥ ∈ H with minimal empirical error. We will be looking for a lower bound on m that
guarantees that for any ε, δ ∈ (0, 1) , Pr[|err(ĥ)− min

h∈H
(err{h}) | > ε] < δ.

Assume the following property holds of the hypothesis class:

∀h ∈ H, |err(h)− êrr(h)| ≤ ε.
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We can then derive the following:
For any h ∈ H,

err(ĥ) ≤ êrr(ĥ) + ε this follows from the assumption

≤ êrr(h) + ε this follows from the definition of ĥ

≤ err(h) + 2ε. this follows from the assumption

Since the derivation above holds for any h ∈ H, it must hold for the h that minimizes error, so we have that

err(ĥ) ≤ min
h∈H

(err[h]) + 2ε.

This tells us that if we can bound the number of examples so that our assumption holds with high
probability we are effectively done. Our first attempt at trying to achieve this bound is going to use a basic
result from probability theory called Markov’s inequality. It will turn out to not be sufficient for our needs
but will give us an indication of how to proceed.

Theorem 1. (Markov’s inequality) IfX is a non-negative random variable and k is any positive real number,
then

Pr [X ≥ k] ≤ E [X] /k.

Proof:

E [X] = Pr [X ≥ k] · E [X|x ≥ k] + Pr [X < k] · E [X|x < k]

≥ Pr [X ≥ k] · E [X|x ≥ k] + 0

≥ Pr [X ≥ k] · k,

which we can rearrange to get

Pr [X ≥ k] ≤ E [X] /k.

We can apply Markov’s inequality as follows. For a fixed h, let X = êrr(h), k = err(h) + ε. Then
substituting into Theorem 1, we get

Pr[êrr(h) ≥ err(h) + ε] ≤ E[êrr(h)]

err(h) + ε
=

err(h)

err(h) + ε
.

This does not give us quite what we want because in general we do not have a bound on err(h), and so
for large enough errors the bound can get close to 1. Also the fact that this does not depend on the number
of samples is indicative that we are not doing everything quite right here.

We are going to improve upon this by using a related inequality called Hoeffding’s inequality. We will
derive Hoeffding’s inequality from Markov’s inequality in the next lecture.

Theorem 2. (Hoeffding’s inequality) Let Z1, Z2, . . . , Zm be independent random variables such that Zi ∈
[ai, bi], i = 1 . . .m. Define an empirical mean p̂ ≡ (1/m) ·

∑m
i=1 Zi and its expectation p ≡ E[p̂] =

(1/m) ·
∑m

i=1E[Zi]. For any ε > 0,

Pr[p− p̂ ≥ ε] ≤ e−2ε2m2/
∑m

i=1(bi−ai)2

and

Pr[p̂− p ≥ ε] ≤ e−2ε2m2/
∑m

i=1(bi−ai)2 .
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Corollary 1. Under the same assumptions on Z1, Z2, . . . , Zm, p, and p̂ as above,

Pr [|p− p̂| ≥ ε] ≤ 2e−2ε
2m2/

∑m
i=1(bi−ai)

2

.

Proof: This follows immediately from the application of union bound to the two probabilities in Hoeffding’s
inequality.

We are now ready to show the bound we are looking for on the number of samples.

Theorem 3. (General learning bound in the unrealizable setting) If m ≥ (1/2ε2) · (ln [|H|] + ln [2/δ]) ,
then with probability at least 1− δ,

∀h ∈ H, |err(h)− êrr(h)| ≤ ε.

Proof: Consider some h ∈ H. Define Zi =

{
1 if h(xi) 6= yi

0 otherwise
, i = 1 . . .m.

Since êrr(h) = (1/m) ·
∑m

i=1 Zi and err(h) = E[êrr(h)], we can apply (the corollary to) Hoeffding’s
inequality with p̂ = êrr(h), p = err(h), Z1 . . . Zm, and ai = 0, bi = 1, i = 1 . . .m. This gives

Pr[|err(h)− êrr(h)| ≥ ε] ≤ 2e−2ε
2m.

Applying this over all h ∈ H using the union bound, we get

Pr[∃h ∈ H : |err(h)− êrr(h)| ≥ ε] ≤ 2|H|e−2ε2m.

Since we want to show |err(h)− êrr(h)| ≤ ε, this is the probability of failure. If we let 2|H|e−2ε2m ≤ δ,
by re-arranging and taking the log, we get

m ≥ (1/2ε2) · (ln[|H|] + ln[2/δ]).

2.2 Remarks about the General Learning Bound

When we compare the bound on the number of samples for the unrealizable case with the bound for the
realizable case, we see that they have a very similar form. The Occam’s razor principle applies here as well.
The fewer hypotheses we have the better because of the ln (|H|) factor. Note that also we now have ε2 where
we used to have ε. This means that we are paying a penalty of a factor 1/ε by not having a perfect target
function.

By solving for ε in the bound we obtained for m and applying it to the inequality we obtained in an
earlier result, we get

err(ĥ) ≤ min
h∈H

(err[h]) +O

(√
ln (|H|) + ln (2/δ)

m

)
.

This gives us an interesting perspective on the effect of the size of the hypothesis class. The first term in
this equation tells us that we want a large hypothesis class because we increase our likelihood of minimizing
the error. However the second term tells us that a smaller hypothesis class is better because of the Occam’s
razor principle.

Note that way in which the Occam’s razor principle shows up here can be described in terms of over-
fitting. When we have a large H and we try to fit our hypothesis to the data, the likelihood of picking the
wrong hypothesis is larger, so overfitting becomes a bigger issue.
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