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We introduce a framework for automated market making for prediction markets, the volume parameter-
ized market (VPM), in which securities are priced based on the market maker’s current liabilities as well
as the total volume of trade in the market. We provide a set of mathematical tools that can be used to
analyze markets in this framework, and show that many existing market makers (including cost-function
based markets [Chen and Pennock 2007; Abernethy et al. 2011, 2013], profit-charging markets [Othman and
Sandholm 2012], and buy-only markets [Li and Vaughan 2013]) all fall into this framework as special cases.
Using the framework, we design a new market maker, the perspective market, that satisfies four desirable
properties (worst-case loss, no arbitrage, increasing liquidity, and shrinking spread) in the complex market
setting, but fails to satisfy information incorporation. However, we show that the sacrifice of information
incorporation is unavoidable: we prove an impossibility result showing that any market maker that prices
securities based only on the trade history cannot satisfy all five properties simultaneously. Instead, we show
that perspective markets may satisfy a weaker notion that we call center-price information incorporation.
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1. INTRODUCTION
A prediction market is a securities market in which traders buy and sell contracts with
values that are contingent on the outcome of a future event. Such markets are quite
common, ranging from exchanges for stock options and other financial derivatives to
bookmakers for sporting events to markets like the Iowa Electronic Markets [Forsythe
et al. 1992] that offer betting contracts on political election results. Interest in pre-
diction markets stretches beyond gamblers and investors, as researchers have become
quite intrigued at the information aggregation properties of market mechanisms. Ef-
ficient market theory [Malkiel and Fama 1970] suggests that market prices reflect
consensus forecasts that ought not be systematically inaccurate, and indeed these fore-
casts have been accurate in a variety of empirical settings [Ledyard et al. 2009; Berg
et al. 2001; Wolfers and Zitzewitz 2004].

The computer science literature has seen a recent burst in the development of au-
tomated market makers for facilitating prediction markets [Hanson 2003; Chen and
Pennock 2007; Pennock 2010; Abernethy et al. 2011, 2013]. In traditional markets,
an agent who arrives with the goal of buying or selling a given security must find a
counterparty who is interested in taking the other side of the transaction for this se-
curity at a reasonable price. This can be a challenge in thin markets or in markets
with a large set of diverse securities. To combat this problem, an automated market
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maker acts as a central authority that interacts with traders and facilitates all trans-
actions. The market maker is always willing to both buy and sell the set of securities
in question, and can adjust prices based on the history of trades in the market or
other factors. While the existence of a market maker can be beneficial for traders, who
have available a guaranteed counterparty at all times, the act of market making can
be profitable too: a market maker can in principle balance its inventory and profit off
the bid-ask spread [Othman and Sandholm 2012; Li and Vaughan 2013]. The market
making literature within the computer science community has focused on a mix of al-
gorithmic and economic questions: Can we design a market maker that has a bounded
loss (downside) from trading? How should we design the space of contracts? When can
the pricing function on these contracts be computed efficiently?

ALGORITHM 1: The cost-function market maker
Market maker announces payoff function φ : Ω→ Rk

Market maker initializes share vector q← 0 ∈ Rk

for all traders t = 1, . . . , T do
Trader t purchases bundle rt ∈ Rk and pays C(q + rt)− C(q)
Market maker updates the state q← q + rt

end for
Outcome ω is revealed and trader t is paid φ(ω) · rt for every t = 1, . . . , T

Perhaps the most popular automated market making framework is the cost-function
based market maker [Chen and Pennock 2007; Abernethy et al. 2011, 2013], described
explicitly in Algorithm 1. The basic setup is as follows. Let Ω denote a (potentially
large or even infinite) set of mutually exclusive and exhaustive states of the world.
The market maker selects a set of k possibly-related contracts to offer, e.g., a contract
worth $1 if and only if candidate X wins the primary election and another worth $1
if candidate X wins the general election. Formally, these contracts are specified by a
payoff function φ : Ω → Rk, where φi(ω) is the payoff of contract i in the event of
outcome ω. The market maker prices these contracts using a convex potential function
C : Rk → R called the cost function. Formally, the market maker maintains a state
vector q ∈ Rk, and when a trader wants to purchase a “bundle” of contracts denoted by
r ∈ Rk, where ri denotes the quantity of contract i, the trader is charged C(q+r)−C(q).
The state vector is then updated to q + r, and when the outcome ω is revealed this
particular trader is paid φ(ω) · r. In this framework, prices depend only on the history
of trade, and only through the state vector q.

The cost-function framework is mathematically quite elegant, relating a number of
natural concepts in convex analysis to concepts in mechanism design. Furthermore, it
is possible to design markets in this framework that satisfy a variety of nice properties
such as bounded loss for the market maker and no arbitrage. However, there are
several limitations of this framework that limit its value in both theory and practice:

— The bid-ask spread is fixed at 0, and as a result, the market maker cannot take
advantage of disagreements between traders in order to obtain profit guarantees,
either deterministically or in expectation.

— The liquidity provided is effectively constant. The market maker does not adapt the
total number of shares made available at different prices in response to trading vol-
ume. This is in contrast to typical financial markets in which an increase in transac-
tions could incentivize more liquidity providers to enter the market.

Prior work has studied the design of market makers that overcome these limitations.
Othman and Sandholm [2011, 2012] and Li and Vaughan [2013] proposed various mar-
ket makers with adaptive liquidity in which the market maker is capable of making a



Class of VPM WCL ARB II L SS Complex
Cost-function market

[Abernethy et al. 2011, 2013] 4 4 4 8 4 4

Profit-charging market
[Othman and Sandholm 2012] 4 4 8 4 4 8

Buy-only market
[Li and Vaughan 2013] 4 4 4 4 8 8

Perspective market 4 4 8 4 4 4

Table I: Desiderata satisfied by various proposed market mechanisms: (WCL) The market satis-
fies a worst-case loss bound; (ARB) the market prevents arbitrage opportunities; (II) the market
possesses the “information incorporation” property; (L) liquidity increases with the volume of
trade; (SS) the market has an asymptotically-vanishing bid-ask spread. The final column tracks
whether the market can handle combinatorial settings and other complex outcome spaces.

profit. However, these markets obtained these nice features at the expense of others.
All are limited to the complete market setting in which each outcome is associated with
a single contract with a binary payoff (i.e., φi(ω) = 1 if ω = i and 0 otherwise). Further-
more, the buy-only markets of Li and Vaughan [2013] have the undesirable feature of
a growing bid-ask spread, and we show that the profit-charging markets of Othman
and Sandholm [2012] do not satisfy information incorporation, the natural property
that the price of a contract never decreases as traders purchase more of that contract.
Table I summarizes the properties attained by each of these market makers.

In this paper we tell a story with two major subplots. First, we investigate the goal
of designing a market with five desirable properties: bounded worst-case loss for the
market maker, monotonically increasing liquidity, an asymptotically shrinking bid-ask
spread, lack of arbitrage, and information incorporation. We consider a very general
framework for market making, in which the cost of a bundle may depend arbitrarily on
the sequence of bundles purchased so far, and we show that it is impossible for such a
market to simultaneously possess all five properties. This explains why sacrifices were
necessary to achieve adaptive liquidity in previous work.

Second, we introduce a novel market making framework, the volume-parameterized
market (VPM) framework, which generalizes cost-function markets, allowing the po-
tential function C to depend not only on the market state q but also on a real-valued
measure of the volume of trade in the market. We show that the VPM framework en-
compasses the other markets shown in Table I; cost-function markets, profit-charging
markets [Othman and Sandholm 2012], and buy-only markets [Li and Vaughan 2013]
are all special cases. We develop a set of tools that can be used to reason about the
properties of markets in this framework. We then go on to introduce a new market, the
perspective market, a specific VPM that satisfies bounded loss, no arbitrage, increasing
liquidity, and shrinking spread. While the impossibility result tells us that we should
not expect the perspective market to satisfy information incorporation, we show that
in some cases it can satisfy a relaxation of this property, which we call center-price
information incorporation. Perspective markets are defined not only for complete mar-
kets but for arbitrarily complex contract spaces, and are the first markets designed for
complex contracts that satisfy these properties.

Tools from convex analysis. Throughout the paper we make use of several tools and
definitions from convex analysis which we review here. A set X ⊆ Rn is convex if for
all x,x′ ∈ X and all α ∈ [0, 1], αx + (1 − α)x′ ∈ X. The convex hull of a set X, denoted
ConvHull(X), is the intersection of all convex sets containing X. The epigraph of a
function f : Rn → (−∞,∞] is the set {(x, v) ∈ Rn × R : v ≥ f(x)}, and a function



f : Rn → (−∞,∞] is said to be convex if its epigraph is a convex set. A subgradient
to a function f : Rn → (−∞,∞] at a point x is a vector v ∈ Rn such that for all
y ∈ Rn, f(y) ≥ f(x) + v · (y − x). We denote the set of subgradients at x as ∂f(x).
Finally, the convex conjugate of a function f is a function on Rn defined by f∗(v) =
supx∈Rn [x · v − f(x)]. See Rockafellar [1997] for more details.

2. A GENERAL MODEL AND IMPOSSIBILITY
We begin with a very general framework for market making, where the cost of a bundle
may depend arbitrarily on the sequence of bundles purchased so far. This is essentially
as general as it is possible to get while allowing the market to depend only on internal
information; it does, however, ignore external variables such as time, the state of ex-
ternal markets, and the identity of individual traders. Our goal is to determine what
fundamental frictions, if any, exist between various desirable market properties. We
show that, even in this extremely general framework, such frictions do exist and in-
deed lead to an impossibility theorem.

2.1. The model
Let Ω denote a set of mutually exclusive and exhaustive states of the world or outcomes.
Our market will sell “shares” in various securities whose payoffs will be contingent
upon the future outcome. We will use the term contract bundle to refer to a vector
r ∈ Rk that describes the (possibly fractional) number of shares of each of k different
securities. We let φ : Ω → Rk denote the payoff function of the k contracts/securities,
with φ(ω) denoting a vector of payoff amounts when the outcome is ω ∈ Ω. If a bundle
r is purchased, and outcome ω ∈ Ω occurs, the trader receives payoff φ(ω) · r. Let
S = (Rk)∗ denote the history space of the market, consisting of finite (and possibly
empty) sequences of bundles. The markets we consider will be defined using a cost
function N : S × S → R, where N(s; s′) is the cost of purchasing the sequence s ∈ S
of bundles given the current history s′ ∈ S. The cost function is required to satisfy
N(r⊕ s; s′) = N(r; s′) +N(s; s′⊕ r) for all r ∈ Rk and all s, s′ ∈ S, where the ⊕ operator
denotes concatenation; that is, the cost of a sequence must be the sum of the costs of
each element, updating the state in between. The market procedure is analogous to
the cost-function-based market maker framework, and is detailed in Algorithm 2.

ALGORITHM 2: The Generic Market Maker
Market maker initializes state s← ∅
for all traders t = 1, . . . , T do

Trader t purchases bundle rt ∈ Rk

Trader pays N(rt; s)
Market maker updates the state s← s⊕ rt

end for
Outcome ω is revealed and trader t is paid φ(ω) · rt for t = 1, . . . , T

We will be interested in several quantities and properties of our market maker,
which we now introduce. The first is the worst-case loss, which is the most money a
market maker could lose in any run of the market. In the following, we will use the
notation Σ(s) to denote the sum of the bundles in s and |s| to denote the length of s,
i.e., the number of bundles in s.

Definition 2.1 (Worst-case loss). The worst-case loss of a market (φ, N) is

sup
s∈S

sup
ω∈Ω

φ(ω) · Σ(s)−N(s; ∅). (1)



Another crucial notion is that of arbitrage — a sequence of trades s following market
history s′ which guarantees positive profit for the trader.

Definition 2.2 (Arbitrage). An arbitrage is a pair s, s′ ∈ S such that

inf
ω∈Ω

φ(ω) · Σ(s)−N(s; s′) > 0. (2)

A notion which we will use to define several desiderata of our market maker is that
of volume, which intuitively measures the total amount of activity in the market since
trading began. We define this in a very general way for now, but in Section 3 we will
hone in on a particular form of this volume measure.

Definition 2.3 (Volume). The function V : S → R+ is a volume function if for all
s ∈ S and r ∈ Rk it satisfies

(1) V (s⊕ r) ≥ V (s)
(2) V (s⊕ s′) is unbounded in |s′| where s′ = r⊕ r⊕ . . .⊕ r for some r 6= 0
(3) For all s′ ∈ S, V (s⊕ (αr)⊕ s′) is unbounded in α for r 6= 0.

Using our notion of volume, we wish to say things like “property X holds as the
volume in the market approaches infinity.” We formalize this “volume limit” now.

Definition 2.4 (Volume limit). Given some volume function V : S → R+, we say
that the volume limit of some function f : S → R is c, denoted limV (s)→∞ f(s) = c, if for
all ε > 0 there exists τ ∈ R such that for all s ∈ S with V (s) > τ , we have |f(s)− c| < ε.

We can now state the desiderata we will focus on in this paper, relative to some
market (φ, N) and volume function V .

(1) Bounded worst-case loss (WCL). The worst-case loss of the market is finite.
(2) No arbitrage (ARB). For all s, s′ ∈ S, ∃ ω ∈ Ω such that φ(ω) · Σ(s) ≤ N(s; s′).
(3) Information incorporation (II). For all s ∈ S and r ∈ Rk, N(r; s⊕ r) ≥ N(r; s).
(4) Increasing liquidity (L). For all r, r′ ∈ Rk, limV (s)→∞ |N(r; s)−N(r; s⊕ r′)| = 0.

(5) Shrinking spread (SS). For r ∈ Rk, limV (s)→∞ |N(r; s) +N(−r; s)| = 0.

All of these desiderata have appeared multiple times in the literature, though in
some cases our definitions differ slightly. Our definition of WCL, ARB, and II exactly
correspond to the standard definitions [Abernethy et al. 2011, 2013], and these con-
cepts are central to the theory of automated market making. The terms liquidity and
bid-ask spread do not enjoy such standard definitions, however. We briefly survey the
literature on these concepts now.

The term liquidity is used in different ways, but generally quantifies a market’s
ability to execute a trade of a certain size without changing price very much. Liquidity
is closely related to the concept of market depth.1 The term bid-ask spread refers to the
difference in price on either side of “the book” — the difference between the purchase
price and the sell price for a given security.

In the complete market setting, Othman and Sandholm [2012] defined unlimited
market depth as the property that the price of any fixed-size transaction approaches
the marginal bid or ask price, and vanishing bid-ask spread as the property that the
sum of prices of all securities goes to one (for the compete market setting). In Aber-
nethy et al. [2011], liquidity is defined in terms of the bid-ask spread of trading a mini-
mal allowed bundle of size ε. Finally, Li and Vaughan [2013] define liquidity adaptation

1The distinction is generally that liquidity refers to the speed of a sale, whereas market depth refers to the
quantity, but speed and quantity are often one and the same in automated market making models.
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Fig. 1: Construction for the trades in Theorem 2.6.

to mean that the difference in price before and after a certain purchase gets arbitrar-
ily small as volume increases. Our definition of SS is therefore more or less standard,
and follows from the intuition above. For L, our definition is very similar to that of Li
and Vaughan [2013] except that we use the bundle cost instead of the instantaneous
price, as the latter does not always exist in the most general setting (for more about
instantaneous prices see Section 3.3).

Note that we have not included profitability as a desideratum, despite it being con-
sidered by (and even the central motivation for) other work. The concept of a worst-case
loss closely relates to profit, in that a negative WCL translates to guaranteed profit.
Of course, one cannot guarantee profit in all situations, but rather when there is suffi-
cient disagreement among the traders (if all traders share the same belief, the market
reduces to a zero-sum game between the market maker and the “aggregate trader”).
We discuss this disagreement–profit intuition in Section 5.

2.2. Impossibility
Ideally, we would like to design market makers that satisfy all five desiderata. Unfor-
tunately, we show in this section that even given the power to condition arbitrarily on
the history of trades, this is impossible for all but the simplest markets. In Section 2.3,
we discuss this result at a high level, as well as the implications for our study.

Definition 2.5. We say a market (φ, N) is non-trivial if φ is non-constant; that is, if
there exist ω1, ω2 ∈ Ω such that φ(ω1) 6= φ(ω2).

THEOREM 2.6. No non-trivial market (φ, N) with at least two securities (k ≥ 2) can
satisfy all five desiderata (WCL, ARB, II, L, SS), for any choice of volume function V .

The proof makes use of the following technical lemma that gives us bundles with par-
ticular properties. We will use these bundles to construct a sequence of trades which
force the market maker to suffer unbounded loss if all other desiderata are satisfied.

LEMMA 2.7. Let X := {φ(ω) : ω ∈ Ω} ⊂ Rk, and define σ(r) := maxx∈X r · x to be
the highest payoff possible for bundle r. Then if |X| > 1 and k > 1, there exist bundles
r1, r2 ∈ Rk satisfying the following two properties:

i. σ(r1) + σ(r2) > σ(r1 + r2)
ii. For i = 1, 2, we have (argmaxx∈X ri · x) ∩ (argmaxx∈X(r1 + r2) · x) 6= ∅.

PROOF. To begin, note that the set Y = ConvHull(X) ⊂ Rk is a convex polytope,
k > 1, and hence has an edge [x1,x2] := {λx1 + (1− λ)x2 : λ ∈ [0, 1]} where x1,x2 ∈ X;
here we used the assumption that |X| > 1. Moreover, we must have some direction
v ∈ Rk exposing this edge, meaning [x1,x2] = argmaxy∈Y v · y.

We first consider the case in which X contains points outside of [x1,x2], meaning
X \ [x1,x2] 6= ∅. Let d := x1 − x2 6= 0, and c := σ(v) = v · x1 = v · x2. As |X| is finite,
we must have K1 := c−maxx∈X\[x1,x2] x · v > 0, and K2 := maxx∈X |d · x| <∞. We also
have K2 > 0; to see this note that d · x1 − d · x2 = ‖d‖2 > 0, so at least one of |d · x1| or
|d ·x2| is strictly positive. Set α := K1/(3K2) and define r1 := v +αd, r2 := v−αd, and
r := r1 + r2. See Figure 1 for an illustration.



First some brief calculations. For any x ∈ X,
x ∈ [x1,x2] : ri · x = v · x± αd · x ≥ c− α|d · x| ≥ c− αK2 = c−K1/3

x /∈ [x1,x2] : ri · x = v · x± αd · x ≤ (c−K1) + α|d · x| ≤ c− 2K1/3.

Hence, argmaxx∈X ri · x ⊆ [x1,x2] for i = 1, 2. Now as any x̄ ∈ [x1,x2] can be written
x̄ = x1−λd for λ ≥ 0, we have (r1 ·x1−r1 · x̄) = (v+αd) ·λd = αλ‖d‖2 ≥ 0, so certainly
x1 ∈ argmaxx∈X r1 · x. Similarly, x2 ∈ argmaxx∈X r2 · x, thus establishing property (ii).
For property (i), we have σ(r1 + r2) = σ(2v) = 2c and σ(r1) + σ(r2) ≥ r1 · x1 + r2 · x2 =
2c+ α‖d‖2 > 2c.

Finally, we return to the case [x1,x2] = Y . Here we may set α to any positive value
and construct the bundles r1, r2, and r in the same way, and the proof still holds.

We are now ready to prove the impossibility result.

PROOF OF THEOREM 2.6. Let (φ, N) be a non-trivial market with k ≥ 2 satisfying
ARB, II, L, and SS for volume function V . We will leverage these four properties to
construct a sequence of trades with unbounded loss, violating WCL.

Let X and σ(r) be defined as in Lemma 2.7. We begin with a claim which bounds cost
of a bundle r by σ(r), which corresponds to the highest fixed price one could achieve
within the price space ConvHull(X).

CLAIM 1. If (φ, N) satisfies (SS, II, ARB), then N(r; s) ≤ σ(r) for all r, s.
PROOF. If not, by SS, for ε = (N(r; s)− σ(r)) /2 > 0 we have some τ such that
|N(r; s) + N(−r; s)| < ε for all s with V (s) > τ . Now by definition of a volume
function, we know that for some K, the sequence of K copies of r, s′ = ⊕Ki=1r,
satisfies V (s ⊕ s′) > τ . By repeated applications of II, N(r; s ⊕ s′) ≥ N(r; s).
Thus, −N(−r; s ⊕ s′) ≥ N(r; s ⊕ s′) − ε ≥ N(r; s) − ε > σ(r). Hence, as σ(r) =
− infω φ(ω) · (−r), we have infω φ(ω) · (−r)−N(−r; s⊕s′) > 0, violating ARB.

We can now start building our trades. Non-triviality of the market gives |X| > 1, and
we have assumed k > 1, so the Lemma 2.7 gives us bundles r1 and r2 with properties
(i) and (ii). Fix M > 0, and let r := r1 + r2 and δ := σ(r1) + σ(r2) − σ(r), which
is strictly positive by property (i). We now show that if traders buy enough of the
combined bundle r, the cost of M copies of either r1 or r2 will be bounded away from
its maximum price.

CLAIM 2. For sufficiently large K, we have N(Mri;Kr) < M(σ(ri) − δ/4) for
some i ∈ {1, 2}.
PROOF. For a contradiction, assume that for all K0 > 0 there is some K > K0

for which N(Mri;Kr) ≥ M(σ(ri) − δ/4) for i = 1, 2. Note that by definition of
a volume function, V (Kr ⊕ s) is unbounded in K for all s. Now let ε = Mδ/20
and take K0 large enough to satisfy the appropriate applications of the volume
limit for SS and L to guarantee that for all K > K0, we have

N(−Mr1;Kr⊕Mr) ≤ −N(Mr1;Kr⊕Mr) + ε ≤ −N(Mr1;Kr) + 2ε
N(−Mr2;Kr⊕Mr⊕−Mr1) ≤ . . . ≤ . . . ≤ −N(Mr2;Kr) + 3ε.

Hence, after Kr has already been sold by the market maker, the cost of pur-
chasing Mr, −Mr1, and −Mr2 in order can be bounded as follows:
N
(
Mr⊕ (−Mr1)⊕ (−Mr2);Kr

)
= N(Mr;Kr) +N(−Mr1;Kr⊕Mr) +N(−Mr2;Kr⊕Mr⊕−Mr1)

≤ N(Mr;Kr)−N(Mr1;Kr)−N(Mr2;Kr) + 5ε

≤Mσ(r)−M(σ(r1)− δ/4)−M(σ(r2)− δ/4) + 5ε

= M(σ(r)− σ(r1)− σ(r2)) +Mδ/2 +Mδ/4 = −Mδ/4 < 0,



which violates no arbitrage (ARB). (We applied Claim 1 and the assumption in
the second inequality.) Hence, we have shown that for all K > K0(M), we have
N(Mri;Kr) < M(σ(ri)− δ/4) for some i ∈ {1, 2}.

We now leverage Claim 2 to build our trade: buy Kr and then sell Mri. We will then
use Lemma 2.7 to pick the outcome which gives the trader profit unbounded in M ,
meaning that we can choose M so that the market maker suffers unbounded loss.

For the i and K guaranteed by Claim 2, and applying Claim 1, we have N(Kr ⊕
Mri; ∅) = N(Kr; ∅) +N(Mri;Kr) < Kσ(r) +M(σ(ri)− δ/4). But by Lemma 2.7(ii), we
have some ω∗ such that σ(r) = r · φ(ω∗) and σ(ri) = ri · φ(ω∗). Hence, the worst-case
loss of the market maker is

sup
s∈S

sup
ω∈Ω

φ(ω) · Σ(s)−N(s; ∅) ≥ φ(ω∗) · (Kr +Mri)−N(Kr⊕Mri; ∅)

> Kσ(r) +Mσ(ri)−Kσ(r)−M(σ(ri)− δ/4) = Mδ/4.

As M was arbitrary and δ > 0 was fixed, the loss is unbounded, violating WCL.

2.3. Intuition and implications
To understand Theorem 2.6, consider the following two seemingly equivalent markets,
A and B, both with outcome space Ω = {ω1, ω2}. In A, a security is offered for each
outcome, which pays out $1 if the outcome occurs and $0 otherwise, but in B only
the security for ω1 is offered. Formally, φA(ω1) = (1, 0) and φA(ω2) = (0, 1), while
φB(ω1) = 1 and φB(ω2) = 0. Note that, as exactly one of ω1 and ω2 must occur, a bet
for ω1 is a bet against ω2. Hence, markets A and B are equivalent in the sense that
any bundle rA ∈ R2 a trader purchases for a cost cA can be expressed as a bundle
rB = rA1 − rA2 with cost cB = cA − rA2 such that the payoffs are equivalent, meaning
rA · φA(ω)− cA = rBφB(ω)− cB for all ω ∈ Ω. However, note that Theorem 2.6 applies
to A and not B.2 What is going on here?

In the single security setting B, traders are faced with essentially one choice: buy
or sell the security. Market A, though, places distinctions between bundles which get
mapped to the same bundle rB as above. Consider specifically bundles rA with rA1 = rA2 ,
which get mapped to rB = 0. Such a bundle translates to “simultaneously buy and
sell 1 share of the security 1ω1

,” so while B interprets this as the null trade rB = 0
and merely leaves the market state unchanged, market A demands that this trade be
priced just as any other and that all five desiderata hold while the trade is executed.
In particular, from a high level II states that the price should increase, but SS states
that it should decrease, since the cost of the trade itself is roughly the bid-ask spread.
Thus, we observe friction between the desiderata, whereas in the single security case,
such “buy and sell the same security” bundles are simply ignored.

Indeed, one can interpret the edge [x1,x2] in the proof above as a generalization of
this phenomenon. By constructing bundles r1 and r2 which add the normal v to the
edge, we are effectively simulating this buy and sell behavior, and hence the price of
the combined bundle v is bound in opposing directions by II and SS. Of course, the
other three desiderata are needed to ensure even more bizarre situations do not arise.

To conclude, we note that Theorem 2.6, while relying only on standard desiderata in
the literature, may hint that certain desiderata as stated are too strong. The central
role of II in the proof above is in the claim: the cost of a bundle cannot leave the price
space, since otherwise one could continue purchasing it, and by II and SS, eventually
the sell price will also leave the price space, creating an arbitrage. Note however that if

2Of course, we have not shown that a market for B can satisfy all five desiderata; this scalar case is in
general still open, though we show a similar positive result in Section 5 and Proposition 5.4.



the purchase price is outside of the price space, no rational trader would purchase it, as
such a purchase is a guaranteed loss (by definition of σ). Moreover, it is not clear what
“information” should be incorporated by such a trade. Thus, it may be more natural to
enforce II solely for potentially rational trades, i.e., those for which the trader would
profit for at least one outcome. It is not clear that it is technically tractable to do so
however, and even if so, it may be that Theorem 2.6 would still hold.

Rather than restricting II to potentially rational trades, in Section 5.3 we consider
a different relaxed notion of II, dubbed center-price information incorporation (CII).
CII requires that rather than the cost of a bundle itself, only the center of the bid-ask
spread need increase as the bundle is purchased. We give a proof that this can hold
with the other 4 desiderata for the single security case (Proposition 5.4) and conjecture
that it does so for multiple securities as well. However, even though we recognize CII
as a potentially viable alternative to II, we note that relaxing II to CII implies that
in some situations, the price of a bundle could decrease as it is purchased, which is a
wholly unintuitive and arguably problematic property of a market maker.

3. THE VPM FRAMEWORK
The original class of cost-function market makers has the downside that they do not
increase the liquidity or guarantee profit to the market maker. Towards achieving such
a goal, we considered in Section 2 a highly general model of a market making agent
that adjusts the pricing function in response to the entire sequence of prior trades.
Unfortunately we showed that five desirable properties are impossible to achieve in
tandem even under this generic framework.

We now introduce a market making framework, the volume-parameterized market
(VPM), which lies between the cost-function framework (Algorithm 1) and the generic
one considered in the previous section (Algorithm 2). The VPM framework is in essence
a potential-based market, where the prices are set according to a potential function
which tracks a real-valued measure of the market volume v in addition to the total
outstanding trade vector q. Despite this generalization, we show in Section 4 that
the VPM encompasses many other frameworks considered in the field. In Section 5
we go on to introduce the perspective market, a specific VPM market satisfying all the
desiderata save information incorporation (II) (see Table I); in light of our impossibility
theorem the inclusion of II would have to come at the expense of another property.

3.1. Setting
One of the downsides of the cost-function market making framework is that it does
not allow for any kind of “progress” to be achieved by the market maker. It fails in
particular on the increasing liquidity goal, and it does not allow the market maker
to achieve guaranteed profit. It also lacks incorporation of a bid-ask spread, which is
good for price discovery but also precludes the opportunity to financially benefit from
the market making activity.

ALGORITHM 3: The Volume-Parameter Market
Market maker initializes share vector q← 0 and volume v ← 0
for all traders t = 1, . . . , T do

Trader t purchases bundle rt ∈ Rk

Trader pays N(rt;q, v) := C(q + rt, v + f(rt))− C(q, v)
Market maker updates the state q← q + rt
Market maker updates the volume v ← v + f(rt)

end for
Outcome ω is revealed and trader t is paid φ(ω) · rt for all t = 1, . . . , T



To achieve more flexibility in the hopes of overcoming these drawbacks, we now in-
troduce a market making framework, the volume-parameterized market (VPM), which
is described in full detail in Algorithm 3 and Definition 3.2. Much like the market
maker of Othman and Sandholm [2012], the VPM builds off of the cost-function frame-
work by introducing an additional parameter, the volume v ∈ R+ of the market activity
thus far. The cost function used for pricing will depend on both the cumulative shares
q and the current volume v and is written as C(q, v).

To measure the increase in the volume parameter following a trade, we will need the
concept of an asymmetric norm. Readers may simply think of f as a norm throughout;
the full generality is needed only in Proposition 4.1.

Definition 3.1. A function f is an asymmetric norm if it satisfies for all x, y:
— Non-negativity: f(x) ≥ 0
— Definiteness: f(x) = f(−x) = 0 if and only if x = 0
— Positive homogeneity: f(αx) = αf(x) for all α > 0
— Triangle inequality: f(x+ y) ≤ f(x) + f(y).

Definition 3.2. A volume-parameterized market (VPM) is a tuple (φ, C, f) with pay-
off function φ : Ω → Rk, differentiable cost function C : Rk × R+ → R, and volume
update function f : Rk → R+ which is an asymmetric norm.3

Given the generality of our setting in Section 2, it comes as no surprise that we may
express a VPM (φ, C, f) as a (φ, N) market: for a sequence of trades s = (r1, . . . , rT ) ∈ S
define V (s) =

∑T
t=1 f(rt) and N(r; s) = C(Σ(s) + r, V (s) + f(r))−C(Σ(s), V (s)). (Recall

that Σ(s) =
∑T
t=1 rt.) One immediately sees that the cost function N depends on s

only through the functions Σ and V , and thus we may overload our N(· · · ) notation by
writing N(r;q, v) := C(q+r, v+f(r))−C(q, v), as this expression is valid for all s such
that Σ(s) = q and V (s) = v. In particular, we have

N(r1, . . . , rT ;q, v) = C

(
q +

T∑
t=1

rt, v +

T∑
t=1

f(rt)

)
− C(q, v). (3)

Of course, it is easy to see that if the market starts at (q, v) = (0, 0), not all states (q, v)
can be achieved. By our requirement that f be an asymmetric norm, in fact, the set of
valid states which are reachable by the market is precisely the set {(q, v) : f(q) ≤ v}.

It is also clear at this stage that the cost-function framework is a special case of
the VPM framework: we simply take C(q, v) = U(q) for some U . We will discuss this
special case as well as several others in Section 4.

3.2. Desiderata of the VPM Market
We will again study the five desiderata presented in Section 2.1. For clarity, we now
restate them using our more specialized notation.

(1) Bounded worst-case loss (WCL). There exists a constant L ≥ 0 such that for
all sequences r1, r2, . . . , rT and any outcome ω we have N(r1, . . . , rT ;0, 0) − φ(ω) ·∑T
t=1 rt ≤ L.

(2) No arbitrage (ARB). For all valid states (q, v) and for all sequences r1, r2, . . . rT
there exists ω ∈ Ω such that φ(ω) ·

∑T
t=1 rt ≤ N(r1, . . . rT ;q, v).

(3) Information incorporation (II). For all valid states (q, v) and for all r,
N(r;q, v) ≤ N(r;q + r, v + f(r)).

3Note that we sometimes refer to C itself as the VPM when φ and f are irrelevant or assumed.



(4) Increasing liquidity (L). For all r, r′ and all ε > 0, there exists some τ such that
if v > τ and (q, v) is valid state, then |N(r;q, v)−N(r;q + r′, v + f(r′))| < ε.

(5) Shrinking spread (SS). For all r and all ε > 0, there exists some τ such that if
v > τ and (q, v) is valid state, then |N(r;q, v) +N(−r;q, v)| < ε.

3.3. Useful Tools
The goal is to design a class of VPM market makers that satisfy as many desiderata
as possible. To achieve that, we need more insight into the VPM framework and to
develop several tools. All proofs in this subsection may be found in Appendix A.4

Here and throughout this document, we will use the notation∇ig(x1, x2, . . . , xn) to be
the derivative of g with respect to its ith argument (which may be a vector), evaluated
at the point (x1, . . . , xn). For example, ∇1C(q, v) is the derivative of C with respect to
the quantity vector, evaluated at the point (q, v).

Instantaneous Price. Since the market is smooth and f is directionally differentiable,
instantaneous prices exist for any valid state (q, v). The instantaneous price of bundle
r at state (q, v) is the unit price of purchasing infinitesimal portion of r, denoted as
δrN(q, v) := limε→+0N(εr;q, v)/ε. It can be written in terms of C and f :

δrN(q, v) = lim
ε→+0

C(q + εr, v + f(εr))− C(q, v)

ε
= ∇1C(q, v) · r +∇2C(q, v)δrf(0), (4)

where we use δrf(x) to represent the r-directional derivative of f at x.
No-Trade Belief Set. One could imagine a trader having a belief vector b, where each

component bi is the trader’s expectation for the payoff of ith security. Let B denote the
set of all valid belief vectors B := ConvHull(φ(Ω)), then for any b ∈ B, there must exist
some distribution p over the outcome space Ω such that b = Eω∼p[φ(ω)].

The no-trade belief set (NTBS) at valid state (q, v) is the set of all belief vectors
b ∈ B such that a risk neutral, myopic trader with beliefs b has no incentive to trade.
Concretely, we define the NTBS as the set of all belief vectors according to which the
expected payoff of any bundle is no more than its instantaneous price:

NTBS(q, v) = {b ∈ B | ∀r, δrN(q, v) ≥ b · r}.
Perhaps surprisingly, we can characterize the NTBS as the subgradient of f , after
scaling and shifting.

LEMMA 3.3. For any valid state (q, v),

NTBS(q, v) = B ∩
(
∇1C(q, v) +∇2C(q, v)∂f(0)

)
. (5)

We shall observe that the NTBS is a generalization of price vector of cost-function
market. In fact, if C is a constant with respect to v, then the term ∇1C(q, v) becomes
the price vector of a cost-function market and the term ∇2C(q, v)∂f(0) becomes zero.

Purchase Triangle Inequality. It is common in market mechanisms that a trader wish-
ing to buy a bundle r is better off buying it all at once rather than splitting the purchase
into smaller pieces. We dub this property the purchase triangle inequality.

Definition 3.4. A VPM (φ, C, f) satisfies the purchase triangle inequality if for all
bundles r, r′ and all valid states (q, v), N(r, r′;q, v) ≥ N(r + r′;q, v).

The purchase triangle inequality leads to a much simpler analysis of properties such
as worst-case loss or no arbitrage, as we need only consider single trades rather than

4The appendix can be found in the full version of this paper, available on the authors’ websites.



arbitrary sequences. Under minor conditions, a VPM inherits this useful property from
the fact that f satisfies the triangle inequality as an asymmetric norm.

LEMMA 3.5. A VPM (φ, C, f) satisfies the purchase triangle inequality whenever C
is increasing in v.

Sufficient Conditions for Desiderata. If we fix v as a constant, then a VPM (φ, C, f)
yields a cost-function market U(q) : Rk 7→ R defined by U(q) = C(q, v). In general, a
cost-function market U(q) satisfies no arbitrage if for all q and r, minω∈Ω r · φ(ω) ≤
U(q + r)− U(q). A useful fact is that if C(q, v) is increasing in v, the VPM satisfies no
arbitrage if the cost-function markets derived by fixing v satisfy no arbitrage.

LEMMA 3.6. Let VPM (φ, C, f) be given. If Cv : q 7→ C(q, v) satisfies no arbitrage for
all v, and if C is nondecreasing in v, then the VPM satisfies no arbitrage.

Finally, we relate liquidity and shrinking spread to the first-order behavior of C.

LEMMA 3.7. Let VPM (φ, C, f) be given. L and SS are satisfied under the following
two conditions:

(1) limv→∞∇2C(q, v)→ 0, uniformly for all q s.t. (q, v) is valid state.
(2) For any fixed r, limv→∞ ‖∇1C(q, v)−∇1C(q + θr, v + f(θr))‖ → 0, uniformly for all

q and θ s.t. (q, v) is valid state and 0 ≤ θ ≤ 1.

4. EXISTING MARKET MODELS AS VPMS
The VPM framework generalizes many previously proposed market makers. In the in-
troduction we presented Table I which compares the three classes of market discussed
below, including the subset of desiderata they satisfy, and compares these to the per-
spective market that we introduce in Section 5.

The simplest example of VPM is the cost-function market maker, which is de-
fined by a convex function U(q). This market can be easily viewed as a VPM with
C(q, v) = U(q), ignoring the volume information. The real power of a VPM, however,
is the ability to add market properties of a progressive nature, such as increasing liq-
uidity and shrinking spread. It is not surprising that several previous attempts to add
such properties can be viewed as special cases of the VPM framework as well.

Both of the frameworks discussed in this section were defined only for complete mar-
kets in which φi(ω) = 1 if ω = i and 0 otherwise.

4.1. Profit-Charging Market Maker
The profit-charging market maker proposed by Othman and Sandholm [2012], which
builds on the constant-utility market maker [Chen and Pennock 2007], can be viewed
as a special case of the VPM framework. It consists of a utility function u, a liquidity
function α, a profit function g, a discrete distribution p over outcomes and a fixed initial
liquidity x0, where u, α and g are all twice differentiable, u is strictly increasing, and
α and g are non-decreasing.5

In addition, there is an internal scalar s that acts the same way as the volume
parameter v in VPM framework. In particular, s =

∑T
t=1 f(rt) where (r1, . . . , rT ) is

the previous trading history and f is a norm.6 An s-parameterized cost function C
is solved implicitly using the constant-utility framework: 7 ∑n

i=1 pi · u(C(q, s) − qi) =

5In Othman and Sandholm [2012], the liquidity function is denoted by f ; we use α to avoid confusion.
6They consider a slightly more general distance function d(q,q+r), which becomes a volume update function
if d only depends on the difference between its arguments.
7In their paper, C is only implicitly parameterized by s; we make it explicit for clarity.



u(x0 + α(s)). Finally, the profit function is added and the final cost function becomes
C(q, s) := C(q, s) + g(s). It is straightforward to verify that C satisfies Definition 3.2
with s playing the role of v.

Othman and Sandholm [2012] show that the market satisfies WCL, L, and SS. Using
the fact that constant-utility market makers have no arbitrage [Chen and Pennock
2007], we can easily apply Lemma 3.6 to establish ARB for this market as well. Finally,
the impossibility result implies that the market must fail to satisfy II.

4.2. Buy-Only Market Maker
Li and Vaughan [2013] proposed a class of market makers for complete markets that
have adaptive liquidity (similar to increasing liquidity in our discussion) and can guar-
antee a profit. Their market makers are potential-based, meaning the cost of bundle r
at market state q is U(q + r) − U(q), but with the added restriction that only buying
is allowed, i.e., bundles are restricted to r ∈ Rk+. A trader can only “sell” securities
by buying the complement ones. For example, if there are 3 securities corresponding
to 3 mutually exclusive events in the outcome space, then a trader who would like
to sell the bundle (1, 0, 0) (i.e., purchase the bundle (−1, 0, 0)), must instead make the
equivalent purchase of the complement bundle (0, 1, 1).

As a consequence of the buy-only restriction, each component of the cumulative
share vector q is monotonically increasing. The volume of the market is thus tracked
by q itself, even if no volume parameter is explicitly recorded as is done in VPM frame-
work. This implicit idea of volume is the reason why buy-only market makers can have
properties such as increasing liquidity. As we shall show below, if we explicitly write
out the volume parameter, then the buy-only market makers falls into VPM frame-
work. We go into further detail in Appendix B.

We wish to show that the buy-only market maker is equivalent to a VPM market in
a particular strong sense. Intuitively, we would like to say that T traders who sequen-
tially purchase a sequence of bundles r1, r2, . . . , rT in the VPM market would receive
the same net payoffs respectively as T traders who sequentially purchased the same
sequence of bundles in the buy-only market. We cannot make this statement, however,
as any bundle rt with negative entries is invalid in the buy-only market. Instead, we
will need to map negative bundles to positive ones via some map ρ, which ensures that
ρ(r) has only positive entries. Of course, this transformation ρ is in some sense implicit
in the buy-only market itself — if a trader wants to sell a security, she must instead
rephrase it as a purchase of other securities.

We now define a particular VPM in terms of a given a buy-only market U . Let

C(q, v) := U
(
q + w(q, v)1

)
− w(q, v) , f(r) =

n∑
i=1

ri + 2nmaxneg(r) , (6)

where w(q, v) = (v −
∑n
i=1 qi)/(2n), and maxneg(r) := maxi(−ri)+ is the magnitude of

the most negative entry of a bundle r (and 0 if all entries are nonnegative). One can
easily verify that f is an asymmetric norm. Finally, we set our bundle map ρ(r) :=
r + maxneg(r)1, which adds the positive smallest amount of the 1 bundle needed to
make r have nonnegative entries.

Writing C(q, v) in terms of U as above hints at a natural correspondence between
states (q, v) in the VPM market and states σ(q, v) := q + 1

2n (v −
∑n
i=1 qi)1 in the

buy-only market. Noting that σ(0, 0) = 0, the equivalence between markets follows
immediately from the following proposition, which is proved in Appendix B.

PROPOSITION 4.1. Consider any buy-only market U , and the VPM market defined
as in eq. (6). For any valid pair (q, v) and any outcome ω ∈ Ω, purchasing r in the VPM



market when the current state is (q, v) yields the same net payoff as purchasing ρ(r) in
the buy-only market when the current state is σ(q, v). The buy-only market state after
this purchase is made is σ(q + r, v + f(r)).

5. A NEW MARKET MAKER
In this section, we describe a new class of VPM called the perspective market, which
we show satisfies 4 out of 5 desiderata (WCL, ARB, L and SS). From Theorem 2.6, we
know that such a market must give up II. In light of this, in Section 5.3 we introduce a
relaxed notion of II called center-price information incorporation (CII), and conjecture
that CII is also satisfied by the perspective market.

Note that it is possible from Table I that these same four desiderata are satisfied by
the profit-charging market [Othman and Sandholm 2012], and moreover a different
set of four (WCL, ARB, II, L) are satisfied by the buy-only market [Li and Vaughan
2013]. However, as mentioned above, both of these market makers are defined solely
for the complete market setting. In contrast, the perspective market inherits the VPM
flexibility of allowing for general functions φ, called the complex market setting.8 The
perspective market is the first such model to have all of these properties.

5.1. Definition of the Perspective Market
Our goal is to modify a cost-function market to have increasing liquidity. We start
with a cost-function market with cost function U defined via its convex conjugate R
[Abernethy et al. 2013], that is, U(q) = R∗(q) = supp∈Π p · q−R(p), where Π :=

ConvHull(φ(Ω)) ⊆ Rk. It is known that U has constant liquidity. We inject liquid-
ity by scaling the conjugate function R. Let C(q, v) = supp∈Π p · q− α(v)R(p), where
α(v) is an increasing function called liquidity function. As volume v grows R becomes
curvier, C becomes flatter, and the market enjoys higher liquidity. By simple calcu-
lation, C(q, v) = α(v)U(q/α(v)). This transformation from U(q) to C(q, v) is what is
commonly known as a perspective transformation in convex analysis.

The liquidity function α(v) needs to be chosen with care for two reasons. First, we
would like the properties of the standard path independent market, such as no arbi-
trage and bounded worst-case loss, to be preserved. Second, the introduction of v brings
in a bid-ask spread, or NTBS (see Section 3.3), that we want to shrink.

The perspective market uses a cost function based on C with an additional additive
term g(v). As in Othman and Sandholm [2012], we use this additive term to ensure no
arbitrage and potentially generate profit. We now define our new market maker.

Definition 5.1. A perspective market is a VPM (φ, C, f) with cost function defined by

C(q, v) = α(v)U(q/α(v)) + g(v) (7)

for some liquidity function α and profit function g, and cost potential U .

Some regularity assumptions are needed on R, U , α and g, which we give in the follow-
ing subsection. We now state the main result of this section.

THEOREM 5.2. A perspective market satisfying regularity conditions (1–5) below
for some particular constants M , S, and B, satisfies ARB, WCL, L and SS when the
following 6 conditions hold:

(1) limv→∞ α′(v) = 0; (2) limv→∞ g′(v) = 0; (3) limv→∞ α(v) = ∞; (4)
limv→∞ vα′(v)/α(v)2 = 0; (5) ∀v ≥ 0, g(v) ≥Mα(v); (6) ∀v ≥ 0, g′(v) ≥Mα′(v).

8See Appendix B for thoughts about how the buy-only market might extend to the complex market setting
as well.



It is easy to verify that if we choose α(v) = vc (0 < c < 1) or log(v + 1), and g(v) =
Mα(v), then the conditions of the theorem all hold. For a concrete choice of φ and
U that satisfy the regularity conditions, one can take Ω = {0, 1}2, φ(ω)i = ωi, and
U(q) = log(1 + eq1) + log(1 + eq2). We prove Theorem 5.2 in the following subsection,
combining equations (8) through (12).

5.2. Proof of Theorem 5.2
We begin by stating the regularity conditions we will need.

(1) R is a pseudo-barrier,9 bounded by a constant M on Π.
(2) R is 1/S strongly convex for some constant S, and is twice-differentiable. Then U

is also twice-differentiable and ∇2U is bounded above by S.10

(3) R is closed, and therefore R = R∗∗ = U∗.11

(4) Π is bounded by a constant B, i.e., π ∈ Π =⇒ ‖π‖ ≤ B.
(5) α(v) is a positive increasing function on [0,∞), g(0) = 0, and α(v) and g(v) are

continuously differentiable.

Also notice that since f is a norm, by the equivalence of norms on finite dimensional
Banach space, there is some largest real number K > 0, such that f(q) ≥ K‖q‖ for
all q ∈ Rk. In the following, we establish sufficient conditions on α(v) and g(v) that
guarantee all 4 desiderata.

Increasing Liquidity (L) and Shrinking Spread (SS)
To prove increasing liquidity and shrinking spread, we want establish the two condi-
tions in Lemma 3.7. First,

∇2C(q, v) = α′(v)U
(

q
α(v)

)
+ α(v)

〈
∇U

(
q

α(v)

)
, −α

′(v)q
α(v)2

〉
+ g′(v)

= α′(v)
{〈
∇U

(
q

α(v)

)
, q
α(v)

〉
−R

(
∇U

(
q

α(v)

))}
− α′(v)

〈
∇U

(
q

α(v)

)
, q
α(v)

〉
+ g′(v)

= −α′(v)R
(
∇U

(
q

α(v)

))
+ g′(v),

therefore |∇2C(q, v)| ≤ α′(v)M + |g′(v)|. The second equality follows from the fact that
R = U∗ and Theorem 23.5 of Rockafellar [1997]. Therefore, condition (1) in Lemma 3.7
is satisfied if

lim
v→∞

α′(v) = lim
v→∞

g′(v) = 0. (8)

On the other hand, for fixed r and 0 ≤ θ ≤ 1,∥∥∥∇1C(q, v)−∇1C(q + θr, v + f(θr))
∥∥∥ =

∥∥∥∇U ( q
α(v)

)
−∇U

(
q+θr

α(v+θf(r))

)∥∥∥
≤ S

∥∥∥ q
α(v) −

q+θr
α(v+θf(r))

∥∥∥ = S
∥∥∥ q
α(v) −

q
α(v+θf(r)) + q

α(v+θf(r)) −
q+θr

α(v+θf(r))

∥∥∥
≤ S‖q‖

(
1

α(v) −
1

α(v+θf(r))

)
+ S ‖r‖

α(v+θf(r)) .

The first inequality follows from the Mean Value Theorem and the fact that ∇2U is
bounded by S.

9We borrow the term pseudo-barrier from Abernethy et al. [2013] to denote a bounded function whose deriva-
tive (in terms of magnitude) is a normal barrier function.
10This is not restrictive, as any strictly convex function is strongly convex on compact set.
11This is not restrictive either as we can always take the closure of R, which has no effect on U .



The second term of the final expression goes to zero as long as

lim
v→∞

α(v) =∞. (9)

For the first term, applying the Mean Value Theorem again and v ≥ f(q) ≥ K‖q‖
gives

S‖q‖
(

1
α(v) −

1
α(v+θf(r))

)
= Sθf(r)‖q‖ α

′(η)

α(η)2
≤ Sf(r)

K
· vα

′(η)

α(η)2
≤ Sf(r)

K
· ηα

′(η)

α(η)2
,

where v ≤ η ≤ v + θf(r). Therefore, condition (2) of Lemma 3.7 is satisfied if both
Equation (9) and the following equation hold:

lim
v→∞

vα′(v)

α(v)2
= 0. (10)

No Arbitrage (ARB)
Since the cost-function market U has no arbitrage and scaling its conjugate preserves
this property [Abernethy et al. 2013], the market defined by C(·, v) has no arbitrage
for any v. From the previous derivation, we have

∇2C(q, v) = −α′(v)R
(
∇U

(
q

α(v)

))
+ g′(v) ≥ −α′(v)M + g′(v),

hence by Lemma 3.6, the following condition is sufficient for no arbitrage:

∀v ≥ 0, g′(v) ≥Mα′(v). (11)

Bounded Worst-case Loss (WCL)
Let L(v) be the worst-case loss when the market ends up with volume v. Then

L(v) = max
ω∈Ω

sup
q:(q,v) valid

q · φ(ω)− C(q, v) + C(0, 0) ≤ max
ω∈Ω

sup
q

q · φ(ω)− C(q, v) + C(0, 0)

= max
ω∈Ω

sup
q

q · φ(ω)− α(v)U
(
α(v)−1q

)
+ α(0)U(0)− g(v)

= max
ω∈Ω

sup
q
α(v)

(
α(v)−1q · φ(ω)− U

(
α(v)−1q

)
+ U(0)

)
+ (α(0)− α(v))U(0)− g(v)

= max
ω∈Ω

sup
q
α(v) (q · φ(ω)− U(q) + U(0)) + (α(0)− α(v))U(0)− g(v).

Since R is bounded on Π, Theorem 4.2 of Abernethy et al. [2013] implies that the
path independent market defined by U has worst-case loss bounded by supp∈ΠR(p) −
infp∈ΠR(p) = supp∈ΠR(p) + U(0). Therefore

max
ω∈Ω

sup
q

q · φ(ω)− U(q) + U(0) ≤ sup
p∈Π

R(p) + U(0),

L(v) ≤ α(v) sup
p∈Π

R(p) + α(0)U(0)− g(v) ≤ α(v)M + α(0)U(0)− g(v).

The market is guaranteed to have bounded loss if

∀v ≥ 0, g(v) ≥ α(v)M. (12)

In fact, we can see now that profit can be generated by setting g(v) even larger,
such as α(v)(M + 1). (This idea of generating profit via an additive function was also
pointed out in Othman and Sandholm [2012].) Note however that care must be taken
when setting g, as for information elicitation we do not want zero loss or guaranteed
profit in every situation, or perhaps even for every v. As we discussed in Section 2.1,
traders will simply refuse to participate if they have a guaranteed loss.

It may be possible, however, to guarantee profit when there is sufficient disagree-
ment in the market, a traditional case where market making is profitable in finance.



In terms of our market state (q, v), we can express “disagreement” as f(q) < v, as
agreement would mean all trades were in the same direction, giving us f(q) = v.
Intuitively, this says that the traders disagree when the history of trades has “ups
and downs.” In principle, one could set g in such a way as to guarantee profit which
is increasing in v − f(q), thereby profiting when traders disagree, but still gathering
information (at a loss) when they agree.

5.3. Center-price Information Incorporation
In light of Theorem 2.6, we cannot hope to achieve information incorporation (II) along
with the other 4 desiderata. We now motivate an alternative to II, center-price infor-
mation incorporation (CII), which we conjecture holds for the perspective market.

In a cost-function market U , the instantaneous price of a bundle r at market state
q can be written as a dot product ∇U(q) · r, where ∇U(q) is the instantaneous price
vector with components corresponding to the instantaneous prices of each security.
In contrast, the instantaneous price for a VPM is computed in eq. (4) as ∇1C(q, v) ·
r + ∇2C(q, v)δrf(0). The first term is simply the instantaneous price of r in the cost-
function market Cv := C(·, v), a construct we used in Lemma 3.6. The key difference
here is the addition of the vanishing second term which controls the bid-ask spread.

Furthermore, since f is a norm, from eq. (5) we see that the NTBS is simply an
f -norm ball centered at this center price (vector) ∇1C(q, v). If traders are believed to
be (approximately) myopic and risk neutral, the NTBS can be viewed as capturing
the “information” in the market state. It is therefore natural to define information
incorporation with respect this center price rather than the instantaneous price.

Definition 5.3. A VPM (φ, C, f) satisfies Center-price Information Incorporation
(CII) if for all r, q, v s.t. (q, v) is valid state, ∇1C(q + r, v + f(r)) · r ≥ ∇1C(q, v) · r.

We conjecture that CII holds in the perspective market, and now state two results
(proved in Appendix C) which provide strong evidence for this conjecture. The first
shows that the perspective market satisfies CII in the single security case under some
conditions on α. The second reduces the general problem of proving CII for all r to
verifying it for r near 0.

PROPOSITION 5.4. The perspective market with f(r) = |r| satisfies CII in the single
security case if α is concave and vα′(v)/α(v) ≤ 1 for all v ≥ 0.

LEMMA 5.5. Fix an instantiation (φ, C, f) of the perspective market as in Defini-
tion 5.1. Suppose for all r there exists τ > 0 such that for all ε ≤ τ , ∇1C(q + εr, v +
f(εr)) · εr ≥ ∇1C(q, v) · εr for all valid states (q, v). Then the market satisfies CII.

CONJECTURE 5.6. The perspective market satisfies CII in the general case if α is
concave and vα′(v)/α(v) ≤ 1 for all v.

6. OTHER CONSIDERATIONS
We conclude by discussing two extra properties of interest when designing VPMs, in-
creasing market depth and expressiveness. The formal statements and proofs from this
section may be found in Appendix D and E.

Increasing Market Depth. Liquidity measures the speed of price changes during trans-
actions. When liquidity is high, traders may be able to make money by moving the
market prices to reflect the expected payoffs of securities. To quantify this, we define
market depth as the most a trader could make starting at some market state (q, v) if he
had the power to choose the outcome ω. We say a market has increasing market depth
if for any M > 0, there exists τ > 0 such that whenever v > τ , MarketDepth(q, v) > M .



This is implies that the market becomes more attractive as volume increases. It can be
shown that the sufficient conditions from Lemma 3.7 are sufficient for this as well.

Expressiveness. Abernethy et al. [2013] defined a notion of expressiveness for cost-
function markets that requires that the market price can be pushed arbitrarily close
to any beliefs b ∈ B. This property is important when interpreting market prices as
collective beliefs. In the VPM setting, the market price generalizes to the NTBS, as
discussed in Section 3.3. Accordingly, we define expressiveness via two properties:
(1) Price mobility: For any valid state (q, v), any b ∈ B, and any ε > 0, there exists a

bundle r such that for some b′ ∈ NTBS(q + r, v + f(r)), ||b− b′|| ≤ ε.
(2) Bounded information loss: There exists γ ≥ 0 such that for any valid state (q, v)

and all b,b′ ∈ NTBS(q, v), ||b− b′|| ≤ γ.
We say that a market satisfying these properties is γ-expressive. The notion of ex-

pressiveness in Abernethy et al. [2013] corresponds to this definition with γ = 0.
Bounded information loss is not hard to satisfy in practice as Lemma 3.3 tells us

that we only need to upper bound ∇2C(q, v). Interestingly, price mobility is implied by
bounded worst-case loss.
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APPENDIX
A. PROOF OF RESULTS IN SECTION 3.3
A.1. Proof of Lemma 3.3
We first state and prove the following useful result.

PROPOSITION A.1. Let h : Rn → R be convex. Then for any x ∈ Rn,

∀r δrh(x) ≥ b · r ⇐⇒ b ∈ ∂h(x).

PROOF. We will make use of the fact that δrh(x) = supg∈∂h(x) g·r. Also, by definition,
g ∈ ∂h(x) is equivalent to h(x + r)− h(x) ≥ g · r for all r. For the forward direction, for
all r we have b · r ≤ δrh(x) = supg∈∂h(x) g · r ≤ h(x+ r)−h(x), so b ∈ ∂h(x). Conversely,
if b ∈ ∂h(x), then clearly b · r ≤ supg∈∂h(x) g · r = δrh(x).

PROOF OF LEMMA 3.3. Consider the function g(r) = ∇1C(q, v) · r +∇2C(q, v)f(r),
which is convex as f is convex. Then by Equation (4) we see that δrN(q, v) = δrg(0).
Now by definition of the NTBS and Proposition A.1 we have

NTBS(q, v) = {b ∈ B | ∀r, δrg(0) ≥ b · r} = ∂g(0) ∩B.

Expanding out ∂g gives the result.

A.2. Proof of Lemma 3.5
PROOF. For all valid states (q, v), all bundles r and r′,

N(r;q, v) +N(r′;q + r, v + f(r))−N(r + r′;q, v)

= C(q + r, v + f(r))− C(q, v) + C(q + r + r′, v + f(r) + f(r′))− C(q + r, v + f(r))

− C(q + r + r′, v + f(r + r′)) + C(q, v)

= C(q + r + r′, v + f(r) + f(r′))− C(q + r + r′, v + f(r + r′)).

As C is increasing in v, this expression is nonnegative as f(r) + f(r′) ≥ f(r+ r′) by the
assumption that f is an asymmetric norm.

A.3. Proof of Lemma 3.6
PROOF. Fix any valid state (q, v) and any sequence of purchases r1, · · · , rT . Let

r =
∑T
t=1 rt, u =

∑T
t=1 f(rt) ≥ 0. We now have

min
ω∈Ω

r · φ(ω) ≤ C(q + r, v + u)− C(q, v + u) (13)

≤ C(q + r, v + u)− C(q, v + u) + C(q, v + u)− C(q, v) (14)
= C(q + r, v + u)− C(q, v) = N(r1, . . . , rT ;q, v)

where (13) follows from no arbitrage of C(·, v + u) and (14) from monotonicity of
C(q, ·).

A.4. Proof of Lemma 3.7
We make use of the following result.

PROPOSITION A.2. Given conditions of Lemma 3.7, and for any fixed bundle r,

lim
v→∞

|δrN(q, v)−N(r;q, v)| = 0, (15)

uniformly for all q s.t. (q, v) is valid state.



PROOF. By Equation (4),

|δrN(q, v)− δrN(q + θr, v + f(θr))|

=
∣∣∣∇1C(q, v) · r +∇2C(q, v)δrf(0)−∇1C(q + θr, v + f(θr)) · r

− ∇2C(q + θr, v + f(θr))δrf(0)
∣∣∣

≤
∥∥∥∇1C(q, v)−∇1C(q + θr, v + f(θr))

∥∥∥ · ‖r‖
+
∣∣∣∇2C(q, v)−∇2C(q + θr, v + f(θr))

∣∣∣ · |δrf(0)|

Since ‖r‖ and |δrf(0)| are constants, by the two conditions of Lemma 3.7, for any
ε > 0, there is some τ s.t. when v > τ ,

|δrN(q, v)− δrN(q + θr, v + f(θr))| < ε. (16)

Therefore when v > τ ,

|δrN(q, v)−N(r;q, v)|

=

∣∣∣∣δrN(q, v)−
∫ 1

0

δrN(q + θr, v + f(θr))dθ

∣∣∣∣
=

∣∣∣∣∫ 1

0

(
δrN(q, v)− δrN(q + θr, v + f(θr))

)
dθ

∣∣∣∣
≤
∫ 1

0

∣∣∣(δrN(q, v)− δrN(q + θr, v + f(θr))
)∣∣∣dθ

≤
∫ 1

0

εdθ = ε

PROOF OF LEMMA 3.7. Similar to how we get Equation (16), we can derive that for
all fixed r, r′ and ε > 0, there is some τ s.t. when v > τ ,

|δrN(q, v)− δrN(q + r′, v + f(r′))| < ε.

Using Proposition A.2, for any ε > 0, there is some τ s.t. when v > τ ,

|N(r;q, v)−N(r;q + r′, v + f(r′))|
≤ |N(r;q, v)− δrN(q, v)|+ |N(r;q + r′, v + f(r′))− δrN(q + r′, v + f(r′))|

+ |δrN(q, v)− δrN(q + r′, v + f(r′))| ≤ 3ε.

Increasing liquidity is proved.
By Equation (4),

|δrN(q, v) + δ−rN(q, v)|

=
∣∣∣∇1C(q, v) · r +∇2C(q, v)δrf(0) +∇1C(q, v) · (−r) +∇2C(q, v)δ−rf(0)

∣∣∣
=
∣∣∣∇2C(q, v)δrf(0) +∇2C(q, v)δ−rf(0)

∣∣∣ =
∣∣∣∇2C(q, v)

∣∣∣ · ∣∣∣δrf(0) + δ−rf(0)
∣∣∣



By condition 1 of Lemma 3.7, for any ε > 0, there is some τ s.t. when v > τ ,

|δrN(q, v) + δ−rN(q, v)| < ε.

Using Proposition A.2 again, for any ε > 0, there is some τ s.t. when v > τ ,

|N(r;q, v)−N(−r;q, v)|
≤ |N(r;q, v)− δrN(q, v)|+ |N(−r;q, v)− δ−rN(q, v)|+ |δrN(q, v) + δ−rN(q, v)| ≤ 3ε.

Shrinking spread is proved.

B. THE BUY-ONLY MARKET MAKER
We now give the proof of Proposition 4.1. Afterwards, we show how the VPM frame-
work gives a different perspective on the buy-only market, and conjecture that this
yields a method for achieving (WCL, ARB, II, L) in the complex market setting.

PROOF OF PROPOSITION 4.1. We start by showing that the new state of the buy-
only market after ρ(r) is purchased is σ(q + r, v + f(r)). First notice that

ρ(r) = r + maxneg(r) = r +
1

2n

(
n∑
i=1

ri + 2nmaxneg(r)−
n∑
i=1

ri

)
1 = σ(r, f(r)).

The new market state after the purchase is simply the sum of the old market state and
the bundle ρ(r), i.e.,

σ(q, v) + ρ(r) = σ(q, v) + σ(r, f(r)) = σ(q + r, v + f(r)), (17)

where the last equality follows from the linearity of σ.
We now show that the net payoffs are equivalent. Recall that we are in the complete

market setting, so φ(ω) · r = ri, where i is the index of the security corresponding to
outcome ω. The net payoff of the trader in the VPM market is

ri − C(q + r,v + f(r)) + C(q, v)

= ri − U
(
σ(q + r, v + f(r))

)
+

1

2n

(
v + f(r)−

n∑
i=1

(qi + ri)

)
+ U (σ(q, v))− 1

2n

(
v −

n∑
i=1

qi

)
= ri − U

(
σ(q + r, v + f(r))

)
+

1

2n

(
f(r)−

n∑
i=1

ri

)
+ U (σ(q, v))

= ri + maxneg(r)− U
(
σ(q + r, v + f(r))

)
+ U (σ(q, v))

= ρ(r)i − U(σ(q + r, v + f(r))) + U(σ(q, v)),

which is the net payoff of the trader in the buy-only market.

Viewing the buy-only market as a VPM yields new insights, as we detail now. We
can immediately see that the cost function C(·, ·) from (6) is convex in both arguments
if the original function U is convex, since the first term of C is U applied to a linear
function and the second term is linear. C is also smooth if U is.

Since we know that C(q, v) is convex in both q and v, one could ask what happens
when we view it as a potential-based market. Following the usual duality-based for-
mulation, we can write

C(q, v) = sup
π∈Π

[
q
v

]
· π −R(π), (18)



where Π is now a n+ 1-dimensional price space, n being the dimension of the original
market. Letting U∗ denote the buy-only dual, we can actually work out what the dual
R and price space Π have to be:

C(q, v) = U(σ(q, v))− 1

2n

(
v −

n∑
i=1

qi

)

= sup
p∈Y

(
p · q +

1

2n

(
v −

n∑
i=1

qi

)
n∑
i=1

pi − U∗(p)

)
− 1

2n

(
v −

n∑
i=1

qi

)

= sup
p∈Y

p · q +
1

2n

(
v −

n∑
i=1

qi

)(
n∑
i=1

pi − 1

)
− U∗(p).

We can define a mapping from any buy-only price p to a buy-sell price π ∈ Rn+1 as
follows:

π(p) :=

[
p− 1

2n (
∑
pi − 1)1

1
2n (
∑
pi − 1)

]
. (19)

Let Y denote the price space for the buy-only market. Now we let Π := {π(p) : p ∈ Y}
and define R(π) := U∗(π1..n + πn+11), so we have

C(q, v) = sup
p∈Y

p · q +
1

2n

(
v −

n∑
i=1

qi

)(
n∑
i=1

pi − 1

)
− U∗(p)

= sup
p∈Y

[
q
v

]
· π(p)−R(π(p)) = sup

π∈Π

[
q
v

]
· π −R(π).

Note that Π is convex as a linear transformation of Y, and R is also convex since U∗ is.
This gives us an interesting way to think about the buy-only market: one can inter-

pret a buy-only market with current prices p ∈ Y as letting traders buy or sell secu-
rities at prices p − 1

2n (
∑
pi − 1)1, but forcing them to additionally buy some quantity

(depending on their purchase) of a “bogus” security at a current price of 1
2n (
∑
pi − 1).

Finally, we note that the above approach hints at a general way of achieving
(WCL, ARB, II, L) in the complex market setting. Given a general price space Πφ :=
ConvHull(φ(Ω)) ⊆ Rk, we can simply add another dimension for the “volume security,”
and treat this as if it were simply another security. Specifically, if we let g : Πφ → R
concave, and define Π := {(π, g(π)) : π ∈ Πφ}, we may be able to recover the use-
ful properties of the buy-only price space Y. In principle, the techniques of [Li and
Vaughan 2013] regarding the analysis of the curvature of the edge of Y (here captured
by the g function) are not restricted to the complete market setting, and thus adaptive
liquidity (L) could be shown here as well.

C. PROOFS FOR CII IN THE PERSPECTIVE MARKET
PROOF OF PROPOSITION 5.4. Since we are considering a single security, q and r are

scalars. Recall that ∇C1(q, v) = U ′(q/α(v)). Then the definition of CII can be written
as (

U ′
(

q + r

α(v + f(r))

)
− U ′

(
q

α(v)

))
· r ≥ 0.

Since U is convex, U ′ is increasing, and we only need to show that

sign

(
q + r

α(v + f(r))
− q

α(v)

)
= sign(r).



And since
q + r

α(v + f(r))
− q

α(v)
=

r

α(v + f(r))
− q

(
1

α(v)
− 1

α(v + f(r))

)
,

it suffices to show that
α(v + f(r))− α(v)

α(v)
|q| ≤ |r|.

As f(r) = |r|, α concave implies α(v + f(r)) − α(v) = α(v + |r|) − α(v) ≤ |r|α′(v).
Finally, |q| ≤ v for any valid state (q, v). Therefore if vα′(v)/α(v) ≤ 1 as assumed,

α(v + f(r))− α(v)

α(v)
|q| ≤ vα′(v)

α(v)
|r| ≤ |r|

as desired.

PROOF OF LEMMA 5.5. Let F (r;q, v) = (∇1C(q + r, v + f(r))−∇1C(q, v)) · r, the
difference of the two terms in Definition 5.3; CII holds if and only if F (r;q, v) ≥ 0 for
all valid states (q, v) and all r. By definition of the perspective market, we have

F (r;q, v) =

(
∇U

(
q + r

α(v + f(r))

)
−∇U

(
q

α(v)

))
· r. (20)

We note the following identity for any λ > 0, using the fact that f is an asymmetric
norm in the second equality:

F (r;q, v) +
1

λ
F (λr;q + r, v + f(r))

=
(
∇U

(
q+r

α(v+f(r))

)
−∇U

(
q

α(v)

))
· r +

1

λ

(
∇U

(
q+r+λr

α(v+f(r)+f(λr))

)
−∇U

(
q+r

α(v+f(r))

))
· (λr)

=
(
∇U

(
q+(1+λ)r

α(v+(1+λ)f(r))

)
−∇U

(
q

α(v)

))
· r

= (1 + λ)−1F ((1 + λ)r;q, v). (21)

We now prove the lemma by induction. Take any r and assume F (λr;q, v) ≥ 0 for all
(valid) q, v and all λ ∈ [0, n] for some integer n. Now let (q, v) be any valid state; then
by eq. (21), we have

F ((1 + λ)r;q, v) = (1 + λ)F (r;q, v) + 1+λ
λ F (λr;q + r, v + f(r)) ≥ 0

for λ ∈ [0, n]. Thus, we have F (λr;q, v) ≥ 0 for all valid (q, v) and λ ∈ [0, n+ 1]. Finally,
the supposition of the lemma provides the base case (n = 1) for bundle τr.

D. MARKET DEPTH
Here we show conditions under which a VPM has increasing market depth. We for-
malize our notion of depth as follows:

MarketDepth(q, v) = max
ω∈Ω

sup
T

sup
r1,...,rT

T∑
t=1

rt · φ(ω)−N(r1, . . . , rT ;q, v). (22)

Note that increasing market depth does not imply unbounded loss for the market
maker, as the payoff to one trader may be offset by previous trades made by others.

To satisfy increasing market depth, the market needs to have increasing liquidity.
The market must also have a shrinking spread; otherwise it could be the case that
either selling or buying a security is not profitable. Hence, it is natural that the suffi-
cient conditions from Lemma 3.7 are relevant to market depth as well.



LEMMA D.1. Consider a non-trivial VPM (φ, C, f). Increasing market depth is sat-
isfied if the two conditions from Lemma 3.7 hold.

PROOF. Since the market is non-trivial, there exist ω1, ω2 ∈ Ω, such that φ(ω1) 6=
φ(ω2). Let d = ‖φ(ω1) − φ(ω2)‖/4 > 0. Recall that k is the number of securi-
ties offered in the market, and let E = {e1, e2, . . . , ek,−e1,−e2, . . . ,−ek} be the set
of standard basis and their opposites. Pick any M > 0 and consider 2k bundles
R = ME = {Me1,Me2, ...,Mek,−Me1,−Me2, . . . ,−Mek}. Let D = maxe∈E |δef(0)|.
Then maxr∈R |δrf(0)| = MD.

By Proposition A.2, there is some τ1 such that |δrN(q, v)−N(r;q, v)| < 1 for all r ∈ R
and all q if v > τ1 and (q, v) is valid. For any q, let p = ∇1C(q, v). By the triangle
inequality, ‖p − φ(ωi)‖ ≥ 2d for some i ∈ {1, 2}; henceforth, we fix ω := ωi for this i.
We now have 4d2 ≤ ‖p − φ(ω)‖2 =

∑k
i=1((p − φ(ω)) · ei)2, and thus there exists some

i such that |(p − φ(ω)) · ei| ≥ 2d/
√
k. By the definition of R, there is some r ∈ R such

that (φ(ω)− p) · r ≥ 2dM/
√
k.

By condition (1) of Lemma 3.7, there is some τ2, such that |∇2C(q, v)| < d/2D
√
k if

v ≥ τ2. Recall that maxr∈R |δrf(0)| = MD, thus |∇2C(q, v)δrf(0)| < dM/2
√
k for all

r ∈ R. Therefore, by Equation (4),

φ(ω) · r− δrN(q, v) = (φ(ω)− p) · r−∇2C(q, v)δrf(0) ≥ 3dM/2
√
k.

Suppose a trader purchases the bundle r at v > max{τ1, τ2} and suppose ω happens.
Then the payoff is

φ(ω) · r−N(r;q, v) ≥ φ(ω) · r− δrN(q, v)− |δrN(q, v)−N(r;q, v)| ≥ 3dM/2
√
k − 1.

Since M is arbitrary, increasing market depth is proved.

E. EXPRESSIVENESS
Recall the following two properties:

(1) Price mobility: For any valid state (q, v), any b ∈ B, and any ε > 0, there exists a
bundle r such that for some b′ ∈ NTBS(q + r, v + f(r)), ||b− b′|| ≤ ε.

(2) Bounded information loss: There exists γ ≥ 0 such that for any valid state (q, v)
and all b,b′ ∈ NTBS(q, v), ||b− b′|| ≤ γ.

We say that a market satisfying these properties is γ-expressive. The notion of expres-
siveness in Abernethy et al. [2013] corresponds to this definition with γ = 0.

Bounded information loss is not hard to satisfy in practice as Lemma 3.3 tells us
that we only need to upper bound ∇2C(q, v). Interestingly, price mobility is implied by
bounded worst-case loss.

LEMMA E.1. Consider any VPM (φ, C, f) such that f is a norm, C is continuously
differentiable, and the purchase triangle inequality is satisfied. If at some state (q0, v0),
a trader with belief b cannot move the NTBS within ε distance from b by purchasing
any single bundle, then for any M > 0 there is some bundle r such that the expected
payoff of purchasing r at state (q0, v0) is at least M .

The intuition behind the proof is that if a trader’s belief being always at least ε away
from the NTBS, then there is always some small bundle the trader can purchase to
make a small expected payoff. Since this process can repeat any number of times, the
purchase triangle inequality gives an arbitrarily large expected payoff for the trader,
which implies unbounded loss to the market maker.

PROOF. The intuition behind the proof is simple, but some technicalities must be
addressed. First, we want to argue that the price movement is not arbitrarily large



(i.e., the liquidity is not arbitrarily small). Otherwise, even if the belief b is at least ε
away from the NTBS, the price might change so fast (i.e., the liquidity might be too
small) that we can not guarantee any positive expected payoff.

Since we assumed f(·) to be a norm, we can write f(r) as ‖r‖. We will use ‖ · ‖2 when
talking about 2-norm. We will sometimes interchange ‖ · ‖ and ‖ · ‖2 when showing
something is bounded as any two norms are equivalent in finite-dimensional Banach
space.

Fix some ε and M and suppose the market is at state (q, v). If the trader purchases
some bundle r with ‖r‖ ≤ 2M/ε, then the market state becomes (q′, v′) = (q+r, v+‖r‖).
The 2-norm of the new state is bounded by ‖(q + r, v + ‖r‖)‖2 ≤ ‖q‖2 + v + 2‖r‖2 =
‖q‖2 + v + 4M/ε = M ′. Since C(q, v) is continuously differentiable, both ∇1C(q, v)
and ∇2C(q, v) are continuous functions. Since any continuous function is uniformly
continuous on compact set, if we take the closed ball B of market states centered at
origin with radius M ′, ∇1C(q, v) and ∇2C(q, v) are uniformly continuous on B. In fact,
for all r such that ‖r‖2 < 1, by Equation (4), the bundle price δrN(q, v) = ∇1C(q, v) ·
r +∇2C(q, v)‖r‖ 12 is a uniformly equicontinuous family on B. This ensures that there
exists some θ > 0 such that if ‖q1 − q2‖ ≤ θ, |v1 − v2| ≤ θ, ‖r‖ ≤ 1, both (q1, v1) and
(q2, v2) are in B, then |δrN(q1, v1)− δrN(q2, v2)| ≤ ε/2.

We now turn to an induction proof of the claim. We will show that for all 0 ≤ i ≤
2M/εθ, there is some bundle ri such that ‖ri‖ ≤ iθ and the expected payoff of purchas-
ing ri is at least iεθ/2.

The base case, i = 0, is trivial.
Now consider i ≤ 2M/εθ−1 and assume such an ri exists. We try to construct ri+1 by

adding a small bundle u. Let (q, v) be the market state after the purchase of ri. Then
b must be at least ε away from the NTBS at (q, v) by assumption in the lemma. By
convexity of the NTBS, there must be some direction u, ‖u‖ = 1, such that

u · b ≥ ε+ u · x ∀x ∈ NTBS.

By the characterization of the NTBS in Lemma 3.3, we have

u · b ≥ ε+∇1C(q, v) · u +∇2C(q, v) x · u ∀x ∈ ∂f(0).

Equivalently, u · b ≥ ε+∇1C(q, v) · u +∇2C(q, v) supx∈∂f(0) x · u. Using ‖ · ‖∗ to denote
the dual norm of ‖ · ‖, we have supx∈∂f(0) x · u = sup‖x‖∗≤1 x · u = ‖u‖, thus

u · b ≥ ε+∇1C(q, v) · u +∇2C(q, v)‖u‖ = ε+ δuN(q, v).

For any 0 ≤ t ≤ θ, ‖(q+tu)−q‖ ≤ θ, |(v+t)−v| ≤ θ, and both (q, v) and (q+tu, v+t) are
in B, hence we have by our uniform equicontinuity that |δuN(q, v)−δuN(q+tu, v+t)| <
ε/2. Combining the two inequalities, we have for all 0 ≤ t ≤ θ

u · b ≥ ε/2 + δuN(q + tu, v + t).

Integrate with respect to t from 0 to θ. Then

θu · b ≥ θε/2 + C(q + θu, v + θ)− C(q, v),

which tells us that the purchase of bundle θu at (q, v) yields an expected payoff of
at least θε/2. Let ri+1 = ri + θu. Then by purchase triangle inequality and induction
hypothesis, the purchase of ri+1 yields an expected payoff of at least θε/2 + iεθ/2 =
(i+ 1)εθ/2. Also, ‖ri+1‖ ≤ ‖ri‖+ θ ≤ (i+ 1)θ.

Finally, set i = 2M/εθ, then the expected payoff of purchasing ri is at least 2M/εθ ·
εθ/2 = M , which finishes the proof.

12We used the fact that δrf(0) = ‖r‖ if f is norm.


