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Over the past decade, crowdsourcing has emerged as a cheap and efficient method of obtaining

solutions to simple tasks that are difficult for computers to solve but possible for humans. The

popularity and promise of crowdsourcing markets has led to both empirical and theoretical research
on the design of algorithms to optimize various aspects of these markets, such as the pricing and

assignment of tasks. Much of the existing theoretical work on crowdsourcing markets has focused

on problems that fall into the broad category of online decision making; task requesters or the
crowdsourcing platform itself make repeated decisions about prices to set, workers to filter out,

problems to assign to specific workers, or other things. Often these decisions are complex, requiring
algorithms that learn about the distribution of available tasks or workers over time and take into

account the strategic (or sometimes irrational) behavior of workers.

As human computation grows into its own field, the time is ripe to address these challenges in a
principled way. However, it appears very difficult to capture all pertinent aspects of crowdsourcing

markets in a single coherent model. In this paper, we reflect on the modeling issues that inhibit

theoretical research on online decision making for crowdsourcing, and identify some steps forward.
This paper grew out of the authors’ own frustration with these issues, and we hope it will encourage

the community to attempt to understand, debate, and ultimately address them.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics; K.4.4
[Computers and Society]: Electronic Commerce; F.2.2 [Analysis of Algorithms and Prob-

lem Complexity]: Nonnumerical Algorithms and Problems; F.1.2 [Modes of Computation]:

Online computation

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: crowdsourcing, multi-armed bandits, dynamic pricing, repu-
tation systems

1. INTRODUCTION

Crowdsourcing markets have emerged as a tool for bringing together requesters,
who have tasks they need accomplished, and workers, who are willing to perform
these tasks in a timely manner in exchange for payment. Some crowdsourcing
platforms, such as Amazon Mechanical Turk, focus on small “microtasks” such
as labeling an image or filling out a survey, with payments on the order of ten
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cents, while other platforms, such as oDesk, focus on larger jobs like designing
websites, for significantly larger payments, but most share the common feature of
repeated interaction. In these markets, workers, requesters, and the platform itself
can all adjust their behavior over time to adapt to the environment. For example,
requesters can choose which workers to target (or filter out) for their tasks and
which prices to offer, and can update these choices as they learn more about salient
features of the environment, such as workers’ skill levels, the difficulty of their
tasks, and workers’ willingness to accept their tasks at given prices. In principle,
the platform could also make smarter decisions over time as it learns more about
the quality of both requesters and workers.

Naturally, as crowdsourcing has gained popularity and human computation has
grown into its own field, researchers have taken an interest in modeling and analyz-
ing the problem of online decision making in crowdsourcing markets. There is plenty
of prior work on which to build. Online decision algorithms have a rich literature
in operations research, economics, and several areas of computer science includ-
ing machine learning, theory of algorithms, artificial intelligence, and algorithmic
mechanism design. A large portion of this literature is concerned with the tradeoff
between exploration (obtaining new information, perhaps by sacrificing near-term
gains) and exploitation (making optimal decisions based on the currently available
information). This tradeoff is often studied under the name multi-armed bandits;
a reader can refer to Cesa-Bianchi and Lugosi [2006], Bergemann and Välimäki
[2006], Gittins et al. [2011], and Bubeck and Cesa-Bianchi [2012] for background
and various perspectives on the problem space. Another (somewhat overlapping)
stream of work concerns dynamic pricing and, more generally, revenue management
problems; see Besbes and Zeevi [2009] for an overview of this work in operations
research, and Babaioff et al. [2012] for a theory-of-algorithms perspective. Further,
there is extensive literature on online decision problems in which all information
pertinent to a given round is revealed, either before or after the algorithm makes
its decision for this round; see Borodin and El-Yaniv [1998], Buchbinder and Naor
[2009], and Cesa-Bianchi and Lugosi [2006] for background.

Despite the vast scope of this existing work, crowdsourcing brings an array of
domain-specific challenges that require novel solutions. To address these challenges
in a principled way, one would like to formulate a unified collection of well-defined
algorithmic questions with well-specified objectives, allowing researchers to propose
novel solutions and techniques that can be easily compared, leading to a deeper
understanding of the underlying issues. However, it appears very difficult to capture
all of the pertinent aspects of crowdsourcing in a coherent model. As a result, many
of the existing theoretical papers on crowdsourcing propose their own new models.
This makes it difficult to compare techniques across papers, and leads to uncertainty
about which parameters or features matter most when designing new platforms or
algorithms.

There are several reasons why developing a unified model of crowdsourcing is
difficult. First, there is a tension between the desire to study models based on
existing platforms, such as Mechanical Turk, which would allow algorithms to be
implemented and tested immediately, and the desire to look ahead and model al-
ternative platforms with novel features that could potentially lead to improved
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crowdsourcing markets further down the line. A plethora of different platform de-
signs are possible, and different designs lead to both different models and different
algorithmic questions.

Second, even after a model of the platform has been determined, one must take
into account the diversity of tasks and workers that use the platform. Some workers
may be better at some tasks than others, and may find some tasks harder than
others. It is natural to take this diversity into account when designing algorithms
(especially for a problem like task assignment), but the way in which this diversity
is modeled may impact the choice of algorithm and the theoretical guarantees that
are attainable.

Third, crowdsourcing workers are human beings, not algorithmic agents (with the
possible exception of spambots, which bring their own problems). They may act
strategically, maximizing their own welfare in response to the incentives provided
by the requesters and the platform. Taking into account this strategic behavior is
essential. Moreover, workers also may act in ways that are even less predictable
and seemingly irrational. As just one example, empirical studies have shown that
workers may not know their own costs of completing a task, and are susceptible to
the anchoring effect in which they judge the value of a task based on the first price
they see (see Mason and Watts [2009], Mason and Suri [2012], Yin et al. [2013] and
the literature reviews therein). One must be aware of these nuances when modeling
worker behavior.

This paper offers a detailed reflection on the modeling issues that inhibit theoret-
ical research on repeated decision making in crowdsourcing. Our goal is not to offer
a single unified model, but to raise awareness of the issues and spark a discussion
in the community about the best ways to move forward. To this end, we identify
a multitude of modeling choices that exist, and describe a few specific models that
appear promising in that they potentially capture salient aspects of the problem.

A note on our scope. There have been some recent empirical or applied research
projects aimed at developing online decision making algorithms that work well in
practice on existing crowdsourcing platforms, primarily for the problems of task
assignment and label aggregation (see, for example, Chen et al. [2013], Ipeirotis
et al. [2013], and Wang et al. [2013]). While it is of course valuable for anyone
interested in theoretical models of crowdsourcing to be aware of related empirical
advances, we do not attempt to provide a complete survey of this work here.

A similar attempt has been made to categorize future directions of crowdsourcing
research within the human-computer interaction and computer-supportive cooper-
ative work communities [Kittur et al. 2013]. While their paper discusses many of
the same broad problems as ours (such as quality control, platform design, and
reputation), the research agenda they lay out is heavily focused on the high-level
design of the technical and organizational mechanisms surrounding future crowd
work systems, while we focus more specifically on low-level modeling and algorith-
mic challenges for online decision making.

2. INFORMAL PROBLEM STATEMENT

Let us start with an informal and very general description of the class of problems
that fall under the umbrella of online decision making in crowdsourcing markets.
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There are three parties: workers, requesters, and the crowdsourcing platform. Over
time, requesters submit tasks to the platform. Workers get matched with requesters,
perform tasks, and receive payments. Workers and requesters may arrive to the
platform and leave over time. Some workers may be better than others at some
tasks; some tasks may be more difficult than others for some workers. Some workers
may enjoy some tasks more than others. All parties make repeated decisions
over time. All parties can learn over time, which may help them in their decision
making. All decision makers receive partial feedback: they see the consequences
of their decisions, but typically they do not know what would have happened if they
had made different decisions. Workers and requesters can behave strategically, so
their incentives need to be taken into account. The problem is to design algorithms
for decision making, on behalf of the platform, the requesters, or perhaps even the
workers.

We can think about this setting from the point of view of each of the three parties,
who face their own choices and have differing motivations and goals:

—Requesters can choose the maximal price they are willing to offer for a given task,
and specify any budget constraints that they have. They may also be able to
choose which prices to offer to given (categories of) workers for given (categories
of) tasks. Further, they may be able to choose which (categories of) workers
they are willing to interact with, and which instances of tasks to assign to each
(category of) worker. The utility of the requester is typically (an increasing
function of) the value that he obtains from completed work minus the price that
he has to pay for this work.

—The platform may match (subsets of) requesters to (subsets of) workers. In
principle, the platform may also be able to modify the offered prices, within
constraints specified by the requesters, and to determine how to charge requesters
and/or workers for their use of the platform. In the long run, the platform cares
about maximizing long-term revenue. In the short term, the platform may care
about keeping workers and requesters happy to attract more business, especially
in the presence of competing platforms.

—Workers can decide whether to accept a task at a given price, and how much effort
to put into it. They may be able to choose between (categories of) tasks, and
may be asked to provide some information such as their interests, qualifications,
and asking prices. Workers care about the amount of money that they earn,
the cost of their labor (in terms of time or effort), and perhaps the amount of
enjoyment they receive from completing tasks.

As parties interact over time, they may be able to learn or estimate workers’ skill
levels, how much workers value their effort and time, the difficulty of tasks, and the
quality level of particular workers on particular tasks.

We focus on two natural versions of the problem: requester-side and platform-
side.1 The requester-side problem is to design a mechanism which makes repeated

1In principle, one could also consider the decision making problems faced by workers. This area

is still largely unexplored and could be a source of interesting research questions. However, we do
not consider it here.
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decisions for a specific requester. The platform-side problem is to design a mecha-
nism which makes repeated decisions for the platform. Both versions should take
into account realistic constraints and incentives of workers and requesters.

3. POSSIBLE MODELING CHOICES

To study and understand any particular aspect of repeated decision making for
crowdsourcing markets, one must first determine a model or framework in which to
work. To date, most theoretical papers on crowdsourcing have proposed their own
models, which are often hard to compare, and with good reason; one could come up
with any number of valid models, and each has its own appeal. However, we would
argue that in order to extract and solve the fundamental issues that are present in
any crowdsourcing market, one must be keenly aware of the (implicit or explicit)
modeling choices they make, and the extent to which their algorithmic ideas and
provable guarantees are sensitive to their modeling assumptions — essentially how
robust results are to modifications in the model.

In this section, we identify a variety of modeling choices for repeated decision
making in crowdsourcing, some of which have been discussed in prior work and some
of which have not. We break these choices roughly into five categories: task design,
platform design, quality of work, incentives and human factors, and performance
objectives, though other categorizations are possible.

Task design. A wide variety of tasks can be crowdsourced. In many tasks, such
as translation [Zaidan and Callison-Burch 2011], audio transcription [Lasecki et al.
2013], image/video analysis [VizWiz ; Noronha et al. 2011], or trip planning [Zhang
et al. 2012], the workers’ output is unstructured. On the other hand, in many
applications currently deployed in the Internet industry, the workers’ output has
a very specific, simple structure such as a multiple-choice question or a free-form
labeling question. In particular, most tasks that the assess relevance of web search
results are structured as multiple-choice questions. The output structure (or lack
thereof) determines whether and how workers’ output can be aggregated. Below
we survey some possibilities in more detail.

• Multiple-choice questions. The simplest structure is a binary question (Is this
a correct answer? Is this spam? ). Alternatively, a question can include more than
two options (Which of these web search results is more appropriate for a given
query? Which of these categories is more appropriate for this website? ) or allow
workers to submit more than one answer when appropriate. Further, the possible
answers may be numeric or otherwise ordered (What age group does this person
belong to? ), in which case the similarity between the answers should be taken into
account.

• Free-form labeling. In image labeling and various classification tasks, a worker
may be allowed to submit arbitrary labels or categories. A worker may be allowed
to submit more than one label for the same task. Some task designs may include a
list of prohibited labels so as to obtain more diverse results.

• Rankings and weights. Some tasks strive to compute more complex structures
such as rankings or relative weights for a given pool of alternatives [Pfeiffer et al.
2012; Mao et al. 2013]. Each worker may be asked to provide either a full ranking
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or weight vector or only a comparison between a given pair of alternatives.

Platform design. All interaction between workers and requesters takes place in
the context of a particular crowdsourcing platform. The platform designer controls
the way in which requesters and workers may interact. In modeling crowdsourcing
markets, one may wish to model the features of a specific existing platform (such as
Amazon Mechanical Turk, oDesk, or TaskRabbit) or explore alternative platform
designs that may lead to improved crowdsourcing markets in the future. In either
case, one must consider the following modeling issues.

• Selection of workers. Does the platform allow requesters to limit their tasks
to specific (categories of) workers, and if so, how? Possibilities range from coarse
platform-defined categories of workers (e.g., filtering by demographic information
or feedback rating/reputation) to allowing requesters to specify arbitrary workers
by worker ID.

• Selection of tasks. How does the platform allow workers to select tasks? Does
a worker see all offerings that are currently in the market? If so, how are they
sorted? Alternatively, the platform could limit the options presented to a given
worker. When the task(s) from a given requester are offered to a given worker, does
the platform allow the requester to restrict which offerings from other requesters
this worker is exposed to?

• Feedback to the requester. What is the granularity of feedback provided to a
given requester by the platform? In particular, does the platform expose the work-
ers’ performance by individual IDs or only coarse categories? Does the platform
expose some or all of the workers’ attributes? Does the platform expose workers’
performance for other requesters? If a worker views a task but ultimately does not
decide to complete it, does the requester of that task learn that it was viewed?

• Temporal granularity. How often does the platform allow a requester to adjust
its selection preferences? How frequently does the platform provide feedback to
requesters? When is it reasonable to assume that workers complete a given task
sequentially, one at a time, and when is it necessary for a model to allow multiple
tasks to be accepted or completed simultaneously?

• Price negotiation. How do requesters negotiate prices with workers? Typically
it is assumed that requesters post one take-it-or-leave-it price, but this is not the
only possibility. Can a requester post different prices to different workers depending
on the workers’ attributes? Can the requester update the price over time? Alterna-
tively, one could imagine a crowdsourcing platform on which workers communicate
minimal asking prices to the requesters and prices are determined via an auction.

• Payments. How do payments happen? The simplest version is that each
worker, upon completion of a task, receives the posted price for that task. Can a
requester specify a payment that depends on the quality of submitted work? If so,
must he declare the exact payment rule up front? In particular, must he commit
to a specific way of determining the quality of submitted work?

• Persistent identities. Does a platform ensure persistent worker identities? How
difficult or expensive is it for a worker to abandon his old identity and create a new
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one, or to create multiple identities?

• Platform-wide reputation. Does the platform maintain a platform-wide repu-
tation score for each worker and/or requester? If so, then how exactly is this score
defined? What properties of this score are guaranteed? How are reputations used?
How are workers and requesters prevented from manipulating their own reputations
and the reputations of others?

• Qualifying tests. Does the platform allow requesters to require workers to pass
a qualification test before being allowed to work for money?

The quality of work. In crowdsourcing environments, both tasks and workers
are highly diverse. Naturally certain workers will be able to complete certain tasks
more proficiently than others, yielding higher quality results, possibly for less effort.
Although the difficulty of a task and the skills of each worker are generally not
known to the platform or requester a priori, they can be learned and refined over
time, though this is made more difficult when the quality of a completed task is
not observable or easily measured, or when the users of the market are themselves
changing over time.

• Worker skills and task difficulty levels. Some workers may be better than oth-
ers at some tasks, and worse than others at other tasks. Ideally, an online algorithm
should learn estimates of workers’ skills for various tasks over time. However, if
each worker has an arbitrary skill level for each task, it will be impossible to gener-
alize based on observed performance. Therefore, it is desirable to model some type
of structure on tasks or workers. Can the inherent skill level of a given worker be
summarized by a single number? Can the inherent difficulty of a task be summa-
rized by a single number? More generally, how should one model a given worker’s
proficiency at a given task?

• Effort. The quality of a worker’s output may also depend on the amount of
effort that the worker puts into the task. How can one model the effect of varying
levels of effort on the quality of completed work?

• Time dependence. Workers’ skills and the quality of their completed work
may change over time, either because of learning (perhaps after completing the
same task several times) or changes in effort level. Additionally, properties of the
population of workers (such as the size of the population or their average quality)
may change over time, for example based on time of day.

• Measurable vs. unmeasurable quality. Some tasks, such as labeling an image
as containing a face or not, or answering a multiple-choice question, have objective
measures of quality; either the provided answer is correct, or it is not. For other
tasks, such as translating a paragraph from one language to another or drawing
a picture, the quality of the work is more difficult to quantify. For tasks without
objective measures of quality, it is necessary to clearly define criteria on which a
task will be judged.

• Observable vs. unobservable quality. Even if the response to a task is objec-
tively right or wrong, as is the case in the image labeling task above, the quality of
submitted work may not be immediately observable; if the requester already knew
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the correct label, he wouldn’t need the worker to provide it. For many tasks of
this form, it is possible for the requester to assign the same question to multiple
workers and estimate the correct answer by consensus; if a statistically significant
(weighted) majority agrees on some answer, it may be safe to assume it is correct.

• Availability of gold standard tasks. In some cases in which task quality is not
observable, a requester may have access to a set of “gold standard” tasks for which
the correct answer is known a priori. He can then use these tasks to bootstrap the
process of learning workers’ skill levels (possibly as part of a separate qualifying
test, if allowed).

Incentives and other human factors. Perhaps the most difficult and controver-
sial aspect of formalizing the repeated decision making problem in a crowdsourcing
environment is modeling the incentives of participants. In the economics literature,
it is standard to model agents as self-interested and rational utility maximizers.
Empirical research studying the behavior of workers on Mechanical Turk suggests
that there may be difficulties applying such models in crowdsourcing settings in
which workers do not have a good sense of their own costs of completing a task and
may choose particular tasks based on intangible qualities such as fun. This leads
to another set of modeling issues.

• Rationality. Do workers behave rationally when choosing tasks to complete
at particular prices? The standard model from economics is that each worker
maximizes a simple well-defined notion of “utility,” (an increasing function of)
payment received minus production cost. However, workers may also take into
account other factors, such as perceived value to society and personal enjoyment.
The significance of these intangible factors in crowdsourcing environments is not
well-understood.

• Effort levels. Can the workers strategically alter the amount of effort that they
put into a given task, or is it assumed that workers complete each task to the best
of their ability?

• Costs. How do the workers evaluate their internal costs for completing a given
task or putting forth a given level of effort? Is this internal cost even a well-defined
quantity? It may, in principle, depend on subjective perceptions (such as value
to society and personal enjoyment), and also on the offered prices (the so-called
anchoring effect [Tversky and Kahneman 1974; Mason and Watts 2009]). Even if
the internal cost is a well-defined quantity, do workers know it?

• Fair price. Workers may have a perception of a “fair price” which is sepa-
rate from their internal costs, and may be reluctant to accept a task at a lower
price [Mason and Watts 2009; Yin et al. 2013].

• Task-specific motivations. In some cases, workers may be motivated by task-
specific factors. For example, if a task involves creating content to be posted on
the web, workers may be motivated by the possibility of receiving attention [Ghosh
and Hummel 2013].

• Myopia vs. long term strategies. How myopic are the workers? When making a
decision about a particular task, do they take into account the effects of this decision
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on their future? For example, a worker may be reluctant to accept highly priced
tasks that she is not suitable for, because her bad performance on these tasks would
impact her reputation score with the platform and/or the requester, and therefore
affect what she is offered in the future. For a similar reason, a worker may accept
an easy but low paying task, or exert additional effort. More generally, workers
may be able to strategically alter their behavior in order to affect the long-term
behavior of a particular requester or the platform.

• Strategic timing. Can the workers strategically choose the time intervals dur-
ing which they are online? If a requester is using an online learning algorithm,
some phases of this algorithm may be more beneficial for workers than others. For
example, if a requester starts out with a low price for a given category of tasks, and
then gradually adjusts it upwards, then workers may want to arrive later rather
than sooner.

Performance objectives. The statement of an algorithmic problem should in-
clude a specific performance objective to be optimized, perhaps under some con-
straints.

A requester-side decision making algorithm typically maximizes the utility of this
requester, i.e., the value of completed tasks minus the payment to the workers. If
the requester has a pre-specified budget, the algorithm may instead maximize the
value of completed tasks subject to budget constraints. In some settings it may be
feasible to take into account the workers’ happiness, so as to encourage them to stay
with this requester in the future. Specifically, in incentive-compatible mechanisms
that elicit workers’ production costs one may wish to optimize the social welfare
– the utility of the requester plus the total utility of the workers – or some other
weighted sum of these two quantities.

For platform-side algorithms, the performance objective might take into account
the utility of requesters, workers, and the platform itself. Assuming the platform
receives a fixed percentage of every transaction, the platform’s revenue is simply
a fixed fraction of the total payment from requesters to workers. One reasonable
objective is a weighted sum of the platform’s revenue and the total utility of the
requesters; the choice of weights is up to the platform. Moreover, the platform
may wish to ensure some form of fairness, so that no requesters are starved out.
Further, the platform may have additional forward-looking objectives that are not
immediately comparable with the platform revenue and requesters’ utility, such as
the market share and the workers’ happiness (to encourage workers to stay with
the platform in the future).

4. SPECIFIC DIRECTIONS

Given the abundance of modeling choices identified, it appears hopeless to seek
out a single unified model that attempts to capture all aspects of repeated deci-
sion making in crowdsourcing markets. Nevertheless, it may be possible to study,
understand, and solve the fundamental issues that arise in this problem space by
carefully choosing specific (families of) models that encapsulate specific salient fea-
tures — especially if we, as a community, keep generalizability and robustness in
mind as we make our modeling and algorithmic choices.

Below we identify and discuss several directions in the problem space that appear
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ripe for near-term progress. As it happens, these directions encompass most existing
work of which we are aware.

4.1 Adaptive task assignment

One problem of interest is assigning tasks to workers with the goal of maximizing
the quality of completed tasks at a low price or subject to budget constraints. In
this task assignment problem, strategic issues are ignored in order to gain analytical
tractability; the model typically does not touch on the way in which prices are set,
and does not include workers’ strategic responses to these prices. It can be studied
in settings in which the quality of work performed is immediately observable or
settings in which it is not.

Much of the existing work on task assignment focuses on classification tasks,
in which workers are asked multiple-choice questions to provide labels for images,
websites, web search results, or other types of queries. Then it is natural to assume
that the quality of performed work (i.e., the correct label) is not immediately ob-
servable; instead, the requester may have a limited supply of gold standard tasks
that can be used to learn more about workers’ skills. While the problem of inferring
the solutions to classification problems using labels from multiple sources has been
studied for decades in various forms [Dawid and Skene 1979; Sheng et al. 2008;
Crammer et al. 2005; 2008; Dekel and Shamir 2009; Welinder et al. 2010], here we
focus on the problem of choosing workers in an online fashion to provide the labels;
this problem is relatively new.

Existing research on task assignment typically focuses on the problem faced by
a single requester. Each worker charges a fixed and known cost per task completed
(which may or may not be the same for all workers), and each task may be assigned
to multiple workers in order to the improve the quality of the final result (as is
necessary for classification tasks). The objective is to optimize a tradeoff between
the total cost and the quality of the completed tasks, for example, minimizing the
total cost of work subject to the quality being above a given threshold. Partial
information on the task difficulty and the workers’ skills may or may not be known,
e.g., in the form of reputation scores or Bayesian priors.

In the most common variant of this problem, workers arrive online and the re-
quester must assign a task (or sequence of tasks) to each new worker as she arrives.
Karger et al. [2011; 2013] introduced one such model for classification tasks and
proposed a non-adaptive assignment algorithm based on random graph generation
along with a message-passing inference algorithm inspired by belief propagation for
inferring the correct solution to each task. They proved that their technique is
order-optimal in terms of budget when each worker finds all tasks equally difficult.
Other models of this form have been studied both for tasks with observable qual-
ity [Ho and Vaughan 2012] and for classification tasks with unobservable quality
but access to gold standard tasks [Ho et al. 2013]. In these papers, the authors uti-
lize online primal-dual techniques [Buchbinder and Naor 2009; Devanur et al. 2011]
and show that adaptive task assignment yields an improvement over non-adaptive
assignment when the pool of available workers and set of tasks are diverse.

Alternatively, one might consider a model in which the requester may choose a
particular worker or category of workers to assign to a particular task rather than
choosing a task to assign to a particular worker. This setting already encompasses

ACM SIGecom Exchanges, Vol. 12, No. 2, December 2013, Pages 4–23



Online Decision Making in Crowdsourcing Markets: Theoretical Challenges · 14

a variety of specific models of varying levels of difficulty, but even a version with a
single task assigned multiple times is quite challenging [Abraham et al. 2013].

It is worth noting that the models described above are not covered by prior work
on multi-armed bandits (where an algorithm observes a reward after each round
and the goal is to maximize the total reward over time). Essentially, this is because
in adaptive task assignment each rounds brings information rather than reward; the
value of this information is not immediately known, and in any case the goal is not
to maximize the total value of collected information but to arrive at high-quality
solutions for the tasks.

On the other hand, multi-armed bandit formulations are more directly applicable
to versions of adaptive task assignment in which the quality or utility of each
completed task is immediately observable, and the goal is to maximize the total
utility over time. The basic version in which the tasks are homogeneous and the
algorithm chooses among workers has been studied in Tran-Thanh et al. [2012];
the novelty here is that one needs to incorporate budget constraints. This version
falls under the general framework that was later defined and optimally solved in
Badanidiyuru et al. [2013a].

The problem formulations surveyed above are quite different from one another,
and the algorithms and theoretical guarantees are therefore incomparable. There
is a lot of room for further work extracting the key features of the task assignment
problem and take-away messages that generalize to a wider range of models and
assumptions.

4.2 Dynamic procurement

Dynamic procurement focuses on repeated posted pricing, as applied to hiring work-
ers in a crowdsourcing market.2 Each interaction between the requester and the
workers follows a very simple protocol: the requester posts a price (for a given task)
which can be either accepted or rejected by the workers.

The basic model of dynamic procurement is as follows. In each round, the re-
quester posts a task and a price for this task, and waits until either some worker
accepts the task or the offer times out. The objective is to maximize the number
of completed tasks under fixed constraints on budget and waiting time. A stan-
dard model of workers’ rationality is assumed. In particular, each worker has a
fixed “internal cost” which is known to the worker but not to the mechanism. A
worker accepts a task only if the posted price for this task matches or exceeds her
internal cost. If multiple such tasks are offered at the same time, the worker picks
the one which maximizes her utility (offered price minus the internal cost). The re-
quester typically has a very limited knowledge of the supply curve, the distribution
of workers’ internal costs. However, the supply curve may be learned over time.

The basic model described above assumes several significant simplifications as
compared to the discussion in Section 3. First, workers cannot strategically ma-
nipulate their effort level in response to the offered prices. Second, workers are
myopic, in the sense that they do not take into account the effects of their decision
in a given round on the future rounds. A standard way to model myopic workers
is to assume that the requester interacts with a new worker in each round. Third,

2The term “dynamic procurement” is from Badanidiyuru et al. [2012; 2013a; 2013b].
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the supply curve does not change over time. Finally, the issues of (explicit) task
assignment are completely ignored.

Despite all the simplifications, this basic model is very non-trivial. Considerable
progress has been made in a recent line of work [Badanidiyuru et al. 2012; Badani-
diyuru et al. 2013a; 2013b; Singla and Krause 2013], but it is not clear whether the
current results are optimal. Further, multiple extensions are possible within the
basic model. For instance, the requester may be interested in multiple categories
of tasks, and may offer more complicated “menus” that allow workers to perform
multiple tasks of the same type.3

One can also consider a platform-side version of dynamic procurement, in which
the platform is in charge of setting posted prices for all requesters, under budget
constraints submitted by the requesters or imposed by the platform. The most basic
goal would be to maximize the total number of completed tasks over all requesters,
perhaps under some fairness constraints.

It is worth noting that dynamic procurement is closely related to dynamic pric-
ing : repeated posted pricing for selling items. In particular, dynamic procurement
on a budget with unknown supply curve has a natural “dual” problem about selling
items: dynamic pricing with limited inventory and unknown demand curve. The
latter problem has received some attention (e.g., [Besbes and Zeevi 2009; Babaioff
et al. 2012; Besbes and Zeevi 2012; Badanidiyuru et al. 2013a]). Moreover, Badani-
diyuru et al. [2013a] consider a general framework which subsumes both problems.

Dynamic procurement can be compared to a more general class of game-theoretic
mechanisms in which workers are required to explicitly submit their preferences
(see, e.g., Singer and Mittal [2013]). Dynamic procurement is appealing for several
reasons (as discussed, for example, in Babaioff et al. [2012] and Chawla et al.
[2010]). First, a worker only needs to evaluate a given offer rather than exactly
determine her internal costs and preferences; humans tend to find the former task
to be much easier than the latter. Second, a worker reveals very little information
about themselves: only whether she is willing to accept a particular offer. Third,
posted pricing tends to rule out the possibility that workers may strategically alter
their behavior in order to manipulate the requester. However, it is possible that
more general mechanisms may achieve better guarantees in some scenarios.

Behavioral effects. In order to ensure that results are applicable to real-world
markets, apart from addressing dynamic procurement under the traditional as-
sumptions on workers’ rationality, it is desirable to incorporate more complicated
behaviors, such as perceived fair prices and the anchoring effect. Then the prices
offered by the requester may influence the properties of the worker population,
namely change workers’ perception of fair prices and/or production costs. The
challenge here is to model such influence in a sufficiently quantitative way, and
design dynamic pricing algorithms that take this influence into account. However,
the existing empirical evidence [Mason and Watts 2009; Yin et al. 2013] appears
insufficient to suggest a particular model to design algorithms for; further, even sur-
veying the potentially relevant models is not easy. To make progress, there needs to

3The general result in Badanidiyuru et al. [2013a; 2013b] applies to some of these extensions, but
the particular guarantees are likely to be suboptimal.
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be a convergence of empirical work on modeling that is geared towards algorithmic
applications, and algorithm design work that is fully aware of the modeling issues.

One can draw upon a considerable amount of prior work on reference prices [Tver-
sky and Kahneman 1991; Putler 1992; Kalyanaram and Winer 1995; Thaler 2008],
and some recent work on dynamic pricing with reference price effects [Popescu and
Wu 2007; Nasiry and Popescu 2011]. However, all of this work is usually in the
context of selling items to consumers, and therefore may not be directly applica-
ble to crowdsourcing. Moreover, Popescu and Wu [2007] and Nasiry and Popescu
[2011] assume a known demand distribution.

In view of the above, one wonders how significant the behavioral effects are in
real-life crowdsourcing markets, and whether it is safe to ignore them in the context
of dynamic procurement. To the best of our understanding, this issue is currently
unresolved; while significant behavioral effects have been observed in specifically
designed, very short-term experiments, it is not clear whether the significance is
preserved in longer-running systems.

4.3 Repeated principal-agent problem

Consider an extension of dynamic procurement to a scenario in which the work-
ers can strategically change their effort level depending on the price or contract
that they are offered. The chosen effort level probabilistically affects the quality of
completed work, determining a distribution over the possible quality levels. Each
worker is characterized by a mapping from effort levels to costs and distributions
over the quality levels; this mapping, called worker’s type, is known to the worker
but not to the mechanism. Crucially, the choice of effort level is not directly ob-
servable by the requester, and cannot (in general) be predicted or inferred from the
observed output. The single-round version of this setting is precisely the principal-
agent problem [Laffont and Martimort 2002], the central model in contract theory,
a branch of Economics.4

Posted pricing is not adequate to incentivize workers to produce high-quality work
in this setting since workers could exert the minimal amount of effort without any
loss of payment. Instead, requesters may want to use more complicated contracts
in which the payment may depend on the quality of the completed work. Note that
contracts cannot directly depend on the worker’s effort level, as the latter is not
known to the requester. The mechanism may adjust the offered contract over time,
as it learns more about the worker population.

To make the problem more tractable, it would probably help to assume that
workers are myopic, and that the quality of completed tasks is immediately ob-
servable. As in dynamic procurement, the issues of task assignment are completely
ignored.

Even with these simplifications, the repeated principal-agent setting described
above is significantly more challenging than dynamic procurement. Essentially,
this because the principal-agent problem is a vast generalization of the simple ac-
cept/reject interaction in dynamic procurement. The space of possible contracts
and the space of possible types are much richer than their counterparts in dynamic
procurement, and the mapping from an action to requester’s expected utility is

4In the language of contract theory, the requester is the “principal” and workers are “agents.”
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more difficult to characterize and analyze. In particular, contracts are not limited
to mappings from observed outcomes to payments. In principle, the requester can
specify a menu of several such mappings, and allow a worker to choose among
them. (It is well-known that using such “menus” one can maximize the requester’s
expected utility among all possible interaction protocols between a single requester
and a single worker [Laffont and Martimort 2002].)

A notable additional complication is that it may be advantageous to reduce the
action space – the class of contracts that an algorithm considers. While reducing
the action space may decrease the quality of the best feasible contract, it may
improve the speed of convergence to this contract, and make the platform more
user-friendly for workers. For example, one may want to reduce the number of items
in the “menu” described above (perhaps all the way to single-item menus), reduce
the granularity of the quality levels considered, or restrict attention to human-
friendly “monotone” contracts, in which higher quality levels always result in higher
payments to the workers.

Perhaps surprisingly, the rich literature in contract theory sheds little light on
this setting. Most work focuses on a single interaction with an agent whose type
is either known or sampled from a known distribution, see Laffont and Martimort
[2002] for background. Some papers [Babaioff et al. 2006; Misra et al. 2012] have
studied settings in which the principal interacts with multiple agents, but makes
all its decisions at a single time point. In Sannikov [2008], Williams [2009], and
Sannikov [2012], the principal makes repeated decisions over time, but the requester
interacts with only a single agent who optimizes the long-term utility. The agent’s
type is sampled from a known prior.

Conitzer and Garera [2006] consider the basic version of the repeated principal-
agent problem — with single-item “menus” and no budget constraints — adapt
several algorithms from prior work to this setting, and empirically compare their
performance. In an ongoing project, Ho et al. [2013] design algorithms with (strong)
provable guarantees for the same basic version, drawing on the connection with
some prior work [Kleinberg et al. 2008; Bubeck et al. 2011; Slivkins 2011] on multi-
armed bandit problems. However, their guarantees make significant restrictions on
the action space. We are not aware of any other directly relevant work (beyond
the work on dynamic pricing, which does not capture the unobservable choice of
worker’s effort level).

Progress on repeated principal-agent problems might suggest improvements in
the design of crowdsourcing platforms. In particular, it may inform the plat-
form’s choice of the action space. Currently even the basic version of the repeated
principal-agent problem is not well-understood.

4.4 Reputation systems

Persistent reputation scores for workers may help limit spam and encourage high
quality work. Likewise, persistent reputation scores for requesters may encourage
requesters to be more considerate towards the workers. Thus, one may want to
design a stand-alone “reputation system” which defines and maintains such scores
(perhaps with the associated confidence levels), as a tool which can be used in dif-
ferent applications and in conjunction with different higher-level algorithms. Rep-
utation systems may be designed to address issues related to either moral hazard
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(when workers’ effort is desirable but not immediately observable) or adverse se-
lection (when similar-looking workers may be different from one another, and it is
desirable to attract workers who are more skilled or competent), or a combination
of the two.

There is already a rich literature on reputation systems for online commerce,
peer-to-peer networks, and other domains; see, for example, Friedman et al. [2007],
Resnick et al. [2000], or the seminal paper of Dellarocas [2005]. However, the basic
models for reputation systems have several limitations when applied to crowd-
sourcing markets. First, there may be domain-specific design goals that depend on
a particular application or (even worse) on a particular algorithm which uses the
reputation scores. Then it may be necessary to design the reputation system and
the platform’s or requesters’ algorithms in parallel, as one inter-related problem.
Second, reputation systems are typically designed separately from task assignment,
which artificially restricts the possibilities and can therefore lead to sup-optimal
designs. Third, whenever the properties of the worker population are not fully
known, there is an issue of exploration: essentially, it may be desirable to give the
benefit of a doubt to some low-rated workers, so as to obtain more information
about them.

Zhang and van der Schaar [2012] and Ho et al. [2012] examine the problem
of designing a reputation system specific to crowdsourcing markets, building on
the idea of social norms first proposed by Kandori [1992]. Social norms consist
of a set of prescribed rules that market participants are asked to follow, and a
mechanism for updating reputations based on whether or not they do. They pair
reputation systems with differential service schemes that allocate more resources
or better treatment to those with higher reputation in such a way that market
participants have the incentive to follow the prescribed rules of the market. The
social norms designed by Zhang and van der Schaar [2012] and Ho et al. [2012]
address only the moral hazard problem, ignoring issues related to adverse selection
by making assumptions about known types, and do so on greatly simplified models
that capture some salient features of crowdsourcing systems (such as the difficulty
of perfectly evaluating the quality of work and the fact that the population may be
changing over time) but ignore many others (such as the vast diversity of workers
and requesters in real systems and the fact that workers may be learning over time).

There is significant room for further research studying more realistic models,
looking simultaneously at moral hazard and adverse selection, and better defining
what an “optimal” reputation system means in general.

4.5 One common theme: The exploration-exploitation tradeoff

Most models surveyed in this section exhibit a tradeoff between exploration and
exploitation, i.e., between obtaining new information and making optimal per-round
decisions based on the information available so far [Cesa-Bianchi and Lugosi 2006;
Bergemann and Välimäki 2006; Bubeck and Cesa-Bianchi 2012]. This tradeoff
is present in any setting with repeated decisions and partial, action-dependent
feedback, i.e., whenever the feedback received by an algorithm in a given round
depends on the algorithm’s action in this round. The explore-exploit tradeoff occurs
in many areas, including the design of medical trials, pay-per-click ad auctions,
and adaptive network routing; numerous substantially different models have been
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studied in the literature, to address the peculiarities of the various application
domains.

An issue which cuts across most settings with explore-exploit tradeoff, includ-
ing those arising in crowdsourcing markets, is whether to use a fixed schedule for
exploration, or to adapt this schedule as new observations come in. In the for-
mer case, one usually allocates each round to exploration or exploitation (either
randomly or deterministically, but without looking at the data), chooses uniformly
at random among the available alternatives in exploration rounds, and maximizes
per-round performance in each exploitation round given the current estimates for
the unknown quantities. In the latter case, which we call adaptive exploration, ex-
ploration is geared towards more promising actions, without sacrificing too much
in short-term performance. Often there is no explicit separation between explo-
ration and exploitation, so that in each round the algorithm does a little of both.
Adaptive exploration tends to be better at taking advantage of the “niceness” of the
problem instance (where the particular notion of “niceness” depends on the model),
whereas non-adaptive exploration often suffices to achieve the optimal worst-case
performance.

For a concrete example, consider a simple, stylized model in which an algorithm
chooses among two actions in each round, each action x brings a 0-1 reward sampled
independently from a fixed distribution with unknown expectation µx, and the goal
is to maximize the total reward over a given time horizon of 100 rounds. One
algorithm involving non-adaptive exploration would be to try each action 10 times,
pick the one with the best empirical reward, and stick with this action from then
on. (However, while in this example choosing the best action in each exploitation
round is trivial, in some settings this choice can be the crux of the solution [Ho
et al. 2013].) On the other hand, one standard approach for adaptive exploration
is to maintain a numerical score (index or upper confidence bound) for each action,
which reflects both the average empirical reward and the sampling uncertainty, and
in each round to pick an action with the highest score.

A closely related issue, endemic to all work on dynamic procurement (and dy-
namic pricing), is discretization of the action space (in this case, the price space).
Essentially, it is complicated to consider all possible prices or price vectors, and
instead one often focuses on a small but representative subset of thereof. For ex-
ample, one may focus on prices that are integer multiples of some a priori chosen
ε ∈ (0, 1). While optimizing among the remaining prices is very simple in the most
basic setting of dynamic procurement without budget constraints [Kleinberg and
Leighton 2003], it can be very difficult in more advanced settings [Badanidiyuru
et al. 2013a; 2013b; Singla and Krause 2013]. Prior work on related, but techni-
cally different explore-exploit problems [Kleinberg et al. 2008; Bubeck et al. 2011;
Slivkins 2011] suggests that it may be advantageous to choose the discretization
adaptively, depending on the previous observations, so that the algorithm zooms in
faster on the more promising regions of the action space.

Understanding these issues is crucial to the design of algorithms for repeated
decision making in crowdsourcing systems. At the same time, models designed
specifically for the crowdsourcing domain often present new algorithmic challenges
in explore-exploit learning (as is the case for most work on adaptive task assignment
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and dynamic procurement). Techniques designed to address these challenges may
be applicable more broadly in other scenarios in which the exploration-exploitation
tradeoff arises. (For example, dynamic procurement for crowdsourcing markets is
one of the major motivating examples behind the general framework in Badani-
diyuru et al. [2013a].)

5. CONCLUSIONS

Crowdsourcing is a new application domain for online decision making algorithms,
opening up a rich and exciting problem space in which the relevant problem for-
mulations vary significantly along multiple modeling “dimensions.” This richness
presents several challenges. Most notably, it is difficult for the community to con-
verge on any particular collection of models, and as a result, it is difficult to compare
results and techniques across papers. Additionally, any particular modeling choices
have inherent limitations that are sometimes hard to see. It is not clear a pri-
ori which limitations will impact the practical performance of algorithms, making
claims about robustness difficult to achieve.

In this paper, we attempt to raise awareness of these issues. Towards this goal,
we identify a multitude of possible modeling choices, and discuss several specific
directions in which progress can be made in the near future. We hope that this will
spark discussion and aide the community as it moves forward.
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