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ABSTRACT 
With machine learning models being increasingly used to aid deci-
sion making even in high-stakes domains, there has been a growing 
interest in developing interpretable models. Although many sup-
posedly interpretable models have been proposed, there have been 
relatively few experimental studies investigating whether these 
models achieve their intended efects, such as making people more 
closely follow a model’s predictions when it is benefcial for them to 
do so or enabling them to detect when a model has made a mistake. 
We present a sequence of pre-registered experiments (N = 3, 800) 
in which we showed participants functionally identical models that 
varied only in two factors commonly thought to make machine 
learning models more or less interpretable: the number of features 
and the transparency of the model (i.e., whether the model inter-
nals are clear or black box). Predictably, participants who saw a 
clear model with few features could better simulate the model’s 
predictions. However, we did not fnd that participants more closely 
followed its predictions. Furthermore, showing participants a clear 
model meant that they were less able to detect and correct for the
model’s sizable mistakes, seemingly due to information overload. 
These counterintuitive fndings emphasize the importance of test-
ing over intuition when developing interpretable models. 

CCS CONCEPTS 
• Computing methodologies → Machine learning; • Human-

centered computing → User studies.

KEYWORDS 
interpretability, machine-assisted decision making, human-

centered machine learning 
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1 INTRODUCTION 
Machine learning models are increasingly used to aid decision mak-

ing in high-stakes domains, such as medical diagnosis [57], credit 
risk assessment [43], judicial sentencing and bail [5, 18, 48, 53], 
and hiring [66]. Machine learning models also infuence people’s 
decisions about what news articles to read [3, 13, 69, 88, 104], what 
movies to watch [10], what music to listen to [77], what clothes to 
buy [20], and even who to date [90]. In all of these settings, deci-
sion making is a collaboration between people and models, where 
models make predictions and people can choose whether to follow 
these predictions or to override them. 

There are many reasons why following a machine learning 
model’s predictions may be advantageous, chief among them being 
improved accuracy. Indeed, there have been many studies showing 
that models are often more accurate than people. A meta-analysis 
from twenty years ago, reviewing work from some seventy years 
ago, found that models were more accurate than people in a va-
riety of domains [24, 41], and the gap has widened since then as 
models have become more accurate [53]. Although following a 
model’s predictions should enable people to make faster and more 
consistent decisions, there are also scenarios in which following a 
model’s predictions can be disadvantageous, most notably when 
those predictions are incorrect. 

That said, people are resistant to using models to aid their deci-
sion making [8, 23, 25, 86]. There are many reasons for this: First, 
people may feel that they do not understand models, including 
what information they rely on and how this information is being 
used. For instance, in a study of machine learning use in the public 
sector [106], several practitioners noted challenges in getting orga-
nizational buy-in for the use of machine learning-based systems 
without the ability to explain those systems’ internals. Second, peo-
ple may feel that models do not rely on the right information [24, 
p. 151] or that they do not use information in the right ways [106].
Third, people may be worried that models might behave in ways
that are unfair [22, 33, 54, 80, 91, 106, 109]. Concerns about fairness
are often exacerbated by the frst two reasons.

In response to these concerns, a prolifc line of research has 
emerged that focuses on the interpretability of machine learning
models. There are two main approaches to developing supposedly 
interpretable models. First, because there is evidence that simple 
models with clear internals can be as accurate as more complex, 
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black-box models in some domains [6, 23, 34, 48, 92, 95], one ap-
proach is to create simple, clear models such as point systems that 
can be memorized [48, 102] or generalized additive models that 
facilitate visualizing the impact of each feature on the model’s pre-
dictions [15, 72, 73]. The hope is that these models will be easier 
for people to understand and use. 

The second approach is to provide post-hoc explanations for 
potentially complex, black-box models. Threads of research that 
focus on this approach look at how to explain individual predic-
tions by learning simple local approximations of a model around 
particular data points [63, 74, 89], training simple models to mimic 
more complex ones [64, 98], estimating the infuence of training 
data points [56], describing the change to an input data point that 
would change a model’s prediction for it [93, 103, 108, 113], and 
visualizing model predictions or properties [58, 112]. 

But despite this progress, there is still no consensus about how 
to defne, quantify, or measure the interpretability of a machine 
learning model [30], raising the following question: What is inter-
pretability and how can we determine whether one model is more 
interpretable than another? Diferent notions of interpretability, 
such as simplicity, transparency, simulatability, and trustworthi-
ness, are often confated [68]. This problem is exacerbated by the 
fact that machine learning models have many diferent types of 
stakeholders and these stakeholders may have diferent needs in 
diferent scenarios [44, 99, 100]. The approach that works best for 
a regulator who wants to understand why a particular person was 
denied a loan may be diferent to the approach that works best for 
a data scientist debugging a machine learning model or for a CEO 
using a model to make a high-stakes decision. Moreover, regardless 
of how interpretability is defned, quantifed, or measured, there is 
very little scientifc evidence demonstrating that a) people are bet-
ter able to understand interpretable models, b) people more closely 
follow the predictions of interpretable models when it is benefcial 
for them to do so, and c) people are better able to detect when an 
interpretable model has made a mistake, enabling them to override 
its prediction. 

We take the perspective that the lack of consensus around defn-
ing, quantifying, or measuring interpretability, as well as the lack 
of scientifc evidence for its benefts, stem from the fact that inter-
pretability is not something that can be directly manipulated or 
measured. Rather, the interpretability of a model is a latent—and 
fundamentally human—property that can be infuenced by diferent 
manipulable factors (such as the number of features, the complex-

ity of the model, the transparency of the model, or even the user 
interface) and that impacts diferent measurable (human) outcomes 
(such as people’s abilities to simulate the model’s predictions, the 
extent to which people follow the model’s predictions when it is 
benefcial for them to do so, or people’s abilities to detect when 
the model has made a mistake). Diferent factors may infuence 
diferent outcomes in diferent ways. As such, we argue that to 
understand interpretability, it is necessary to directly manipulate 
diferent factors and measure their efects. What is or is not inter-
pretable must be defned by people’s behavior, not by what appeals 
to intuition [65, 78, 79, 110]. 

Drawing on this perspective, we present a sequence of pre-
registered experiments (N = 3, 800) in which we varied factors 
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commonly thought to make machine learning models more inter-
pretable and measured their efects on people’s behavior. Based on 
a structured review of the literature on interpretability, we focused 
on two factors—the number of features and the transparency of the 
model (i.e., whether the model internals are clear or black box)—and 
investigated how these factors afected three measurable outcomes: 

(1) How well can people simulate a model’s predictions? 
(2) To what extent do people follow a model’s predictions 

when it is benefcial for them to do so? 
(3) How well can people detect when a model has made a 

mistake and correct for it? 

We found that people can better simulate the predictions of a clear 
model with few features compared to the predictions of a clear 
model with more features or the predictions of a black-box model. 
However, contrary to our expectations, we did not fnd a signifcant 
improvement in the extent to which people follow the predictions 
of a clear model with few features when it is benefcial for them 
to do so compared to the predictions of a black-box model with 
more features. We also found that using a clear model hampers 
people’s abilities to detect when the model had made a mistake. All 
three of these fndings are based on highly-powered, pre-registered 
experiments with multiple, representative stimuli. Our latter two 
fndings are notable and surprising because they contradict com-

mon intuition about interpretability. 

1.1 Domain 
We focused our experiments on the domain of real-estate valuation, 
in which machine learning models are used to predict the selling 
prices of properties.1 

In each experiment, participants were asked 
to predict the prices of apartments in a single neighborhood in New 
York City with the help of a machine learning model. We conducted 
our experiments on laypeople, as laypeople represent one type of 
stakeholder that might potentially use or be afected by machine 
learning models. We chose the domain of real-estate valuation be-
cause many people have considered purchasing a property, making 
the setting both familiar and potentially interesting to participants. 
Each apartment was represented in terms of eight features: number 
of bedrooms, number of bathrooms, square footage, total rooms, 
days on the market, maintenance fee, distance from the subway, 
and distance from a school. All participants saw the same set of 
apartments (i.e., the same feature values) and, crucially, the same 
predicted selling price for each apartment, which came from either a 
two-feature or an eight-feature linear regression model. To achieve 
this, the models were constrained to make the same predictions for 
the apartments we used, as we describe below in Section 3.1. What 
varied between the experimental conditions was therefore only the 
presentation of the model: whether it was presented as using two- or 
eight-features and whether the model internals were clear or black 
box. As a result, any observed diferences in participants’ behavior 
could be attributed entirely to the presentation of the model—a key 
feature of our experimental design. 

Because of our decision to vary only the presentation of the 
model, each participant had access to all eight feature values for 
each apartment, regardless of the experimental condition to which 

1
The Zestimate prices on the website Zillow may be a familiar example of these 
predictions. 
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they were assigned. This meant that some participants (those who 
were shown an eight-feature model) had access to the same in-
formation as the model, while others (those who were shown a 
two-feature model) had access to more information than the model. 
This scenario has a rich history in the decision-making literature, 
where it is called the “broken leg problem” [24, p. 151], based on an 
anecdote in which a model that is very good at predicting weekly 
attendance at the movies should be ignored if it is known that 
someone has a broken femur with a full length cast. This scenario 
is also often encountered in practice: Table 1 in appendix 9 contains 
a number of instances from the literature in which people have 
access to more information than a model, meaning that they can 
use their knowledge of this additional information as a reason to 
override the model’s predictions. 

1.2 Overview of experiments 
In our frst experiment, we showed participants a sequence of twelve 
apartments. The frst ten apartments had typical confgurations 
(i.e., typical combinations of feature values), whereas the last two 
had unusual confgurations (such as three bathrooms squeezed into 
726 square feet). For each apartment, participants were frst shown 
its confguration (i.e., feature values) alongside the model (whose 
internals were either clear or black box) and were asked to guess 
what the model would predict for the apartment’s selling price. 
They were then shown the model’s prediction and asked for their 
own prediction of the apartment’s selling price. 

We hypothesized that participants who were shown the clear, 
two-feature model would better simulate the model’s predic-
tions [60] and would more closely follow its predictions when 
it was benefcial for them to do so. We also hypothesized that par-
ticipants assigned to diferent experimental conditions would be 
diferently able to detect and correct for the model’s sizable mis-

takes on the apartments with unusual confgurations. We note that 
here and throughout the rest of paper, when we refer to detecting 
and correcting a model’s mistakes, we are specifcally referring to 
whether participants notice that the model has made an inaccurate 
prediction and provide a more accurate prediction themselves; do-
ing so does not necessarily imply that they understand why the 
model made the mistake. 

As expected, we found that participants who saw the clear model 
with two features could better simulate the model’s predictions. 
However, we did not fnd that participants more closely followed 
its predictions when it was benefcial for them to do so. More-

over, participants’ predictions were generally less accurate than the 
models’—a familiar fnding in the literature on the predictions of 
people versus computational systems [24, 40, 41]. Furthermore, and 
contrary to our intuition when designing the experiment, partici-
pants who were shown a clear model were less able to detect and 
correct for the model’s sizable mistakes on the apartments with 
unusual confgurations compared to participants who were shown 
a black-box model. To account for these unexpected fndings, we 
designed and ran three additional experiments. 

In our second experiment, we scaled down the apartments’ sell-
ing prices and maintenance fees to match median prices in the 
U.S. in order to determine whether the fndings from our frst ex-
periment were merely an artifact of New York City’s high prices. 
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Reassuringly, with scaled-down selling prices and maintenance 
fees, the fndings from our frst experiment replicated quite closely. 

Our third experiment used weight of advice—a measure com-

monly used in the literature on advice-taking [36, 114] and sub-
sequently used in the context of computational decision mak-

ing by Logg [70, 71]—as an alternative way to measure the ex-
tent to which people follow a model’s predictions. Here too, we 
found no signifcant diferences in the extent to which partici-
pants followed the predictions of the model when it was benefcial 
for them to do so between the experimental conditions. Surpris-
ingly, and contrary to our fndings from the previous two experi-
ments, we did not fnd that participants who were shown a clear 
model were less able to detect and correct for the model’s sizable 
mistakes. 

We conjectured two possible reasons for this fnding. First, in 
all three experiments, participants may have anchored on the pre-
diction visible to them when making their own fnal prediction of 
an apartment’s selling price. However, the possible anchor values 
in the frst two experiments were diferent to that in the third: in 
the third experiment, participants saw their own initial prediction 
of each apartment’s selling price when making their fnal predic-
tion, whereas in the frst two experiments, participants saw their 
simulation of the model’s prediction. In the frst two experiments, 
participants who were shown the clear, two-feature model could 
better simulate the model’s predictions compared to participants 
assigned to the other experimental conditions, and might therefore 
have anchored on higher selling prices for the apartments with 
unusual confgurations, in line with the model’s predictions. Ad-
ditionally, participants who were shown a clear model may have 
been overwhelmed by the amount of detail in front of them, caus-
ing them to be less likely to notice the unusual apartment con-
fgurations when making their own predictions. This efect may 
have been less prominent in our third experiment because par-
ticipants made their initial predictions before being shown the 
model. 

This motivated our fourth and fnal experiment. For this ex-
periment, we returned to the design of our frst experiment, but 
removed the simulation step and varied whether or not participants 
were shown an “outlier focus” message highlighting the apartments 
with unusual confgurations as possible outliers. We found that 
participants who were shown a clear model and no outlier focus 
message were less able to detect and correct for the model’s sizable 
mistakes, as in our frst two experiments. In contrast, this difer-
ence disappeared for participants who were shown an outlier focus 
message, in line with the fndings from our third experiment. The 
fndings from our fourth experiment are therefore consistent with 
the possible explanation outlined above. 

In light of this, we then conducted some additional post-hoc 
analyses of the data from our frst two experiments, fnding that 
participants who were shown a clear, eight feature model (i.e., the 
model presentation with the most information) were worse at simu-

lating the model’s predictions [60] and followed its predictions less 
closely compared to participants assigned to the other experimental 
conditions. We also found that these participants’ predictions of the 
apartments’ selling prices were less accurate. These fndings, which 
we present along with our fndings from the fourth experiment, are 
also consistent with the explanation above. 
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To summarize, via a sequence of pre-registered experiments 
involving several thousand participants, we found that two fac-
tors commonly thought to make machine learning models more 
interpretable often have negligible efects on people’s behavior 
and, in some cases, even have detrimental efects. Contrary to the 
intuition that models with clear internals can only improve peo-
ple’s decisions, our fndings suggest otherwise. Taken together, our 
fndings emphasize the importance of testing over intuition when 
developing interpretable models. 

In the next section, we further situate our experiments in the 
literature from the machine learning, human–computer interaction, 
and decision-making communities. In the subsequent four sections, 
we describe our experiments and present our fndings in detail. We 
then conclude by discussing limitations of and possible extensions 
to our work, as well as implications for designing user interfaces 
that facilitate efective collaborations between people and models. 

2 RELATED WORK 
Although there has been a recent surge of research in the ma-

chine learning community on techniques for achieving interpretabil-
ity [15, 48, 56, 61, 63, 64, 74, 89, 93, 98, 102, 103, 108], there have 
been relatively fewer studies of how factors commonly thought to 
make machine learning models more interpretable afect people’s 
behavior. Perhaps most closely related and contemporaneous to 
our work, Lage et al. [60] used controlled experiments involving 
laypeople to investigate how the complexity of a model afects 
its simulatability, focusing on decision sets. They found that the 
number of cognitive chunks and the model size both afect people’s 
abilities to simulate a model’s predictions. Other researchers have 
conducted user studies in order to understand people’s use of spe-
cifc tools or methods. For example, Huysmans et al. [45] studied 
the efects of presenting people with models that are traditionally 
thought to be more interpretable (such as decision tables and binary 
decision trees) on people’s accuracies and their stated confdences 
in completing a task; Lim et al. [67] studied the efects of diferent 
types of explanations (such as probing a machine learning model 
about why it made a particular prediction or why it did not make 
a diferent prediction) on laypeople’s understandings of and trust 
in a model; Rader et al. [87] studied the efects of diferent ways 
of explaining Facebook’s News Feed algorithm on people’s under-
standings of how the algorithm works and their ability to evaluate 
the correctness of the algorithm’s output; Cheng et al. [17] studied 
the efects of diferent design and interface choices for presenting 
explanations on people’s understandings of and trust in computa-

tional decisions; Binns et al. [11] and Dodge et al. [29] studied the 
efects of diferent types of explanations on people’s perceptions of 
a model’s fairness; and Kaur et al. [49] studied data scientists’ use of 
two specifc interpretability tools (the InterpretML [81] implementa-

tion of generalized additive models and the SHAP Python package), 
fnding that data scientists over-trust and misuse these tools. More 
commonly, machine learning researchers include small-scale user 
studies to evaluate their own proposed techniques. For example, 
Lakkaraju et al. [62] ran a user study comparing 47 students’ un-
derstandings of decision boundaries corresponding to interpretable 
decision sets versus Bayesian decision lists, while Ribeiro et al. [89] 
ran experiments to investigate whether laypeople are able to use 
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local interpretable model-agnostic explanations to choose which 
of two classifers is better, to perform feature engineering, and to 
identify classifer irregularities. 

Within the human–computer interaction community, there is 
a longstanding practice of taking a user-centered perspective and 
acknowledging that people are active participants who form their 
own mental models of how computational systems work [32, 47, 82]. 
Bellotti and Edwards [9] argued for design principles that support 
intelligibility, so that systems “represent to their users what they 
know, how they know it, and what they are doing about it.” Simi-

larly, Glass et al. [37] demonstrated empirically that transparency 
around how complex adaptive agents work improves people’s trust 
in those agents. Stumpf et al. [97] were among the frst researchers 
to address the role of mental models when people interact with 
machine learning-based systems. They conducted a series of exper-
iments to study the benefts of allowing rich interactions between 
people and systems, assessing whether diferent types of explana-
tions would better enable people to form useful mental models. 
They and others [55] also found that people become more willing 
to use computational systems when they are given the opportunity 
to review and potentially modify the systems, even when the modi-

fcations have no efects [104]. Kulesza et al. [59] studied several 
ways in which intelligent agents might explain themselves to stake-
holders. They showed that completeness of explanations is more 
important than soundness in accurately shaping mental models, 
but that people lose trust in a system when soundness is too low. 

Another line of human–computer interaction research that re-
lates to forming mental models focuses on sensemaking [85, 94]. 
Sensemaking refers to the process by which people collect and 
organize information and acquire “situation awareness” (i.e., build 
a mental model of the knowledge and data at hand). In the context 
of our work, sensemaking relates to people’s understandings of ma-

chine learning models, while situation awareness facilitates insight 
and enables people to make intelligent decisions. Sensemaking re-
search often involves designing tools to support rich interactions 
among people [39] or between people and computational systems. 
Sensemaking processes are likely operating in our experiments 
when participants examine the model to simulate its predictions. 
Sensemaking processes may also be at play when participants de-
tect and correct for the model’s sizable mistakes, though we do 
not collect cognitive process measures to investigate their reason-
ing directly. We do, however, test a hypothesis about information 
overload that rests on an assumption about interference in the 
information-intake process. 

Finally, there is considerable research related to our experiments 
in the decision-making literature. To date, much of this work has 
focused on people’s aversion [8, 23, 25] or proclivity [71] to trust 
computational decision-making aids, and ways to increase this 
trust [26]. Other relevant decision-making work has endorsed the 
creation of simple or “improper” linear models that bear a strong 
resemblance to the models that we used in our experiments [23, 
34, 38, 48]. Although decision-making researchers have tested the 
accuracies of these models in simulations, there have been far fewer 
tests of these models when used by people to aid their decision 
making. In our experiments, which we describe starting in the next 
section, we extend this line of research by taking a slightly diferent 
approach and asking how presentation diferences in functionally 



            

        
       

 

    
   

           
           

           
          

        
          

            
            

        
  

        
       

         
          

           
           

   
        

        
          

 
          

         
           
          

           
        

     
          

          
         

          
        

   
           

        
             

          
         

          
          

         
        

            
           

            
           

           

         
 

         
            
             

          
    

        
          

           
      

   
            

           
              

    
         

        
         

          
         

    
          
     

           
          
          

         
         

          
        
            

         
        

             
            

          
          

 
         

        
         
         

         
       

          
        

          
                

           
               

              
            

              
              

           
           

             
    

Manipulating and Measuring Model Interpretability 

identical models—specifcally, diferences in two factors thought to 
make machine learning models more interpretable—afect people’s 
behavior. 

3 EXPERIMENT 1: PREDICTING 
APARTMENT SELLING PRICES 

Our frst experiment was designed to measure the efects of the 
number of features and the transparency of the model (i.e., whether 
the model internals are clear or black box) on three measurable 
outcomes that our literature review revealed to be often associated 
with interpretability: laypeople’s abilities to simulate a model’s pre-
dictions, the extent to which laypeople follow a model’s predictions 
when it is benefcial for them to do so, and laypeople’s abilities 
to detect when a model has made a mistake. Before running the 
experiment, we posited and pre-registered three hypotheses, stated 
informally below:2 

H1. Simulation. Participants will better simulate the predictions 
of a clear model with few features. 

H2. Deviation. For typical data points, participants will more 
closely follow (i.e., deviate less from) the predictions of a 
clear model with few features when it is benefcial for them 
to do so compared to the predictions of a black-box model 
with more features. 

H3. Detection of mistakes. Participants assigned to diferent 
experimental conditions will be diferently able to detect 
and correct for the model’s sizable mistakes on unusual data 
points. 

We tested the frst hypothesis by showing each participant an 
apartment’s confguration (i.e., feature values), asking them to guess 
what the model would predict for the apartment’s selling price, and 
then comparing this prediction to the model’s prediction. A small 
diference between these two quantities, which we refer to as the 
participant’s simulation error, indicates that the participant could 
better simulate the model’s prediction. 

For the second hypothesis, we measured the extent to which 
each participant deviated from the model’s predictions by, for each 
of the apartments with typical confgurations, showing them the 
model’s prediction, asking them for their own prediction of the 
apartment’s selling price, and measuring the diference between 
these two quantities. 

We used the same measure for the third hypothesis, but focused 
on only the apartments with unusual confgurations. Specifcally, 
we said that a participant was able to detect and correct for the 
model’s sizable mistakes if we saw large deviations between the 
model’s predictions and their own predictions for the apartments 
with unusual confgurations. We note that this does not necessarily 
imply that they understood why the model made the mistakes. 
We did not pre-register any directional hypotheses about which 
experimental conditions would result in participants being more 
or less able to detect and correct for the model’s sizable mistakes. 
On the one hand, if a participant better understands the model, 
they may be better equipped to detect and correct for its overly 
high predictions. On the other hand, a participant may more closely 
follow the model’s predictions if they better understand it. For this 

2
Pre-registered hypotheses for this experiment are available at https://aspredicted.org/ 
xy5s6.pdf. 
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reason, we pre-registered our third hypothesis to be bi-directional, 
but we note that our intuition at the time was that participants 
who were shown a clear model would be better able to detect and 
correct for its sizable mistakes, compared to participants who were 
shown a black-box model. 

We additionally pre-registered our intent to analyze participants’ 
prediction errors (i.e., how far their own predictions of the apart-
ments’ selling prices were from the actual selling prices), but again 
refrained from pre-registering any directional hypotheses. 

3.1 Experimental design 
As we explained in Section 1, we asked participants to predict the 
selling prices of apartments in a single neighborhood in New York 
City with the help of a machine learning model. To do this, we used 
a 2 × 2 design: 

• Participants were randomly assigned to see either a two-
feature model (number of bathrooms and square footage— 
the two most predictive features) or an eight-feature model. 

• Participants were randomly assigned to either see a clear 
model (i.e., a linear regression model with visible coefcients) 
or a black-box model. 

We additionally included a baseline condition in which there was 
no model available to participants. 

All participants saw the same set of apartments (i.e., the same 
feature values). The models were constrained to make the same pre-
dictions for these apartments, so participants saw the same model 
predictions regardless of the experimental condition to which they 
were assigned (see Appendix 11). Furthermore, the accuracies of 
the models were nearly identical, as described below. What varied 
between the experimental conditions was therefore only the pre-
sentation of the model. This was a key feature of our experimental 
design that enabled us to run tightly controlled experiments. 

Screenshots from each of the four primary experimental condi-
tions (i.e., each experimental condition in our 2 × 2 design, but not 
the baseline condition) are shown in Figure 1. We note that each 
participant had access to all eight feature values for each apart-
ment, regardless of the experimental condition to which they were 
assigned. 

We ran the experiment on Amazon Mechanical Turk using psi-
Turk [42], an open-source platform for designing online experi-
ments. Multiple studies have shown that data from high-reputation 
Turkers is comparable to data from commercial panels and univer-
sity pools when assessing outcomes such as attentiveness, honesty, 
and efort [14, 16, 21, 75, 84].3 

We recruited 1,250 participants, all located in the U.S., with ap-
proval ratings greater than 97%. We randomly assigned partici-
pants to the experimental conditions (clear-2, N = 248; clear-8, 
N = 247; bb-2, N = 247; bb-8, N = 256; and no-model, N = 252). 

3
Although recent research has shown that Turkers may manipulate their demographic 
information so as to be included in studies [96], we only screened Turkers using two 
criteria, both of which are enforced by the platform and would require some efort 
to manipulate: country and approval rating. Moreover, even if some participants had 
manipulated their information, it would have had only a minor efect on our fndings 
because we were not trying to estimate quantities relating to the entire population of 
participants, but were instead trying to detect diferences between the experimental 
conditions. That is, the proportion of Turkers with manipulated information would 
be, on average, the same for each condition, thereby permitting valid measurement of 
randomly assigned treatment efects. 

https://aspredicted.org/xy5s6.pdf
https://aspredicted.org/xy5s6.pdf
https://aspredicted.org
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(a) Clear, two-feature condition (clear-2). (b) Black-box, two-feature condition (bb-2). 

(c) Clear, eight-feature condition (clear-8). (d) Black-box, eight-feature condition (bb-8). 

Figure 1: The four primary experimental conditions. In the conditions in the top row, the model used two features; in the 
conditions in the bottom row, the model used eight. In the conditions on the left, the model internals were clear; in the 
conditions on the right, the model internals were black box. 

Each participant received a fat payment of $2.50. The experiment 
was approved by our institutional review board. 

Participants were frst shown detailed instructions, including, 
in the conditions involving clear models, a simple English de-
scription of the corresponding two- or eight-feature model (see 
Appendix 10). To ensure that participants understood these in-
structions, each participant was required to answer a multiple 
choice question about the number of features used by the model 
before proceeding with the experiment, which consisted of two 
phases. 

The training phase familiarized participants with both the do-
main (i.e., real-estate valuation) and the model’s predictions. Par-
ticipants were shown ten apartments in a random order. In the 
four primary experimental conditions, participants were shown the 
model’s prediction of each apartment’s selling price, asked for their 
own prediction of the apartment’s selling price, and then shown 
the apartment’s actual selling price. In the baseline condition (i.e., 
no model), participants were asked to predict the selling price for 
each apartment and then shown its actual selling price. 

In the testing phase, participants were shown twelve apartments 
that they had not previously seen. The order of the frst ten apart-
ments was randomized, while the remaining two apartments always 
appeared last, for the reasons described below. In the four primary 
experimental conditions, participants were asked to guess what 
the model would predict for each apartment’s selling price (i.e., 
simulate the model’s prediction) and to state their confdence in 
this guess on a fve-point scale (see Figure 2a). They were then 
shown the model’s prediction and asked to state their confdence 
in that prediction (see Figure 2b). Finally, they were asked for their 
own prediction of the apartment’s selling price and to state their 
confdence in this prediction (Figure 2c). In the baseline condition, 
participants just were asked to predict the selling price of each 
apartment and to state their confdence in this prediction. 

We selected the apartments from a data set of apartments sold 
between 2013 and 2015 on the Upper West Side of New York City, 
taken from StreetEasy.com, a popular real-estate website. To create 
the models, we frst ft a two-feature linear regression model (i.e., 
estimated the model’s coefcients) using this data set and rounded 

https://StreetEasy.com
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(a) Step 1: Participants were asked to guess what the model would predict and state their confdence in this guess. 

(b) Step 2: Participants were asked to state their confdence in the model’s prediction. 

(c) Step 3: Participants were asked for their own prediction and to state their confdence in this prediction. 

Figure 2: Part of the testing phase from our frst experiment. 
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the coefcients for readability.4 
To ensure that the models were 

as similar as possible, we fxed the intercept and the coefcients 
for number of bathrooms and square footage in an eight-feature 
model to match those of the two-feature model, and then ft the 
model (i.e., estimated the model’s coefcients for the remaining six 
features) and followed the same rounding procedure as with the 
two-feature model. The rounded coefcients for both models are 
shown in Figure 1. The models explain 82% of the variance in the 
apartments’ selling prices. When presenting the models’ predictions 
to participants, we rounded each prediction to the nearest $100,000. 

All participants saw the same set of apartments (i.e., the same 
feature values) because randomizing the selection would have in-
troduced additional noise and reduced the power of the experiment, 
making it harder to spot diferences between the experimental 
conditions. To enable comparisons between the experimental con-
ditions, the ten apartments in the training phase and the frst ten 
apartments in the testing phase were selected from the apartments 
in our data set for which the rounded predictions of the two- and 
eight-feature models were the same. We selected the apartments to 
cover a representative range of model prediction errors (i.e., how 
far the models’ predictions were from the apartments’ actual selling 
prices). We provide details of the apartments’ confgurations (i.e., 
feature values) and our selection procedure in Appendix 11. 

We used the last two apartments in the testing phase to test 
our third hypothesis—namely, that participants assigned to difer-
ent experimental conditions will be diferently able to detect and 
correct for the model’s sizable mistakes on unusual data points. 
Ideally, we would have used two apartments with unusual confg-
urations for which both models made the same sizable mistakes. 
Unfortunately, there were no such apartments in our data set, so 
we selected (in one case) and synthetically generated (in the other) 
two apartments to test diferent aspects of our hypothesis. These 
apartments’ confgurations exploited the models’ large coefcient 
($350,000) for number of bathrooms. The frst apartment (“apart-
ment 11”) was a one-bedroom, two-bathroom apartment (selected 
from our data set) for which both models made overly high, but dif-
ferent, predictions. As a result, comparisons between the conditions 
involving the two-feature model and the conditions involving the 
eight-feature model were therefore impossible, although we were 
able to analyze participants’ prediction errors because these did not 
rely on the models’ predictions. The second apartment (“apartment 
12”) was a synthetically generated one-bedroom, three-bathroom, 
726-square-foot apartment for which both models made the same 
overly high prediction, allowing us to make comparisons between 
all four primary experimental conditions, but ruling out analyses 
of participants’ prediction errors because the apartment did not 
have an actual selling price. We emphasize that even though it did 
not have an actual selling price, we are confdent that it would 
have been overpriced by the models because of its three bathrooms 
squeezed into only 726 square feet. Apartments 11 and 12 were 
always shown last to avoid the phenomenon in which people trust 
a model less after seeing it make a mistake [25]. 

4
For each coefcient, we found a round number that was within one quarter of a 
standard error of the estimated coefcient. 

3.2 Findings 
Having run the experiment, we compared participants’ behavior 
across the conditions.5 

Doing so required us to compare multiple 
responses (i.e., data about multiple apartments) from multiple par-
ticipants, which was complicated by possible correlations among 
each participant’s responses. For example, some participants might 
have consistently overestimated the apartments’ selling prices re-
gardless of the condition to which they were assigned, while others 
might have consistently provided underestimates. We addressed 
this by ftting a mixed-efects model for each measurable outcome of 
interest to capture diferences between conditions while controlling 
for participant-level efects—a standard approach for analyzing re-
peated measure experimental designs [7]. We derived all statistical 
tests from these models. Bar plots and mean outcomes in the density 
plots correspond to average values (± one standard error) by condi-
tion from the ftted mixed-efects models. To test our hypotheses, 
we ran contrasts and calculated degrees of freedom, test statistics, 
and p-values under these models. Unless otherwise noted, all plots 
and statistical tests correspond to just the frst ten apartments from 
the testing phase.6 

Our fndings are as follows: 
H1. Simulation. We defned each participant’s simulation error 

for each apartment to be |m − um |—i.e., the absolute diference 
between the model’s prediction of the apartment’s selling price m 
and the participant’s guess for the model’s prediction um . Figure 3a 
contains density plots for participants’ mean simulation errors. 
Participants assigned to the condition involving the clear, two-
feature model had, on average, lower simulation errors compared to 
participants assigned to the other primary experimental conditions 
(t (994) = −12.06, p < 0.001). This means that, as hypothesized, 
participants could better simulate the predictions of the clear, two-
feature model. 

H2. Deviation. We defned each participant’s deviation from the 
model’s prediction of each apartment’s selling price to be |m − ua |— 
i.e., the absolute diference between the model’s prediction of the 
apartment’s selling price m and the participant’s own prediction 
of the apartment’s selling price ua . Figure 3b shows that contrary 
to our second hypothesis, we did not fnd a signifcant diference 
in the extent to which participants followed the predictions of the 
clear, two-feature model when it was benefcial for them to do so 
compared to the predictions of the black-box, eight-feature model 
(t (994) = 0.67, p = 0.5). 

H3. Detection of mistakes. As explained above, we used the 
last two apartments in the testing phase (apartments 11 and 12) 
to test our third hypothesis. The models made overly high predic-
tions for these apartments because of their unusual confgurations. 
For both apartments, participants assigned to the four primary 
experimental conditions predicted higher selling prices compared 
to participants assigned to the baseline condition (i.e., no model). 

5
For each of our experiments, we report all sample sizes, conditions, data exclusions, 
and measures for the main analyses that were described in our pre-registration doc-
uments. We determined the sample size for our frst experiment based on estimates 
from a small pilot experiment, which enabled us to detect a diference of at least 
$50,000 in deviation between the condition involving the clear, two-feature model and 
the condition involving the black-box, eight-feature model with 80% power. For our 
subsequent experiments, however, we adjusted the sample size to target a power of 
80% or more. We provide full distributions of participants’ responses in Appendix 13 
and details of our statistical tests in Appendix 14.
6
All the data and code needed to reproduce our results are available at https://github. 
com/Foroughp/Manipulating-and-Measuring-Model-Interpretability. 

https://github.com/Foroughp/Manipulating-and-Measuring-Model-Interpretability
https://github.com/Foroughp/Manipulating-and-Measuring-Model-Interpretability
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Experiment 1: New York City prices 
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Figure 3: Results from our frst experiment: density plots for participants’ (a) mean simulation errors and (b) mean deviations 
from the model’s predictions. Numbers in each subplot indicate average values over all participants in the corresponding 
condition, while error bars indicate one standard error. 

Experiment 2: Representative U.S. prices 
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Figure 4: Results from our second experiment, which replicate the fndings from our frst experiment. 
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Figure 5: Participants’ mean predictions of apartment 12’s selling price in (a) our frst experiment and (b) our second experi-
ment. Horizontal lines indicate the models’ predictions and error bars indicate one standard error. 

We suspect that this is because participants anchored on the mod-

els’ predictions. For apartment 11, we found no signifcant difer-
ences in participants’ deviations from the model’s predictions be-
tween the four primary experimental conditions (F (3, 994) = 1.03, 
p = 0.379 under a one-way ANOVA). In other words, we found that 
participants assigned to diferent experimental conditions were 
similarly able to detect and correct for the model’s overly high 
prediction for apartment 11. For apartment 12, a one-way ANOVA 
revealed a signifcant diference in participants’ deviations from 
the model’s predictions between the four primary experimental 
conditions (F (3, 994) = 4.42, p = 0.004). Participants assigned to 
the conditions involving clear models deviated from the models’ 
prediction, on average, less compared to participants assigned to the 
conditions involving black-box models (F (1, 994) = 8.81 , p = 0.003 
for the main efect of the transparency of the model, see Figure 5a). 
This fnding contradicts our intuition when designing the experi-
ment, which was that participants who were shown a clear model 
would be better able to detect and correct for its sizable mistakes 
compared to participants who were shown a black-box model. We 
explore this fnding in more detail in Section 6. 

We also conducted some post-hoc analyses. First, we analyzed 
participants’ stated confdences in the models’ predictions for each 
apartment. Although we did not pre-register a hypothesis about 
this, we found an interesting diference between participants’ stated 
confdences and their revealed behavior. Specifcally, even though 
participants assigned to the condition involving the clear, two-
feature model stated that they were more confdent in the model’s 

predictions compared to participants assigned to the condition in-
volving the black-box, eight-feature model (on average, a diference 
of .25 on a fve-point scale from “I’m confdent the model got it 
wrong” to “I’m confdent the model got it right,” (t (994) = 4.27, 
p < 0.001)), their behavior did not refect this. We found no sig-
nifcant diferences in the extent to which participants followed 
the model’s predictions between the four primary experimental 
conditions. 

Our second post-hoc analysis involved participants’ prediction 
errors. We defned each participant’s prediction error for each apart-
ment to be |a − ua |—i.e., the absolute diference between the apart-
ment’s actual selling price a, and the participant’s own prediction of 
the apartment’s selling price ua . A one-way ANOVA did not reveal 
any signifcant diferences in participants’ prediction errors be-
tween the four primary experimental conditions (F (3, 994) = 2.43, 
p = 0.06). 

As shown in Figure 6a, we also found that for the apartments 
with typical confgurations, participants assigned to the four pri-
mary experimental conditions had, on average, higher prediction 
errors than the model, but lower prediction errors than participants 
assigned to the baseline condition (t (1245) = 15.28, p < 0.001 for 
the comparison of the baseline condition with the four primary 
experimental conditions), suggesting that using a model was advan-
tageous. In contrast, participants’ prediction errors for apartment 
11 revealed the opposite pattern: participants assigned to the four 
primary experimental conditions had, on average, lower prediction 
errors than the model but higher prediction errors than participants 
assigned to the baseline condition (t (1245) = −7.99, p < 0.001). 
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Experiment 1: Experiment 2: 
New York City prices Representative U.S. prices 
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Figure 6: Density plots for participants’ mean prediction errors in our frst experiment (left) and in our second experiment 
(right). Numbers in each subplot indicate average values over all participants in the corresponding condition, while error bars 
indicate one standard error. Vertical lines indicate the model’s mean prediction error. 

Using the model helped participants more accurately predict the 
selling prices of the apartments with typical confgurations, but 
hindered them when predicting the selling price of an apartment 
with an unusual confguration for which the model had made a 
sizable mistake. 

Additionally, we found that using a clear model further hampered 
participants when making their own predictions about apartment 
11’s selling price: participants who were shown a clear model made, 
on average, less accurate predictions compared to participants who 
were shown a black-box model (F (1, 994) = 31.98, p < 0.001 for 
the main efect of the transparency of the model under a two-way 
ANOVA). 

To summarize, as hypothesized, we found that participants who 
were shown the clear, two-feature model could better simulate the 
model’s predictions. However, we did not fnd that they followed 
its predictions more closely when it would have been benefcial 
for them to do so. We also found that, contrary to our intuition, 
participants who were shown a clear model were less able to detect 
and correct for the model’s sizable mistakes on unusual data points. 
Finally, we found no diferences in participants’ prediction errors 
between the four primary experimental conditions. We also found 
that that using a model is advantageous, but that participants would 

have been better of (i.e., had lower prediction errors) had they 
followed the model’s predictions for the apartments with typical 
confgurations. 

4 EXPERIMENT 2: REPRESENTATIVE U.S. 
PRICES 

One potential concern about our frst experiment is that partic-
ipants’ lack of familiarity with New York City’s unusually high 
prices might have infuenced the extent to which they followed 
the models or their abilities to detect and correct for the models’ 
sizable mistakes. Our second experiment was therefore designed as 
a robustness check targeted at this concern. 

In this experiment, we replicated our frst experiment but with 
the apartments’ selling prices and maintenance fees scaled down to 
match median prices in the U.S. Before running this experiment we 
again posited and pre-registered three hypotheses.7 

The frst two 
hypotheses (H4 and H5) were identical to the frst two hypotheses 
from our frst experiment. However, we made the third hypothesis 
(H6) more precise than the third hypothesis from our frst exper-
iment to refect the fndings from that experiment, as well as our 

7
Pre-registered hypotheses for this experiment are available at https://aspredicted.org/ 
3bv8i.pdf. 

https://aspredicted.org/3bv8i.pdf
https://aspredicted.org/3bv8i.pdf
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fndings from a small pilot experiment with scaled-down prices. 
This hypothesis is stated informally below: 
H6. Detection of mistakes. Participants who are shown a clear 

model will be less able to detect and correct for the model’s 
sizable mistakes on unusual data points, and this efect will 
be more prominent for more unusual data points (i.e., for 
apartment 12 compared with apartment 11). 

4.1 Experimental design 
We frst scaled down the apartments’ selling prices and maintenance 
fees by a factor of ten. To account for this change, we also scaled 
down all coefcients (except for the coefcient for maintenance fee) 
by a factor of ten. Apart from the description of the neighborhood 
from which the apartments were selected, the experimental design 
was unchanged from our frst experiment. We again ran the exper-
iment on Amazon Mechanical Turk using psiTurk. We excluded 
Turkers who had participated in our frst experiment, and recruited 
750 new participants, all of whom satisfed the screening criteria 
from our frst experiment. We randomly assigned participants to 
the experimental conditions (clear-2, N = 150; clear-8, N = 150; 
bb-2, N = 147; bb-8, N = 151; and no-model, N = 152). Again, 
each participant received a fat payment of $2.50. 

4.2 Findings 
The fndings from our frst experiment replicated quite closely. 

H4. Simulation. As hypothesized, and as shown in Figure 4a, 
participants assigned to the condition involving the clear, two-
feature model had, on average, lower simulation errors compared to 
participants assigned to the other primary experimental conditions 
(t (594) = −10.41, p < 0.001). This is in line with the fndings from 
our frst experiment. 

H5. Deviation. Also in line with the fndings from our frst ex-
periment, but contrary to our hypothesis, we found no signifcant 
diference in the extent to which participants followed the predic-
tions of the clear two-feature model when it was benefcial for them 
to do so compared to the predictions of the black-box, eight-feature 
model (t (594) = 0.49, p = 0.626, see Figure 4b). 

H6. Detection of mistakes. For apartment 11, although a one-
way ANOVA revealed a signifcant diference between the four 
primary experimental conditions (F (3, 594) = 3.00 , p = 0.03), as 
was the case in our frst experiment, we found no signifcant dif-
ferences between the conditions involving clear models and the 
conditions involving black-box models (t (594) = −1.82, p = 0.069), 
perhaps because apartment 11’s confguration was not sufciently 
unusual. For apartment 12, in line with the fndings from our frst 
experiment, and as hypothesized, a one-way ANOVA revealed a 
signifcant diference between the four primary experimental con-
ditions (F (3, 594) = 7.96, p < 0.001). In particular, participants 
assigned to conditions involving clear models followed the model’s 
prediction, on average, more closely than participants assigned to 
conditions involving black-box models, indicating that they were 
less able to detect and correct for the model’s overly high predic-
tion, thereby resulting in an even worse fnal prediction for the 
apartment’s selling price (t (594) = −4.16, p < 0.001, see Figure 5b). 
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We again conducted some post-hoc analyses. In contrast to the 
fndings from our frst experiment, we found no signifcant dif-
ference in participants’ stated confdences between the condition 
involving the clear, two-feature model and the condition involving 
the black-box, eight-feature model (t (594) = 1.03, p = 0.303). We 
note that the efect size of the diference in our frst experiment 
was small (Cohen’s d of 0.23) and even smaller in our second exper-
iment (Cohen’s d of 0.07), which was identical to the frst, except 
for prices. We also note that there was no signifcant diference in 
the extent to which participants followed the model’s predictions 
when it was benefcial for them to do so in either experiment. 

We also analyzed participants’ prediction errors. Here, a one-
way ANOVA did reveal a signifcant diference in participants’ pre-
diction errors between the four primary experimental conditions 
(F (3, 594) = 8.60, p < 0.001). That said, the maximum pairwise dif-
ference in prediction error between the four primary experimental 
conditions is not large ($4,000 or roughly 3% of the average selling 
price, which was $120,000). 

In line with the fndings from our frst experiment, we found 
that for the apartments with typical confgurations, participants as-
signed to the four primary experimental conditions had, on average, 
higher prediction errors than the model, but lower prediction errors 
than participants assigned to the baseline condition (t (745) = 10.62, 
p < 0.001). Again, we found the opposite pattern for apartment 11: 
participants assigned to the four primary experimental conditions 
had, on average, lower prediction errors than the model, but higher 
prediction errors than participants assigned to the baseline condi-
tion (t (745) = −6.41, p < 0.001). We also found, in line with the 
fndings from our frst experiment, that using a clear model further 
hampered participants when making their own predictions about 
apartment 11’s selling price: participants who were shown a clear 
model made less accurate predictions compared to participants 
who were shown a black-box model (F (1, 594) = 7.16, p = 0.008 for 
the main efect of the transparency of the model under a two-way 
ANOVA). 

To summarize, the main fndings from our second experiment 
closely replicate the fndings from our frst experiment, suggesting 
that New York City’s unusually high prices did not infuence partic-
ipants’ behavior. In both experiments, we found that participants 
who were shown a clear, two-feature model could better simulate 
the model’s predictions. However, they did not follow the model’s 
predictions more closely when it was benefcial for them to do so. 
They were also less able to detect and correct for the model’s sizable 
mistakes on unusual data points. 

5 EXPERIMENT 3: WEIGHT OF ADVICE 
In our frst two experiments, we did not fnd a signifcant diference 
in the extent to which participants followed the predictions of the 
clear, two-feature model when it was benefcial for them to do so 
compared to the predictions of the black-box, eight-feature model, 
measured in terms of the absolute diference between the model’s 
prediction and the participant’s own prediction for each of the 
apartments with typical confgurations. Because this fnding was 
contrary to our hypotheses, we wondered whether using an alter-
native way to measure the extent to which people follow a model’s 
predictions would yield a diferent fnding. In our third experiment, 
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we therefore used weight of advice—a measure commonly used in 
the literature on advice-taking [36, 70, 114]. 

Weight of advice quantifes the extent to which people update 
their beliefs (e.g., their own predictions made before seeing a model’s 
predictions) toward any advice they are given (e.g., the model’s 
predictions). In the context of our frst two experiments, each partic-

(2) (1)
a −u |a

ipant’s weight of advice for each apartment is defned as |u 
(1) ,

|m−u |a
where m is the model’s prediction of the apartment’s selling price , 
(1)

u is the participant’s initial prediction of the apartment’s selling a 
(2)

price before seeing m, and u is the participant’s fnal prediction a 
of the apartment’s selling price after seeing m. Weight of advice is 
equal to 1 if the participant’s fnal prediction matches the model’s 
prediction and equal to 0.5 if the participant averages their initial 
prediction and the model’s prediction. 

To understand the benefts of weight of advice, consider the 
(2)

scenario in which a participant’s fnal prediction u is close to a 
the model’s prediction m. There are two reasons why this might 
happen. On the one hand, it could be the case that the participant’s 

(1)
initial prediction u was far from m and they made a signifcant a 
update to their initial prediction after seeing the model’s prediction. 
On the other hand, it could be the case that the participant’s initial 

(1)
prediction u was already close to m, so they did not update their a 
prediction at all after seeing the model’s prediction. The absolute 
diference between the model’s prediction m and the participant’s 

(2)
fnal prediction u does not distinguish between these two cases. a 
In contrast, weight of advice does—i.e., it will be high in the frst 
case and low in the second. 

We additionally used our third experiment to check whether 
participants’ behavior would be diferent if they were told that the 
predictions were made by a “human expert” instead of a model. 
Previous studies have examined this question from diferent per-
spectives with difering results [25, 27, 28, 31, 83]. Most closely 
related to our experiment the work of Logg [70, 71], which showed 
that when people have no information about the quality of the 
predictions they are shown, they follow the predictions that appear 
to come from a computational system more closely than those that 
appear to come from a person. We were curious to see whether 
this would also be the the case when people were given a chance 
to assess the quality of the predictions before deciding how closely 
to follow them. 

The details of our hypotheses for this experiment are provided 
in Appendix 12. 

5.1 Experimental design 
For this experiment, we returned to the original New York City 
prices and used the same four primary experimental conditions 
as in the frst two experiments. However, we also added a new 
condition, in which participants saw exactly the same information 
as in the condition involving the black-box, eight feature model, 
but with the model labeled as “Human Expert” instead of “Model.” 
We did not include a baseline condition because the most natural 
baseline would have been to simply ask each participant for their 
own prediction of each apartment’s selling price, which was already 
the frst half of this experiment’s testing phase, as described below. 

CHI ’21, May 8-13, 2021, Yokohama, Japan 

As before, we ran the experiment on Amazon Mechanical Turk 
using psiTurk. We excluded Turkers who had participated in our 
frst two experiments, and recruited 1,000 new participants, all of 
whom satisfed the screening criteria from our frst two experiments. 
However, when analyzing the data, we excluded the responses 
from one participant who reported technical difculties with the 
experiment. We randomly assigned participants to the experimental 
conditions (clear-2, N = 202; clear-8, N = 200; bb-2, N = 202; 
bb-8, N = 198; and expert, N = 197). For this experiment, each 
participant received a fat payment of $1.50. 

We asked participants to predict the selling prices of the same 
apartments that we used in our frst two experiments. However, 
we slightly modifed the testing phase so that we could calculate 
weight of advice. In particular, each participant was asked for two 
predictions of each apartment’s selling price: an initial prediction 
before being shown the model’s prediction and a fnal prediction 
after being shown the model’s prediction. To keep the length of the 
experiment reasonable, we did not ask participants to guess what 
the model would predict for each apartment’s selling price. 

We also designed the experiment so as to elicit each participant’s 
initial predictions for all twelve apartments before showing them 
the model. This is because we ran a small experiment in which 
participants were frst shown an apartment’s confguration (i.e., 
feature values) and asked for their prediction of its selling price. 
They were then shown the model’s prediction—and the model itself, 
whose internals were either clear or black box—and asked to up-
date their prediction before moving on to the next apartment. We 
found that participants assigned to the condition involving the clear, 
two-feature model made initial predictions that were closer to the 
model’s predictions—even though they had not seen the model’s 
prediction when making their initial prediction—compared to par-
ticipants assigned to the other primary experimental conditions 
(t (239) = −3.42, p < 0.001). We suspect that this is because the 
clear, two-feature model was easiest for participants to simulate. As 
a result, participants may have more easily internalized the model’s 
coefcients when making their fnal prediction for an apartment 
and then used them to make their initial predictions for subsequent 
apartments. Although this kind of behavior is often benefcial, here 
it posed a threat to the validity of our experiment: for us to be 
able to compare participants’ weight of advice between diferent 
experimental conditions, a participant’s initial predictions should 
not be infuenced by the condition to which they were assigned. 

As in our frst two experiments, participants were frst shown 
detailed instructions (which, this time, intentionally did not include 
any information about the model or “human expert”), before pro-
ceeding with the experiment, which consisted of two phases. In 
the (short) training phase, participants were shown three apart-
ments in a random order. For each one, they were asked for their 
prediction of the apartment’s selling price and shown the actual 
selling price. The testing phase consisted of two halves. In the frst 
half, participants were shown another twelve apartments. The or-
der of all twelve apartments was randomized. Participants were 
asked for their initial prediction of each apartment’s selling price 
(see Figure 7a). In the second half, participants were frst intro-
duced to the model or “human expert” before revisiting the twelve 
apartments (see Figure 7b). The order of the frst ten apartments 
was randomized, while the remaining two (apartments 11 and 12) 
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(a) First half: Participants were asked for their initial prediction of the apartment’s selling price. 

(b) Second half: Participants were shown the model’s prediction and asked to update their prediction. 

Figure 7: Part of the testing phase from our third experiment. 

always appeared last, as in the frst two experiments. For each apart-
ment, participants were frst reminded of their initial prediction, 
then shown the model or expert’s prediction, and only then asked 
to make their fnal prediction of the apartment’s selling price. To 
simplify the experiment, we did not ask participants to state their 
confdence in either their or the model’s predictions. 

5.2 Findings 
We briefy summarize our fndings here and provide full details in 
Appendix 12. This experiment confrmed our fndings from the frst 
two experiments about the extent to which participants followed the 
predictions of the clear, two-feature model when it was benefcial 
for them to do so compared to the predictions of the black-box, 
eight-feature model. We again found no signifcant diference in 
how closely participants followed the predictions of the clear, two-
feature model compared to the predictions of the black-box, eight-
feature model—this time measured in terms of weight of advice, 
as well as in terms of the absolute diference between the model’s 
prediction and the participant’s fnal prediction for each of the 
apartments with typical confgurations. 

We also found that participants followed the predictions of the 
“human expert” no more closely than they followed the predictions 
of the black-box models. We suspect that the diference between this 
fnding and those of Logg [70, 71] is due to participants’ increasing 
experience with the model or “human expert” over the course of 
our experiment. 

Finally, in contrast to the fndings from our frst two experiments, 
we did not fnd that participants assigned to the conditions involving 
clear models were less able to detect and correct for the model’s 

overly high predictions for either apartment 11 or apartment 12. 
This last fnding motivated our fnal experiment, which we describe 
in the next section. 

6 EXPERIMENT 4: OUTLIER FOCUS AND 
DETECTION OF MISTAKES 

Contrary to our intuition when designing the frst two experiments, 
participants who were shown a clear model in those experiments 
were less able to detect and correct for the model’s sizable mistakes 
on apartments with unusual confgurations compared to partici-
pants assigned to conditions involving black-box models (see Fig-
ures 5a and 5b). In our third experiment, in seeming contradiction, 
we found no such diference between the conditions involving clear 
models and the conditions involving black-box models. In this sec-
tion, we propose a possible explanation for these fndings and then 
support it with a fnal experiment. The explanation rests on two 
reasons, which we outline below. 

First, in all three experiments, participants who were shown a 
clear model may have been overwhelmed by the amount of detail 
in front of them—i.e., they may have experienced information over-
load

8 
[2, 46, 50]—causing them to be less likely to notice the unusual 

apartment confgurations when making their own predictions. We 
conjecture that this efect may have been less pronounced in our 
third experiment, though, because participants were asked for their 
initial predictions for all twelve apartments’ selling prices before 
being introduced to the model. In turn, this may have meant that 

8
We emphasize that we are referring to visual information overload that afects atten-
tion to items on a display [19], not cognitive load in working memory, which has also 
been shown to be related to interpretability [1, 60]. 



            

         
   

         
           

          
          

         
          

          
         

          
     

         
        

         
         

         
           

          
              

        
           

        
         

           
             

      
        

         
         

           
        
            

             
            

  
         

          
          

        
          
            

           
           

 
        

     

         
           

           
     

         
          
            

         
 

          
      

            
        

         
          

           
            

       

   
           

            
              

          
         

    
          

       
          

 
          

          
          

         
        

         
            

    
           

              
         

           
       

          
         

         
      

        
        

            

Manipulating and Measuring Model Interpretability 

they paid greater attention to each each apartment’s confguration— 
unusual or not. 

Second, in all three experiments, participants may have anchored 
on the prediction visible to them when making their own fnal 
prediction of an apartment’s selling price [26, 101]. However, the 
possible anchor values difered between the experiments: In the frst 
two experiments, participants made their fnal prediction of each 
apartment’s selling price while seeing their simulation of the model’s 
prediction (see Figure 2c). In contrast, in the third experiment, par-
ticipants made their fnal prediction of each apartment’s selling 
price while seeing their own initial prediction of the apartment’s 
selling price (see Figure 7b). 

Furthermore, in the frst two experiments, the anchor values 
difered between the experimental conditions because they were 
infuenced by the model involved. Participants assigned to the con-
dition involving the clear, two-feature model could better simulate 
the model compared to participants assigned to the other experi-
mental conditions (see Figures 3a and 4a). However, if the model 
has overpriced an apartment, then better simulating it might cause 
participants to anchor on a selling price that is too high. On top of 
that, because clear models reveal more information, participants 
may have been even less likely to notice the unusual apartment con-
fgurations due to information overload. In contrast, participants 
assigned to the conditions involving black-box models were not 
able to simulate the model so well and, perhaps undistracted by 
what was in front of them, may have been more likely to notice 
the unusual apartment confgurations. Interestingly, participants 
assigned to the conditions involving black-box models apparently 
(incorrectly) assumed that the model would take the unusual apart-
ment confgurations into account and therefore made lower guesses 
for the model’s predictions. In other words, in the frst two experi-
ments, participants assigned to the conditions involving black-box 
models could have had two things working in their favor: they were 
less likely to be overwhelmed by the amount of detail in front of 
them and they may have anchored on their lower guesses for the 
model’s predictions. 

We designed our fourth experiment to test this possible explana-
tion. As we describe below, this experiment removed the potential 
for anchoring and measured the efect of an “outlier focus” mes-

sage highlighting the apartments with unusual confgurations as 
possible outliers (see Figure 8). In our previous experiments, the 
number of features did not appear to have a strong efect on partici-
pants’ abilities to detect and correct for the model’s sizable mistakes, 
so we used only the two-feature linear regression model in this 
experiment. 

Before running the experiment, we posited and pre-registered 
three hypotheses, stated informally below:9 

H11. Outlier focus. Participants that see an outlier focus mes-

sage and participants that don’t see an outlier focus message will 
be diferently able to detect and correct for the model’s sizable 
mistakes on unusual data points. 

H12. Transparency (clear vs. black box) and no outlier fo-
cus. When they are not shown an outlier focus message, partici-
pants who are shown a clear model and participants who are shown 

9
Pre-registered hypotheses for this experiment are available at https://aspredicted.org/ 
5xy8y.pdf. 
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Figure 8: Apartment 6 in the conditions involving an outlier 
focus message in our fourth experiment. 

a black-box model will be diferently able to detect and correct for 
the model’s sizable mistakes on unusual data points. 

H13. Transparency (clear vs. black box) and outlier focus. 
When they are shown an outlier focus message, participants who 
are shown a clear model and participants who are shown a black-
box model will be diferently able to detect and correct for the 
model’s sizable mistakes on unusual data points. 

6.1 Experimental design 
Similar to the design of our frst experiment, we asked participants 
to predict the selling prices of apartments in New York City with 
the help of a machine learning model. We used a 2 × 2 design: 

• Participants were randomly assigned to see either a clear 
model (i.e., a linear regression model with visible coefcients) 
or a black-box model. 

• Participants were randomly assigned to either see an outlier 
focus message highlighting the apartments with unusual 
confgurations as possible outliers or to not see such a mes-

sage. 
We again ran the experiment on Amazon Mechanical Turk using 

psiTurk. We excluded Turkers who had participated in our frst 
three experiments, and recruited 800 new participants, all of whom 
satisfed the screening criteria from our frst three experiments. 
We randomly assigned participants to the experimental conditions 
(clear-focus, N = 202; clear-no-focus, N = 195; bb-focus, 
N = 201; and bb-no-focus, N = 202). Each participant received a 
fat payment of $1.00. 

To keep the experiment short, we limited the training phase and 
the frst portion of the testing phase to only fve of the original ten 
apartments previously used in each phase. We used three apart-
ments for the second portion of the testing phase: two synthetically 
generated apartments with unusual confgurations, with an apart-
ment with a typical confguration (one bedroom, one bathroom, 788 
square feet) in between. The frst synthetically generated apartment 
(“apartment 6”) was apartment 12 from our previous experiments 
(a one-bedroom, three-bathroom, 726-square-foot apartment). The 
second synthetically generated apartment (“apartment 8”) had an 
even more unusual confguration (one bedroom, three bathrooms, 
350 square feet) and, like apartment 6, was overpriced by the model. 

https://aspredicted.org/5xy8y.pdf
https://aspredicted.org/5xy8y.pdf
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The order of the two synthetically generated apartments was ran-
domized, while the apartment with the typical confguration (“apart-
ment 7”) was always shown in the middle. 

The training phase was the same as in the frst two experiments 
(except with fewer apartments). In the testing phase, participants 
were shown eight apartments, described above. For each apartment, 
participants were frst shown the model’s prediction and asked 
to state their confdence in that prediction. They were then asked 
for their own prediction of the apartment’s selling price and to 
state their confdence in this prediction. To remove the potential 
for anchoring, participants were not asked to guess what the model 
would predict for each apartment. 

6.2 Findings 
Figure 9 shows participants’ mean predictions of the selling prices 
for the apartments with unusual confgurations (i.e, apartment 6 and 
apartment 8). To test our hypotheses, we defned each participant’s 
deviation from the model’s prediction of each apartment’s selling 
price to be ua − m, where m is the model’s prediction and ua is the 
participant’s prediction of the apartment’s selling price. We used 
signed diference (rather than absolute diference, as in our frst 
two experiments) because the goal of this experiment was to study 
participants’ abilities to detect and correct for the model’s mistakes. 
Using signed diference enabled us to more easily tell whether a 
participant’s deviation from the model’s prediction was in the right 
direction. 

H11. Outlier focus. We found that participants in conditions 
involving an outlier focus message deviated from the model’s pre-
dictions, on average, more compared to participants who did not 
see an outlier focus message for both apartment 6 (t (791) = −4.72, 
p < 0.001) and apartment 8 (t (795) = −5.00, p < 0.001). In other 
words, showing participants an outlier focus message better en-
abled them to detect and correct for the model’s sizable mistakes 
on the apartments with unusual confgurations. 

H12. Transparency (clear vs. black box) and no outlier fo-
cus. Participants assigned to conditions involving the clear model 
and no outlier focus message deviated from the model’s predic-
tions, on average, less compared to participants assigned to condi-
tions involving the black-box model and no outlier focus message 
for both apartment 6 (t (393) = −3.65, p < 0.001) and apartment 
8 (t (395) = −3.51, p < 0.001). In other words, in line with the 
fndings from our frst two experiments, without an outlier focus 
message, participants who were shown the clear model were less 
able to detect and correct for the model’s sizable mistakes on the 
apartments with unusual confgurations, compared to participants 
who were shown a black-box model. 

H13. Transparency (clear vs. black box) and outlier focus. 
We found no signifcant diference in participants’ deviations from 
the model’s predictions between the condition involving the clear 
model and an outlier focus message and the condition involving the 
black-box model and an outlier focus message (t (401) = −0.004, p = 
0.996 for apartment 6 and t (394) = −1.64, p = 0.101 for apartment 
8). In other words, with an outlier focus message, participants who 
were shown the clear model were similarly able to detect and correct 
for the model’s sizable mistakes, compared to participants who were 
shown a black-box model. This fnding suggests that an outlier focus 
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message helps participants pay attention to information that they 
might otherwise miss due to information overload. 

Taken together, these fndings support our explanation for the 
diference between the fndings from our frst two experiments 
and the fndings from our third. They also highlight an unintended 
disadvantage of using clear models—and ofer a simple way to 
mitigate it. 

In light of this, we returned to the data from our frst two ex-
periments and conducted some additional post-hoc analyses. First, 
we analyzed participants’ prediction errors. In our frst experiment, 
although a one-way ANOVA did not reveal a signifcant difer-
ence in participants’ prediction errors between the four primary 
experimental conditions (see Section 3), a visual inspection of our 
results (see Figure 6a) indicates that participants assigned to the 
condition involving the clear, eight-feature model had, on average, 
higher prediction errors than participants assigned to the other 
primary experimental conditions. Indeed, this diference is statis-
tically signifcant (t (994) = 2.68, p = 0.007). Of course, we note 
that with large sample sizes, statistical signifcance might not mean 
practical signifcance [76, 107]. Indeed, this seems to be the case 
with participants’ prediction errors. For example, in Figure 6a, the 
maximum pairwise diference in prediction error between the four 
primary experimental conditions is quite small—only about $16,000 
or roughly 1% of the average selling price, which was $1.2 million. 
In contrast, in Figure 3a, the maximum pairwise diference in simu-

lation error between the four primary experimental conditions is 
more substantial at $129,000. 

Analyzing the data from our second experiment revealed a simi-

lar pattern. Here, a one-way ANOVA did reveal a small but signif-
cant diference in participants’ prediction errors between the four 
primary experimental conditions (see Section 4). Again, a visual 
inspection of our results (see Figure 6b) indicates that participants 
assigned to the condition involving the clear, eight-feature model 
had, on average, higher prediction errors than participants assigned 
to the other primary experimental conditions. Similar to our frst ex-
periment, this diference was signifcant (t (594) = 4.78, p < 0.001). 
Though again, we note that although these diferences are statisti-
cally signifcant, they are not very large. 

These fndings motivated us to also investigate whether there 
were other diferences between the condition involving the clear, 
eight-feature model and the other primary experimental condi-
tions. For both the frst and second experiment, we found that 
participants who were assigned to the condition involving the 
clear, eight-feature model were less good at simulating the model’s 
predictions compared to participants assigned to the other pri-
mary experimental conditions (t (994) = 7.96, p < 0.001 for the 
frst experiment, t (594) = 7.23, p < 0.001 for the second exper-
iment; see Figures 3a and 4a) and that they were least likely to 
follow the model’s predictions when it was benefcial for them 
to do so (t (994) = 2.37, p = 0.018 for the frst experiment, 
t (594) = 2.49, p = 0.012 for the second experiment; see Figures 3b 
and 4b). 

To summarize, the fndings from these additional post-hoc anal-
yses of the data from our frst two experiments lend even more 
support to our explanation for the diference between the fnd-
ings from our frst two experiments and the fndings from our 
third. 
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Figure 9: Results from our fourth experiment: participants’ mean predictions of the selling prices for the apartments with 
unusual confgurations: (a) apartment 6 and (b) apartment 8. Horizontal lines indicate the model’s predictions and error bars 
indicate one standard error. 

7 LIMITATIONS 
One limitation of our work is that our experiments focused on one 
type of stakeholder (laypeople) using one type of model (linear 
regression) in one domain (real estate valuation). Future extensions 
to other types of stakeholders (e.g., data scientists, domain experts), 
other tasks (e.g., classifcation), other types of models (e.g, decision 
trees, rule lists, deep neural networks), and other domains (e.g., 
medical diagnosis, credit risk assessment, judicial sentencing and 
bail, hiring) may yield diferent fndings. 

In our frst three experiments, we constrained the two-feature 
model and the eight-feature to make the same predictions. Al-
though there are some domains where this is possible [48], there 
are of course others—such as computer vision and natural language 
processing—where more complex, deep models tend to outperform 
simpler ones. We did not experiment with such models because 
it would have created a confound, meaning that we would not 
have known whether any diferences we observed were due to the 
presentation of the model, the model fdelity, or the very large num-

ber of features that complex, deep models typically use. Although 
our experiments did not involve complex, deep models, our main 
fndings still have important implications for these domains: ab-
sent other reasons for using clear models, scientifc evidence about 
what aids decision making the most should carry more weight 
than common intuition about interpretability. We also emphasize 
that, in our experiments, the conditions involving black-box mod-

els were designed to capture how people engage with models that 
could have arbitrarily complex internal structures, including, for 
instance, deep neural networks. Indeed, although readers of this 
paper know that we used linear regression models, participants 
in our experiments had no reason to believe that this was the] 
case. 

Even though our experiments were carefully designed and tightly 
controlled, we cannot rule out the possibility that other aspects 
of the models infuenced our fndings. For example, participants 

might have found the particular features used in the two-feature 
model (i.e., bathrooms and square feet) to be less intuitive than 
other possible combinations of two features (e.g., bedrooms and 
bathrooms) or even three features (e.g., bedrooms, bathrooms, and 
square feet). Also, participants who were shown the two-feature 
model had access to more information than the model—a scenario 
known in the decision-making literature as the “broken leg prob-
lem” [24, p. 151]. For this reason, they may have thought that the 
model was not relying on information that it should have. Per-
haps if they were told that using the remaining six features would 
not improve the model’s accuracy, they would have viewed the 
two-feature model diferently. Conversely, though, it could have 
been the case that aspects of the eight-feature model led partici-
pants to question it. For instance, the negative coefcient for to-
tal rooms (which accounted for correlations between number of 
bedrooms and number of bathrooms) might have been confus-
ing or mistakenly viewed as wrong, leading participants to follow 
the model’s predictions less closely than they would have done 
otherwise. 

Lastly, our experiments were run without process measures as 
dependent variables, which limited our ability to refect on the cog-
nitive and sensemaking processes that might have been at play. As 
one example, while we measure participants’ ability to detect and 
correct for the model’s sizable mistakes in terms of their deviation 
from the model on apartments with unusual confgurations, we 
are unable to directly infer from these results whether participants 
understood why the model made these mistakes. Qualitative experi-
ments (involving interviews, think aloud protocols, process-tracing 
measures, etc.), targeted at understanding why people behave in
the ways they do, may be useful for investigating cognitive and 
sensemaking aspects of interpretability. On top of that, our experi-
ments were short and one shot. Deeper insight into sensemaking 
could be gained not only by collecting process measures but by 
doing so longitudinally. 
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8 DISCUSSION AND CONCLUSION 
Our experiments yielded some unexpected fndings. First, we did 
not fnd a signifcant improvement in the extent to which par-
ticipants followed the predictions of a clear model with few fea-
tures compared to the predictions of a black-box model with more 
features. We also found that participants would have had lower 
prediction errors had they simply followed the model’s predictions. 

Furthermore, we found that using a clear model hampered par-
ticipants’ abilities to detect when the model had made a sizable 
mistake, seemingly due to information overload caused by the 
amount of detail in front of them. When we investigated an outlier 
focus message, intended to counter information overload, we found 
that this behavior disappeared. Several fndings from our post-hoc 
analyses are also consistent with the idea that too much information 
can be detrimental. In our frst two experiments, in the condition in 
which participants were shown the most information—i.e., the con-
dition involving the clear, eight-feature model—participants were 
worst at simulating the model’s predictions, followed the model’s 
predictions less, and made less accurate predictions of the apart-
ments’ selling prices compared to participants assigned to the other 
primary experimental conditions. 

These fndings suggest new ways to present models to people. 
When technically possible, it may be helpful to alert people when 
the data point in front of them may be an outlier. This could be 
achieved by training an auxiliary model to detect such data points. 
In addition, it may be prudent to ask people for their own predic-
tions before seeing the model’s predictions or even the model itself. 
Doing so could encourage people to inspect each data point care-
fully, making them more likely to notice any unusual feature values. 
Indeed, this idea is supported by recent research, which found that 
eliciting predictions and presenting feedback is benefcial for peo-
ple’s memory and comprehension of data points [52]. Lastly, despite 
the potential benefts of clear models, it may be detrimental to ex-
pose model internals by default, as doing so might cause people 
to experience information overload. Instead, model internals could 
be hidden until the person using the model requests to see them. 
Testing these suggestions empirically would be a natural direction 
for future research. 

We emphasize that none of this is to say that the number of 
features or the transparency of the model should be ignored. Instead, 
our fndings underscore the point that there are many possible 
goals when developing interpretable models, and that testing, not 
intuition, should be used to assess whether these goals have been 
met [65, 110]. 

Although we found that two factors commonly thought to make 
machine learning models more interpretable often have negligible 
efects on people’s behavior and, in some cases, even have detrimen-

tal efects, there is still a long list of reasons why clear models with 
few features may be desirable. First, in some domains, transparency 
may play an important role in people’s willingness to use a model 
on ethical grounds. For instance, if a model is used to aid judicial 
decision making, policy makers may demand transparency so as to 
be assured that the model does not rely on disallowed information, 
like race, or proxies for disallowed information. Second, access to 
model internals permits types of debugging or analyses that would 
otherwise be difcult. In fact, we leveraged this aspect of our linear 

Poursabzi-Sangdeh, et al. 

regression models to generate some of the unusual apartment con-
fgurations used in our experiments, since we could easily see that 
the models would place an unreasonably high value on additional 
bathrooms when other feature values were held constant. Third, 
in scenarios where it is desirable to have a model that is easy to 
simulate, our fndings suggest people can better simulate the predic-
tions of clear models with few features. Fourth, although we did not 
investigate the feld adoption of machine learning models, it might 
be the case that people are more likely to use simpler models than 
more complex ones because they fnd them more appealing [48]. 
Given that we did not fnd a large diference in participants’ predic-
tion errors between the primary experimental condition in our frst 
two experiments, if people are more willing to use simpler models, 
there could be substantial benefts in terms of accuracy. 

Given the widespread and increasing use of machine learning 
models, it is likely that people will make more and more decisions 
in collaboration with models. As this happens, it is also likely that 
there will be an increased demand for models that are interpretable. 
We hope that our work reinforces the importance of testing over 
intuition when developing interpretable models—i.e., what is or is 
not interpretable must be defned by people’s behavior. 
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APPENDICES 

9 SCENARIOS WHERE USERS HAVE ACCESS TO MORE INFORMATION THAN MODELS 

Domain Information the model uses Side information a user has that the Citation 
model does not 

Malignancy risk in 
mammography 

Hospital readmis-

sion risk 

Wildfre risk 

Bail decisions 

Pre-trial release de-
cisions 

Success of early-

stage ventures 

Housing price pre-
diction 

Baseball player 
salary prediction 

Sleep apnea screen-
ing 

Classifcation of 
high- and low-

risk heart attack 
patients 
Prediction of non-
viable pregnancies 

Age tumor density, 5 binary vari-
ables describing tumor shape 

7 binary features (bed sores, mood 
problems) 

29 binary features, mostly covering 
terrain type and temperature 

Statistical information available to 
judges at time of inquiry except dis-
allowed ones 

7 binary variables covering age and 
past failures to appear 

21 trinary features of companies 

3 features: number of rooms, % 
lower-income citizens, student-

teacher ratio 

3 variables: number of years in major 
leagues, career hits, hits in previous 
year 
5 binary features 

3 binary features 

6 features, each cut into 2 to 5 bins: 
maternal age, bleeding score, gesta-
tional age, gestational sac diameter, 
yolk sac diameter, fetal heart beat. 

Full mammogram image, full medical 
records, clinical interview (habits, family 
history, etc), plus 10 binary variables not 
in interpretable model 
Full medical records, plus 23 other fea-
tures not in interpretable model (“chronic 
pain”, “feels unsafe”, etc.) 
Experience of past fres. local knowledge: 
history, hazardous industries, previous ar-
son, etc. In addition, information not used 
by model: Continuous values of 9 vari-
ables, Any value of 4 variables, 8 dichoto-
mous variables 
Information that is not used by the model 
because it is not allowed: Race, ethnicity, 
gender. Physical appearance of the defen-
dant (e.g., “tattoos”), answers to questions, 
apparent remorse, etc.. 
Physical appearance of the defendant, an-
swers to questions, apparent remorse, etc. 
Information not used by the interpretable 
model: 49 features describing the charges, 
13 characteristics of the defendant. 
Industry knowledge and experience, sub-
jective assessments that lead to trinary 
scores, and 16 trinary features not used 
by the interpretable model 
Physical walkthrough of property, neigh-
borhood knowledge. Continuous values 
of the 3 features used by the model, 10 con-
tinuous variables not used by the model. 
Personal experience watching players. 19 
variables not included in the interpretable 
model. 
Medical records, patient interview, 28 bi-
nary features not included in the inter-
pretable model. 
Patient interview. Continuous measures 
of these 3 features. 16 features collected 
at intake but not included in the inter-
pretable model. 
Continuous values on all variables. Any 
other information in medical records, pa-
tient interview, etc. 

[111] 

[111] 

[4] 

[53] 

[48] 

[6] 

[51] 

[51] 

[102] 

[35]; [12] 

[105] 

Table 1: Examples of decision aids whose users have access to more information than the models do. 
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10 INSTRUCTIONS FROM THE CLEAR-2 CONDITION IN EXPERIMENT 1 
The following instructions were shown to participants assigned to the clear-2 condition in our frst experiment on Mechanical Turk. The 
instructions for other conditions and experiments were adapted from these instructions with minimal changes. 

5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
!! IMPORTANT !! Your session will expire in 60 minutes. Please make sure to
complete the HIT in 60 minutes!

You are here to predict New York City apartment prices in the Upper West Side
with the help of a model.
There will be a training phase and a testing phase:

In the training phase, you will see examples of apartments along with what the
model predicted they sold for and the actual price they sold for.
In the testing phase, you will see new apartments and make your own prediction
about what the model will predict and what the actual price is.

Next s



            Manipulating and Measuring Model Interpretability CHI ’21, May 8-13, 2021, Yokohama, Japan 
5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
You will see these properties for each apartment:

 Previousr Next s
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5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
A model predicts apartment prices. We will explain how this model works in the next
page.

This model uses # Bathrooms and Square footage of the apartment to make its
prediction.
The graph at the bottom shows this price visually.

 Previousr Next s
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5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
Here is how the model has made its prediction:
Each bathroom is worth $350,000. Therefore, $350,000 is multiplied by the number of
bathrooms and added to the price. This is repeated for Square footage. Finally, the
adjustment factor of $260,000 is subtracted and a price is predicted.

 Previousr Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Training Phase Instructions
There will be ten apartments in the training phase.
For each apartment, you will complete the following two steps:

 

 Previousr Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Training Phase Instructions-Step 1
In step 1, given the model's prediction, you will state what you think the apartment
actually sold for:

 

 Previousr Next s
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5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/2

Training Phase Instructions-Step 2
In step 2, you will see what this apartment actually sold for and how you and the model
did:
There are three graphs at the bottom:

The first graph shows the model's prediction of the price of this apartment.
The second graph shows what you thought this apartment actually sold for.
The third graph shows what this apartment actually sold for.

 

 Previousr Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
Once you have reviewed all ten apartments in the training phase, you will move to the
testing phase.
In the testing phase, you will see twelve new apartments and you will guess the price
each was sold for.
NOTE: You will not see the actual prices for these apartments in the testing phase. Once
you are done, you will see how you did overall.
For each apartment, you will complete the following three steps:

 Previousr Next s
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5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Testing Phase Instructions-Step 1
In step 1, you will state what you think the model will predict and how confident you are
that the model will make that prediction:

 Previousr Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Testing Phase Instructions-Step 2
In step 2, you will see what the model predicts and you will state how confident you are
that the model made the right prediction:

 Previousr Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Testing Phase Instructions-Step 3
In step 3, given the model's prediction, you will state what you think this apartment
actually sold for and your confidence:

 Previousr Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
Once you are done with twelve apartments in the testing phase, you will see your results
and how you did overall.
You are now done with all the instructions. Thanks for participating in this experiment!

You must provide correct answer to the following question to proceed:

 

Each apartment has the following 8 properties:

# Bedrooms, # Bathrooms, Square footage, Total rooms, Days on the market, Maintenance
fee, Subway distance, and School distance

How many of these apartment properties does the model use to make its prediction?

 1 property  
 2 properties 
 3 properties  
 4 properties  
 5 properties  
 6 properties  
 7 properties  
 8 properties  

 

 Submit

 Previousr Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Starting the Training Phase...
You will now start the training phase.
You will see ten apartments, the price that the model predicted, and the price that they
were actually sold for.
Pay attention to apartment properties and how they relate to the actual price and the
model's prediction.
You won't be able to go back to the training phase once you get to the testing
phase!

 Previousr Begin training phase s
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11 APARTMENT SELECTION DETAILS 
We used the following procedure to construct a set of ten apartments which are representative in terms of the models’ prediction errors 
(m − a). First we selected all apartments for which the rounded predictions of the two- and eight-feature models agreed. Then we randomly 
sampled 5,000 sets of ten such apartments, computed the errors the model made on each apartment, and sorted them within each set to 
obtain the largest error, second largest error, and so on. We then computed the average largest error across all 5,000 sets and rounded it to 
the nearest $100K. We repeated this for the second through tenth largest errors. This resulted in the following ten average error values: 
-$500K, -$300K, -$200K, -$200K, -$100K, $0, $0, $100K, $100K, $300K. 

For each of these ten error values, we randomly selected two apartments (for which the diference between the rounded model prediction 
and the rounded actual price matched the error value) and we randomly assigned one to the training and one to the testing phase. To ensure 
participants would see a good variety of apartment confgurations—defned as the combination of number of bedrooms and number of 
bathrooms—this process was repeated until neither the training nor the testing set contained more than three apartments with the same 
confguration. Tables 2 and 4 show the confgurations of apartments that were used during the training and testing phase of each of our 
experiments, respectively. Tables 3 and 5 show the predictions and errors of the two- and eight-feature models on each of the apartments. 

Apartment 
ID 

Apartment confgurations 

Bedrooms Bathrooms 
Square 
footage 

Total 
rooms 

Days on 
the market 

Maintenance 
fee 

Distance from 
the subway 
(miles) 

Distance from 
a school 
(miles) 

1 1 1 750 3 51 947 0.179 0.104 
2 1 1 550 3 90 409 0.122 0.278 
3 2 1 800 4 36 1160 0.218 0.365 
4 2 1 850 4 30 1720 0.105 0.153 
5 1 1 550 3 135 442 0.231 0.124 
6 0 1 540 2.5 72 332 0.064 0.271 
7 3 2 1990 6 213 1280 0.183 0.329 
8 2 1 1150 4 37 1500 0.129 0.351 
9 0 1 540 2.5 59 331 0.064 0.271 
10 2 2 1300 5 39 1110 0.110 0.250 

Table 2: Confguration of the apartments used in experiments 1, 2, and 3 during the training phase. In Experiment 4, apart-
ments 4, 5, 6, 8, and 10 were used. 

12 EXPERIMENT 3 HYPOTHESES AND FINDINGS 
We pre-registered four hypotheses:10 

H7. Deviation. Participants’ predictions will deviate less from the predictions of a clear model with a small number of features than the 
predictions of a black-box model with a large number of features. 

H8. Weight of advice. Weight of advice will be higher for participants who see a clear model with a small number of features than for 
those who see a black-box model with a large number of features. 

H9. Humans vs. machines. Participants’ deviation and weight of advice measures will difer depending on whether the predictions 
come from a black-box model with a large number of features or a human expert. 

H10. Detection of mistakes. Participants in diferent conditions will exhibit varying abilities to correct the model’s inaccurate predictions 
on unusual examples. 

The frst two hypotheses are variations on H2 from our frst experiment, while the last hypothesis is identical to H3. 

12.1 Results 
H7. Deviation. In line with the fndings from the frst two experiments, there was no signifcant diference in participants’ deviation from 
the model between clear-2 and bb-8 (t (798) = −0.87 , p = 0.384, see Figure 10a). 

H8. Weight of advice. Weight of advice is not well defned when a participant’s initial prediction matches the model’s prediction 
(i.e., u1 = m). For each condition, we therefore calculated the mean weight of advice over all participant–apartment pairs for which the 
participant’s initial prediction did not match the model’s prediction, which can be viewed as calculating the mean conditional on there 
being a diference between the participant’s and the model’s predictions. Between conditions, we found no signifcant diference in the 
fraction of times that participants’ initial predictions matched the model’s predictions. In line with the fndings for deviation in the frst two 
experiments, there was no signifcant diference in participants’ weight of advice between the clear-2 and bb-8 conditions (t (819) = 1.27, 
p = 0.205, see Figure 10b). 

H9. Humans vs. machines. The hypothesis that people would deviate less from machine predictions was not supported as there was 
not a signifcant diference in participants’ deviation from the model (t (994) = 0.45 , p = 0.655) or in their weight of advice (t (1005) = −0.38 
10
Pre-registered hypotheses this experiment are available at https://aspredicted.org/795du.pdf. 

https://aspredicted.org/795du.pdf 
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Apartment 
ID two-feature model 

prediction error error fraction 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

840,000 -9,000 0.011 
640,000 -10,000 0.015 
890,000 241,000 0.371 
940,000 115,000 0.139 
640,000 -184,000 0.223 
630,000 175,000 0.385 
2,430,000 -470,000 0.162 
1,240,000 90,000 0.078 
630,000 -165,000 0.208 
1,740,000 -260,000 0.13 

eight-feature model 
prediction error error fraction 

768,930 -80,070 0.094 
632,010 -17,990 0.028 
893,500 244,500 0.377 
850,600 25,600 0.031 
614,880 -209,120 0.254 
550,080 95,080 0.209 
2,417,800 -482,200 0.166 
1,195,600 45,600 0.04 
552,790 -242,210 0.305 
1,701,100 -298,900 0.149 

Table 3: Prediction, prediction error (i.e., m − a), and prediction error fraction (i.e., (m − a)/a) of the two- and eight-feature 
models on the apartments used in the training phase of our experiments. 

Apartment 
ID 

Bedrooms Bathrooms 
Square 
footage 

Apartment confgurations 

Total Days on Maintenance 
rooms the market fee 

Distance from 
the subway 
(miles) 

Distance from 
a school 
(miles) 

1 1 1 925 3 80 954 0.173 0.312 
2 2 1 1080 5 39 846 0.207 0.212 
3 3 2 1530 5 15 1550 0.226 0.251 
4 2 2 1140 4.5 93 863 0.122 0.278 
5 1 1 540 3 11 437 0.202 0.199 
6 0 1 540 2.5 74 341 0.122 0.278 
7 2 1 1240 4.5 32 1370 0.081 0.262 
8 2 2 1240 4.5 14 906 0.178 0.225 
9 2 1 1250 5 23 1480 0.089 0.281 
10 1 1 532 2.5 20 388 0.122 0.278 
11 1 2 750 3 225 825 0.159 0.144 
12 1 3 726 4 17 444 0.121 0.101 
13 1 1 788 3.5 51 473 0.122 0.278 
14 1 3 350 4 13 430 0.221 0.131 

Table 4: Confguration of the apartments used in our experiments during the testing phase. Apartments 1–12 were used in 
experiments 1, 2, and 3. In Experiment 4, apartments 1, 6, 8, 9, 10, 12 (“Apartment 6” in Experiment 4), 13 (“Apartment 7” in 
Experiment 4), and 14 (“Apartment 8” in Experiment 4) were used. Apartments 12 and 14 were synthetically generated. 

, p = 0.704) between the bb-8 and expert conditions. We expect that the diference between our results and those in [70, 71] is due to 
participants getting more experience with the model (or expert) and its predictions over the course of twelve apartments in our experiment. 

H10. Detection of mistakes. Participants in the clear conditions were no less able to correct inaccurate predictions (t (798) = −0.96, 
p = 0.337 and t (798) = −0.19, p = 0.847 for the contrast of clear-2 and clear-8 with bb-2 and bb-8 for apartments 11 and 12, respectively). 
We investigate this further in Experiment 4 (Section 6). 
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Apartment 
ID two-feature model 

prediction error error fraction 
eight-feature model 

prediction error error fraction 

957,560 32,560 0.035 
1,166,040 -83,960 0.067 
1,989,200 -540,800 0.214 
1,573,970 -176,030 0.100 
634,830 78,830 0.142 
555,190 -219,810 0.284 
1,274,700 275,700 0.276 
1,685,340 -14,660 0.009 
1,264,600 -285,400 0.184 
642,820 117,820 0.224 
1,099,550 450,550 0.694 
1,475,960 — — 
858,270 -311,730 0.266 
1,115,300 — — 

1 1,015,000 90,000 0.097 
2 1,170,000 -80,000 0.064 
3 1,970,000 -560,000 0.221 
4 1,580,000 -170,000 0.097 
5 630,000 74,000 0.133 
6 630,000 -145,000 0.187 
7 1,330,000 331,000 0.331 
8 1,680,000 -20,000 0.012 
9 1,340,000 -210,000 0.135 
10 622,000 97,000 0.185 
11 1,190,000 541,000 0.834 
12 1,516,000 — — 
13 878,000 -292,000 0.25 
14 1,140,000 — — 

Table 5: Prediction, prediction error (i.e., m − a), and prediction error fraction (i.e., (m − a)/a) of the two- and eight-feature 
models on the apartments used in the testing phase of our experiments. 

Experiment 3: Weight of advice 

(a) (b) 

Figure 10: Results from Experiment 3: density plots for (a) mean deviation of participants’ predictions from the model’s predic-
tion and (b) mean weight of advice. Numbers in each subplot indicate average values over all participants in the corresponding 
condition and error bars indicate one standard error. 
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13 FULL DISTRIBUTIONS OF PARTICIPANTS’ PREDICTIONS 

Experiment 1: New York City prices (training phase) 
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Figure 11: Distribution of participants’ predictions of prices of apartments 1–5 in the training phase in Experiment 1. 
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Experiment 1: New York City prices (training phase) 
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Figure 12: Distribution of participants’ predictions of prices of apartments 6–10 in the training phase in Experiment 1. 
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Experiment 1: New York City prices (testing phase) 
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Figure 13: Distribution of participants’ predictions of prices of apartments 1–6 in the testing phase in Experiment 1. 
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Experiment 1: New York City prices (testing phase) 
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Figure 14: Distribution of participants’ predictions of prices of apartments 7–12 in the testing phase in Experiment 1. 
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Experiment 2: Representative U.S. prices (training phase) 
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Figure 15: Distribution of participants’ predictions of prices of apartments 1–5 in the training phase in Experiment 2. 
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Experiment 2: Representative U.S. prices (training phase) 
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Figure 16: Distribution of participants’ predictions of prices of apartments 6–10 in the training phase in Experiment 2. 
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Experiment 2: Representative U.S. prices (testing phase) 
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Figure 17: Distribution of participants’ predictions of prices of apartments 1–6 in the testing phase in Experiment 2. 
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Experiment 2: Representative U.S. prices (testing phase) 
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Figure 18: Distribution of participants’ predictions of prices of apartments 7–12 in the testing phase in Experiment 2. 
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Experiment 3: Weight of advice (testing phase) 
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Figure 19: Distribution of participants’ initial (before seeing the model’s prediction, dotted) predictions and their fnal (after 
seeing the model’s prediction, solid) prediction of prices of apartments 1–6 in Experiment 3. Points show the mean initial and 
fnal predictions and the arrow indicates the shift in the mean predictions. 
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Experiment 3: Weight of advice (testing phase) 
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Figure 20: Distribution of participants’ initial (before seeing the model’s prediction, dotted) predictions and their fnal (after 
seeing the model’s prediction, solid) prediction of prices of apartments 7–12 in Experiment 3. Points show the mean initial 
and fnal predictions and the arrow indicates the shift in the mean predictions. 
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Experiment 4: Outlier focus (training phase) 
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Figure 21: Distribution of participants’ predictions of prices of apartments in the training phase in Experiment 4. 
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Experiment 4: Outlier focus (testing phase) 
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Figure 22: Distribution of participants’ predictions of prices of apartments in the testing phase in Experiment 4. 
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14 ANOVA TABLES 

14.1 Experiment 1: Predicting Prices 

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
transparency 0.52 0.52 1.00 994.00 12.57 0.0004 
num_features 4.90 4.90 1.00 994.00 119.54 0.0000 
transparency:num_features 1.70 1.70 1.00 994.00 41.48 0.0000 
Table 6: Results from two-way ANOVA on the simulation error in Experiment 1. 

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
transparency 0.10 0.10 1.00 994.00 5.83 0.0159 
num_features 0.04 0.04 1.00 994.00 2.15 0.1427 
transparency:num_features 0.00 0.00 1.00 994.00 0.06 0.8143 

Table 7: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price in Experiment 1. 

Df Sum Sq Mean Sq F value Pr(>F) 
transparency 1 0.02 0.02 1.38 0.2405 
num_features 1 0.03 0.03 1.70 0.1920 
transparency:num_features 1 0.00 0.00 0.00 0.9509 
Residuals 994 17.01 0.02 

Table 8: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price for apartment 11 in Experiment 1. 

Df Sum Sq Mean Sq F value Pr(>F) 
transparency 1 0.34 0.34 8.81 0.0031 
num_features 1 0.04 0.04 1.13 0.2882 
transparency:num_features 1 0.13 0.13 3.32 0.0687 
Residuals 994 38.07 0.04 

Table 9: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price for apartment 12 in Experiment 1. 

14.2 Experiment 2: Scaled-down prices 

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
transparency 0.003 0.003 1.00 594.00 7.54 0.0062 
num_features 0.032 0.032 1.00 594.00 75.45 0.0000 
transparency:num_features 0.018 0.018 1.00 594.00 43.14 0.0000 
Table 10: Results from two-way ANOVA on the simulation error in Experiment 2. 

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
transparency 0.001 0.001 1.00 594.00 3.33 0.0685 
num_features 0.000 0.000 1.00 594.00 1.29 0.2556 
transparency:num_features 0.000 0.000 1.00 594.00 1.82 0.1775 

Table 11: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price in Experiment 2. 
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Df Sum Sq Mean Sq F value Pr(>F) 
transparency 1.0 0.001 0.001 3.29 0.0702 
num_features 1.0 0.001 0.001 4.51 0.0340 
transparency:num_features 1.0 0.000 0.000 1.20 0.2731 
Residuals 594.0 0.092 0.000 

Table 12: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price for apartment 11 in Experiment 2. 

Df Sum Sq Mean Sq F value Pr(>F) 
transparency 1.0 0.007 0.007 17.53 0.0000 
num_features 1.0 0.002 0.002 4.05 0.0446 
transparency:num_features 1.0 0.001 0.001 2.31 0.1291 
Residuals 594.0 0.229 0.000 

Table 13: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price for apartment 12 in Experiment 2. 

14.3 Experiment 3: Weight of Advice 

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
transparency 0.07 0.07 1.00 798.00 4.20 0.0409 
num_features 0.01 0.01 1.00 798.00 0.66 0.4151 
transparency:num_features 0.02 0.02 1.00 798.00 1.20 0.2731 

Table 14: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price in the four primary conditions in Experiment 3. 

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
condition 0.09 0.02 4.00 994.00 1.45 0.2147 

Table 15: Results from one-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price in all conditions (including the “human expert” condition) in Experiment 3. 

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
transparency 2.14 2.14 1.00 817.77 10.47 0.0013 
num_features 0.42 0.42 1.00 817.77 2.07 0.1509 
transparency:num_features 0.32 0.32 1.00 817.77 1.57 0.2109 

Table 16: Results from two-way ANOVA on the weight of advice in the four primary conditions in Experiment 3. 

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
condition 2.92 0.73 4.00 1013.65 3.77 0.0048 

Table 17: Results from one-way ANOVA on weight of advice in all conditions (including the “human expert” condition) in 
Experiment 3. 
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Df Sum Sq Mean Sq F value Pr(>F) 
transparency 1 0.01 0.01 0.92 0.3380 
num_features 1 0.15 0.15 10.87 0.0010 
transparency:num_features 1 0.03 0.03 2.08 0.1497 
Residuals 798 10.86 0.01 

Table 18: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price for apartment 11 in Experiment 3. 

Df Sum Sq Mean Sq F value Pr(>F) 
transparency 1 0.00 0.00 0.04 0.8439 
num_features 1 0.38 0.38 10.26 0.0014 
transparency:num_features 1 0.01 0.01 0.35 0.5516 
Residuals 798 29.32 0.04 

Table 19: Results from two-way ANOVA on the deviation between the model’s prediction and participants’ prediction of the 
price for apartment 12 in Experiment 3. 
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