
GAM Coach: Towards Interactive and User-centered Algorithmic
Recourse

Zijie J. Wang Jennifer Wortman Rich Caruana Duen Horng Chau
Georgia Tech
Atlanta, USA

Vaughan
Microsoft Research

Microsoft Research
Redmond, USA

Georgia Tech
Atlanta, USA

New York, USA

Figure 1: With a novel interactive interface and an adaptation of integer linear programming, GAM Coach empowers people who
are impacted by machine learning-based decision-making systems to iteratively generate algorithmic recourse plans that refect
their preferences. Take loan application as an example. (A) The Coach Menu helps a rejected loan applicant browse diverse re-
course plans that would lead to loan approval. After the user selects a plan, (B) the Feature Panel visualizes all feature information
with progressive disclosure, enabling users to explore how hypothetical inputs afect the model’s decision and specify recourse
preferences—such as (B1) the difculty of changing a feature and (B2) its acceptable range of values—guiding GAM Coach to
generate actionable plans. (C) The Bookmarks window allows users to compare bookmarked plans and save a verifable receipt.

ABSTRACT
Machine learning (ML) recourse techniques are increasingly used in
high-stakes domains, providing end users with actions to alter ML
predictions, but they assume ML developers understand what input
variables can be changed. However, a recourse plan’s actionability
is subjective and unlikely to match developers’ expectations com-
pletely. We present GAM Coach, a novel open-source system that

This work is licensed under a Creative Commons Attribution International
4.0 License.

adapts integer linear programming to generate customizable coun-
terfactual explanations for Generalized Additive Models (GAMs),
and leverages interactive visualizations to enable end users to iter-
atively generate recourse plans meeting their needs. A quantitative
user study with 41 participants shows our tool is usable and useful,
and users prefer personalized recourse plans over generic plans.
Through a log analysis, we explore how users discover satisfactory
recourse plans, and provide empirical evidence that transparency
can lead to more opportunities for everyday users to discover coun-
terintuitive patterns in ML models. GAM Coach is available at:
https://poloclub.github.io/gam-coach/.

CHI ’23, April 23–28, 2023, Hamburg, Germany CCS CONCEPTS
© 2023 Copyright held by the owner/author(s). • Computing methodologies → Machine learning; • Human-ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3580816 centered computing → Interactive systems and tools.

https://orcid.org/0000-0003-4360-1423
https://orcid.org/0000-0002-7807-2018
https://orcid.org/0000-0002-7807-2018
https://orcid.org/0000-0002-6383-7786
https://orcid.org/0000-0001-9824-3323
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3580816
https://poloclub.github.io/gam-coach/

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

KEYWORDS
Algorithmic Recourse, Counterfactual Explanation, Interpretability

ACM Reference Format:
Zijie J. Wang, Jennifer Wortman Vaughan, Rich Caruana, and Duen Horng
Chau. 2023. GAM Coach: Towards Interactive and User-centered Algorith-
mic Recourse. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM,
New York, NY, USA, 20 pages. https://doi.org/10.1145/3544548.3580816

1 INTRODUCTION
As machine learning (ML) is increasingly used in high-stakes decision-
making, such as lending [77], hiring [49], and college admissions [93],
there has been a call for greater transparency and increased oppor-
tunities for algorithmic recourse [88]. Algorithmic recourse aims to
help those impacted by ML systems learn about the decision rules
used [74], and provide suggestions for actions to change decision
outcome in the future [83]. This often involves generating coun-
terfactual (CF) examples, which suggest minimal changes in a few
features that would have led to the desired decision outcome [88],
such as “if you had decreased your requested loan amount by $9k
and changed your home ownership from renting to mortgage, your
loan application would have been approved.” (Fig. 2A)

For such approaches to be useful, it is necessary for the suggested
actions to be actionable—realistic actions that users can appreciate
and follow in their real-life circumstances. In the example above,
changing home ownership status would arguably not be an action-
able suggestion for most loan applicants. To provide actionable re-
course, recent work proposes techniques such as generating concise
CF examples [48], creating a diverse set of CF examples [57, 70], and
grouping features into diferent actionability categories [36]. These
approaches often rely on the underlying assumption that ML devel-
opers can measure and predict which CF examples are actionable for
all users. However, the actionability of recourse is ultimately subjec-
tive and varies from one user to another [3, 87], or even for a single
user at diferent times [50, 99]. Therefore, there is a pressing need to
capture and integrate user preferences into algorithmic recourse [3,
42]. GAM Coach aims to take a user-centered approach (Fig. 2B–C)
to fll this critical research gap. In this work, we contribute:

• GAM Coach, the frst interactive algorithmic recourse tool
that empowers end users to specify their recourse preferences,
such as difculty and acceptable range for changing a feature, and
iteratively fne-tune actionable recourse plans (Fig. 1). With an
exploratory interface design [76], our tool helps users understand
the ML model behaviors by experimenting with hypothetical
input values and inspecting their efects on the model outcomes.
Our tool advances over existing interactive ML tools [19, 95],
overcoming unique design challenges identifed from a literature
review of recent algorithmic recourse work (§ 3, § 5).

• Novel adaptation of integer linear programming to gen-
erate CF examples. To operationalize interactive recourse, we
ground our research in generalized additive models (GAMs) [6,
59], a popular class of models that performs competitively to
other state-of-the-art models yet has a transparent and simple
structure [7, 60, 89, 94]. GAMs enable end users to probe model
behaviors with hypothetical inputs in real time directly in web
browsers. Adapting integer linear programming, we propose an

Figure 2: GAM Coach enables end users to iteratively fne-
tune recourse plans. (A) If a user fnds the initial generic
plan less actionable, (B) they can specify their recourse pref-
erences through simple interactions. (C) Our tool will then
generate tailored plans that refect the user’s preferences.

efcient and fexible method to generate optimal CF examples
for GAM-based classifers and regressors with continuous and
categorical features and pairwise feature interactions [52] (§ 4).

• Design lessons distilled from a user study with log analysis.
We conducted an online user study with 41 Amazon Mechanical
Turk workers to evaluate GAM Coach and investigate how ev-
eryday users would use an interactive algorithmic recourse tool.
Through analyzing participants’ interaction logs and subjective
ratings in a hypothetical lending scenario, our study highlights
that GAM Coach is usable and useful, and users prefer personal-
ized recourse plans over generic plans. We discuss the charac-
teristics of users’ satisfactory recourse plans, approaches users
take to discover them, and design lessons for future interactive
recourse tools. We also provide empirical evidence that with
transparency, everyday users can discover and are often puzzled
by counterintuitive patterns in ML models (§ 6).

• An open-source, web-based implementation that broadens
people’s access to developing and using interactive algorithmic
recourse tools. We implement our CF generation method in both
Python and JavaScript, enabling future researchers to use it on
diverse platforms. We develop GAM Coach with modern web
technologies such as WebAssembly, so that anyone can access
our tool using their web browsers without the need for instal-
lation or a dedicated backend server. We open-source1 our CF
generation library and GAM Coach system with comprehensive
documentation2 (§ 5.5). For a demo video of GAM Coach, visit
https://youtu.be/ubacP34H9XE.

To design and evaluate a prospective interface [76] for interactive
algorithmic recourse, we situate GAM Coach in loan application
scenarios. However, we caution that adapting GAM Coach for
real lending settings would require further research with fnancial
and legal experts as well as people who would be impacted by the
system. Our goal is for this work to serve as a foundation for the
design of future user-centered recourse and interpretable ML tools.

2 RELATED WORK

2.1 Algorithmic Recourse
Algorithmic recourse aims to design techniques that provide those
impacted by ML systems with actionable feedback about how to

1GAM Coach code: https://github.com/poloclub/gam-coach
2GAM Coach documentation: https://poloclub.github.io/gam-coach/docs

https://doi.org/10.1145/3544548.3580816
https://youtu.be/ubacP34H9XE
https://github.com/poloclub/gam-coach
https://poloclub.github.io/gam-coach/docs

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

alter the outcome of ML models. Popularized by Wachter et al. [88],
researchers typically generate this actionable feedback by creating
CF examples. Here, a CF example represents a recourse plan that
contains minimal changes to the original input but leads to a dif-
ferent model prediction [35, 83]. For example, a bank that uses ML
models to inform loan application decisions can provide a rejected
loan applicant with a recourse plan that suggests the applicant
increase their annual income by $5k so that they can obtain a loan
approval. CF examples not only inform end users about the key fea-
tures contributing to the decision, but also provide suggestions that
end users can act on to obtain the desired outcome [83]. Researchers
have developed various methods to generate CF examples, such as
casting it as an optimization problem [e.g., 11, 33, 56, 70, 83, 88],
searching through similar samples [e.g., 12, 21, 40, 73, 85], and
developing generative models [e.g., 13, 30, 41, 78].

It is challenging to generate helpful CF examples in practice.
Besides making minimal changes, a helpful CF example should
also be actionable for the end user [39, 83]. To generate action-
able recourse plans, recent research includes proposals to fnd con-
cise CF examples [48], consider causality [36, 37, 54], present di-
verse plans [57, 70], and assign features with diferent actionability
scores [36]. However, the actionability of recourse is ultimately
subjective and varies among end users [42, 50, 87, 99]. To restore
users’ autonomy with CF examples, some researchers explore the
potential of interactive tools. For example, Prospector [46], What-
If Tool [95], Polyjuice [96], and AdViCE [20] leverage interactive
visualizations to help ML developers debug models with CF exam-
ples. Context Sight [98] allows ML developers to analyze model
errors by customizing the acceptable feature range and desired
number of changes in CF examples. CEB [58] interactively presents
CF examples to help non-experts understand neural networks. In
comparison, GAM Coach aims to empower end users to discover
actionable strategies to alter undesirable ML decisions.

DECE [9] is a visual analytics tool designed to help ML devel-
opers and end users interpret neural network predictions with CF
examples. It allows users to customize CF examples by specifying
acceptable feature ranges. In comparison, while the interface for
GAM Coach is model agnostic, the recourse generation technique
it employs is tailored to GAMs, a diferent model family, and our
tool especially focuses on end users without an ML background. We
evaluate GAM Coach through an observational log study with 41
crowdworkers, while DECE is evaluated through three expert inter-
views. These evaluations provide complementary viewpoints and
insights into how interactive recourse tools may be used in practice.
Possibly closest in spirit to our work is ViCE [19], an interactive vi-
sualization tool that generates CF examples on end users’ selected
continuous features. In contrast, GAM Coach—which supports
both continuous and categorical features, as well as their pairwise
interactions—allows end users to specify a much wider range of
recourse preferences including feature difculty, acceptable range,
and the number of features to change. Our tool then generates
optimal and diverse CF examples meeting specifed preferences.

2.2 Interactive Tools for Interpretable ML
Besides CF explanations, researchers have developed interactive
tools to help diferent ML stakeholders interpret ML models [e.g.,

28, 31, 65, 92]. In particular, the simple structure and high perfor-
mance of GAMs have attracted many researchers to use this model
to explore how interactivity plays a role in interpretable ML. For
example, Gamut [27] provides both global and local explanations by
visualizing the shape functions in GAMs. Similarly, TeleGam [29]
helps users understand GAM predictions by combining both graph-
ical and textual explanations. GAM Changer [90] supports users
to edit GAM model parameters through interactive visualization.
However, the target users of these tools are ML experts, such as ML
researchers and model developers, or domain experts who need to
vet and correct models before deployment. In comparison, GAM
Coach targets people who are impacted by ML models and who are
less knowledgeable about ML and domain-specifc concepts [81].

There is an increasing body of research in developing interactive
systems to help non-experts interact with ML models. The main goal
of these tools is to educate non-experts about the underlying mech-
anisms of ML models. For example, Teachable Machine [5] helps
users learn about basic ML concepts through interactive demos. Ten-
sorfow Playground [80], GAN Lab [32], and CNN Explainer [91] use
interactive visualizations to help novices learn about the underlying
mechanisms of neural networks, generative adversarial networks,
and convolutional neural networks, respectively. In contrast, in-
stead of educating non-experts on the technical inner workings of
ML models, we focus on helping non-experts who are impacted by
ML models understand why a model makes a particular decision
and what actions they can take to alter that decision.

3 DESIGN GOALS
Our goal is to design and develop an interactive, visual experimenta-
tion tool that respects end users’ autonomy in algorithmic recourse,
helping them discover and fne-tune recourse plans that refect
their preferences and needs. We identify fve main design goals of
GAM Coach through synthesizing the trends and limitations of
traditional algorithmic recourse systems [e.g., 2, 3, 35, 39, 55, 76, 88].
G1. Visual summary of diverse algorithmic recourse plans.

To help end users fnd actionable recourse plans, researchers
suggest presenting diverse CF options that users can pick
from [3, 57]. Thus, GAM Coach should efciently generate
diverse recourse plans (§ 4.2) and present a visual summary
of each plan as well as display multiple plans at the same
time (§ 5.1). This could help users compare diferent strategies
and inform interactions to generate better recourse plans.

G2. Easy ways to specify recourse preferences. What makes a
recourse plan actionable varies from one user to another—it
is crucial for a recourse tool to enable users to specify a wide
range of recourse preferences [3, 42, 55]. Therefore, we would
like to allow users to easily confgure (1) the difculty of chang-
ing a feature, (2) the acceptable range within which a feature
can change, and (2) the maximum number of features that a
recourse plan can change (§ 5.2), and GAM Coach should gen-
erate plans refecting users’ specifed preferences (§ 4.3). This
interactive recourse design would empower users to iteratively
customize recourse plans until they fnd satisfactory plans.

G3. Exploratory interface to experiment with hypothetical
inputs. The goal of algorithmic recourse is not only to help
users identify actions to alter unfavorable model decisions, but

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

also to help them understand how a model makes decisions [35,
88]. When explaining a model’s decision-making, research
shows that interfaces allowing users to probe an ML model
with diferent inputs help users understand model behaviors
and lead to greater satisfaction with the model [10, 62, 76,
95]. Therefore, we would like GAM Coach to enable users
to experiment with diferent hypothetical inputs and inspect
how these changes afect the model’s decision (§ 5.2).

G4. Clear communication and engagement. The target users
of GAM Coach are everyday people who are usually less
knowledgeable about ML and domain-specifc concepts [81].
Our goal is to design and develop an interactive system that is
easy to understand and engaging to use, requiring the tool to
communicate and explain recourse plans and domain-specifc
information to end users (§ 5.2, § 5.3).

G5. Open-source and model-agnostic implementation. We
aim to develop an interactive recourse tool that is easily ac-
cessible to users, with no installation required. By using web
browsers as the platform, users can directly access GAM Coach
through their laptops or tablets. Additionally, we aim to make
our interface model-agnostic so that future researchers can
use it with diferent ML models and recourse techniques. Fi-
nally, we would like to open-source our implementation and
provide documentation to support future design, research, and
development of interactive algorithmic recourse (§ 5.5).

4 TECHNIQUES FOR CUSTOMIZABLE
RECOURSE GENERATION

Given our design goals (G1–G5), it is crucial for GAM Coach to
generate customizable recourse plans interactively with a short
response time. Therefore, we base our design on GAMs, a family of
ML models that perform competitively to state-of-the-art models
yet have a transparent and simple structure—enabling end users to
probe model behaviors in real-time with hypothetical inputs. In ad-
dition, with a novel adaptation of integer linear programming (§ 4.2),
GAMs allow us to efciently generate recourse plans that respect
users’ preferences and thus achieve our design goals (§ 4.3).

4.1 Model Choice
To operationalize our design of interactive algorithmic recourse, we
ground our research in GAMs [24]. More specifcally, we make use
of a type of GAMs called Explainable Boosting Machines, (EBMs) [6,
60], which perform competitively to the state-of-the-art black-box
models yet have a transparent and simple structure [7, 60, 89, 94].
Compared to simple models like linear models or decision trees,
EBMs achieve superior accuracy by learning complex relations
between features through gradient-boosting trees [52], and thus
deploying our design is realistic. Compared to complex models like
neural networks, EBMs have a similar performance on tabular data
but a simpler structure; therefore, users can probe model behaviors
in real-time with hypothetical inputs (G3).

Given an input � ∈ R� with � features, the output � ∈ R of an
EBM model can be written as:

� = � (��)
(1)

�� = �0 + �1 (�1) + �2 (�2) + · · · + �� (��) + · · · + �� � (�� , � �)

Here, each shape function �� for single features � ∈ {1, 2, . . . , �} or
�� � (�� , � �) for pairwise interactions between features [52] is learned
using gradient-boosted trees [51]. �� is the sum of all shape function
outputs as well as the intercept constant �0. The model converts
�� to the output � through a link function � that is determined by
the ML task. For example, a sigmoid function is used for binary
classifcations, and an identity function for regressions.

What distinguishes EBMs from other GAMs is that the shape
function �� or �� � is an ensemble of trees, mapping a main efect fea-
ture value � � or a pairwise interaction (�� , � �) to a scalar score. Be-
fore training, EBM applies equal-frequency binning on each continu-
ous feature, where bins have diferent widths but the same number
of training samples. This discrete bucketing process is commonly
used to speed up gradient-boosting tree methods with little cost in
accuracy, such as in popular tree-based models LightGBM [38] and
XGBoost [8]. For categorical features, EBMs treat each discrete level
as a bin. Once an EBM model is trained, the learned parameters for
each ensemble of trees which defnes the feature split points and
scores in each region defned by these split points are transformed
to a lookup histogram (for univariate features) and a lookup table (for
pairwise interactions). When predicting on a data point, the model
frst looks up corresponding scores for all feature values and inter-
action terms and then applies Equation 1 to compute the output.

4.2 CF Generation: Integer Linear Programming
A recourse plan is a CF example � that makes minimal changes to the
original input � but leads to a diferent prediction. Without loss of
generality, we use binary classifcation as an example, with sigmoid

1function � (�) = as a link function. If � (��) ≥ 0.5 or �� ≥ 0,1+� −�

the model predicts the input � as positive; otherwise it predicts � as
negative. To generate � , we can change � so that the new score ��
has a diferent sign from �� . Note that �� is a linear combination of
shape function scores and so is �� − �� . Thus, we can express this
counterfactual constraint as a linear constraint (derivation in § A.2).
To enforce � to only make minimal changes to � , we can minimize
the distance between � and � , which can also be expressed as a
linear function (§ A.3). Since all constraints are linear, and there
are a fnite number of bins for each feature, we express the GAM
Coach recourse generation as an integer linear program:

We use an indicator variable ��� (2f) to denote if a main efect bin

min distance (2a)
�∑ ∑

s.t. distance= ������ (2b)
�=1 � ∈��

� ∑ ∑ ∑ ∑ ∑
−�� ≤ ��� ��� + ℎ� ��1�2 �� ��1�2 (2c)

�=1 � ∈��

�� ��1�2 =���1 � ��2∑

(�, �) ∈� �1 ∈�� �2 ∈� �

for (�, �)∈�, �1 ∈�� , �2 ∈� � (2d)

��� ≤1 for �=1, . . . , � (2e)
� ∈��

��� ∈{0, 1}
�� ��1�2 ∈{0, 1}

for �=1, . . . , �, �∈��
for (�, �)∈�, �1 ∈�� , �2 ∈� �

(2f)
(2g)

is active: if ��� = 1, we change the feature value of �� to the closest
value in its bin �. All bin options of �� are included in a set �� . For
each feature �� , there can be at most one active bin (2e); if there
is no active bin, then we do not change the value of �� . We use an

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

indicator variable �� ��1�2 (2g) to denote if a pairwise interaction
efect is active—it is active if and only if bin �1 of �� and bin �2 of
� � are both active (2d). The set � includes all available interaction
efect terms. Constraint 2b determines the total distance cost for a
potential CF example; it uses a set of pre-computed distance costs
��� of changing one feature �� to the closest value in bin �. Con-
straint 2c ensures that any solution would fip the model prediction,
by gaining enough total score from main efect scores (���) and
interaction efect scores (ℎ� ��1�2). Constants ��� and ℎ� ��1�2 are pre-
computed and adjusted for cases where a single active main efect
bin results in changes in interaction terms (see § A.4 for details).

Novelty. Advancing existing works that use integer linear pro-
grams for CF generation (on linear models [83] or using a linear
approximation of neural networks [56]), our algorithm is the frst
that works on non-linear models without approximation. Our al-
gorithm is also the frst and only CF method specifcally designed
for EBM models. Without it, users would have to rely on model-
agnostic techniques such as genetic algorithm [73] and KD-tree [85]
to generate CF examples. These model-agnostic methods do not
allow for customization. Also, by quantitatively comparing our
method with these two model-agnostic CF techniques on three
datasets, we fnd CFs generated by our method are signifcantly
closer to the original input, more sparse, and encounter less failures
(see § A.9 and Table S1 for details).

Generalizability. Our algorithm can easily be adapted for EBM
regressors and multiclass classifers. For regression, we modify the
left side and the inequality of constraint 2c to bound the prediction
value in the desired range (see § A.6 for details). For multiclass
classifcation, we can modify constraint 2c to ensure that the desired
class has the largest score (see § A.7 for details). In addition to EBMs,
one can also adapt our algorithm to generate CF examples for linear
models [83]. For other non-linear models (e.g., neural networks),
one can frst use a linear approximation [56] and then apply our
algorithm, verifying suggested recourse plans with respect to the
original model. If the suggested recourse plan would not change
the output of the original model, an alternative can be generated
by solving the program again with the previous solution blocked.

Scalability. Modern linear solvers can efciently solve our in-
teger linear programs. The complexity of solving an integer linear
program increases along two factors: the number of variables and
the number of constraints. In Equation 2, all variables are binary—
making the program easier to solve than a program with non-binary
integer variables. For any dataset, there are always exactly 3 con-
straints from 2b, 2c, and 2e. The number of constraints from 2d
increases along the number of interaction terms |� | and the num-
ber of bins per feature |�� | on these interaction terms. In practice,
|� | and |�� | are often bounded to ensure EBM are interpretable.
For example, by default the popular EBM library InterpretML [60]
bounds |� | ≤ 10 and |�� | ≤ 32. Therefore, in the worst-case sce-
nario with 10 continuous-continuous interaction terms, there will
be at most 10 × 32 × 32 = 10, 240 constraints from 2d. For instance,
on the Communities and Crime dataset [67] with 119 continuous
features, 1 categorical feature, and 10 pairwise interaction terms,
there are about 7.2k constraints and 3.6k variables in our program.
It only takes about 0.5–3.0 seconds to generate a recourse plan
using Firefox Browser on a MacBook (see § A.10 for details).

4.3 Recourse Customization
With integer linear programming, we can generate recourse plans
that refect a wide range of user preferences (G2). For example, to
prioritize a feature that is easier for a user to change, we can lower
the distance cost ��� for that feature (§ A.5). To enforce recourse
plans to only change a feature in a user specifed acceptable range,
we can remove out-of-range binary variables ��� . If a user requires
the recourse plans to only change at most � features, we can add Í� Í
an additional linear constraint �=1 � ∈��

��� ≤ � . Finally, with
modern linear solvers, we can efciently generate diverse recourse
plans (G1) by solving the program multiple times while blocking
previous solutions (see § A.6–§ A.8 for details).

5 USER INTERFACE
Given the design goals (G1–G5) described in § 3, we present GAM
Coach, an interactive tool that empowers end users to specify
preferences and iteratively fne-tune recourse plans (Fig. 4). The
interface tightly integrates three components: the Coach Menu that
provides overall controls and organizes multiple recourse plans as
tabs (§ 5.1), the Feature Panel containing Feature Cards that allow
users to specify recourse preferences with simple interactions (§ 5.2),
and the Bookmark Window summarizing saved recourse plans (§ 5.3).
To explain these views in this section, we use a loan application
scenario with the LendingClub dataset [1], where a bank refers a
rejected loan applicant to GAM Coach pre-loaded with the appli-
cant’s input data. Our tool can be easily applied to GAMs trained
on diferent datasets while providing a consistent user experience.
On GAM Coach’s public demo page, we present fve additional
examples with fve datasets that are commonly used in algorith-
mic recourse literature: Communities and Crime [67] (also used in
the second usage scenario in § 5.4), Taiwan Credit [97], German
Credit [14], Adult [45], and COMPAS [47].

5.1 Coach Menu
The Coach Menu (Fig. 1A) is the primary control panel of GAM
Coach. Users can use the dropdown menu and input felds to specify
desired decisions for classifcation and regression. For each recourse
plan generation iteration, the tool generates fve diverse plans (G1)
to help users achieve their goal, with each plan representing a CF
example. Users can access each plan by clicking the corresponding
tab on the plan tab bar. When a plan is selected, the Feature Panel
updates to show details about the plan, and the plan’s corresponding
tab extends to show the model’s decision score (Fig. 3). Users can
click the Bookmarks

Regenerate

button to open the Bookmarks window and
click the button to generate fve new recourse plans
that refect the currently specifed recourse preferences.

Figure 3: A bar chart visualizes the model’s decision score of a
recourse plan: the bar is marked with the user’s original score
(shorter vertical line on the left) and the threshold needed to
obtain the desired decision (longer vertical line on the right).

https://poloclub.github.io/gam-coach/

home ownership
credit utilization

home ownership

loan amount

FICO score

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

Figure 4: GAM Coach enables end users to inspect and customize recourse plans through simple interactions. (A) Initial generic
plans are generated with the same confgurations for all users. (B) Users can specify recourse preferences if they are not satisfed
with the initial plans; by confguring (B1) the difculty to change a feature; (B2) the acceptable range that a feature can change
between, and (B3) the max number of features that a recourse plan can alter. (C) GAM Coach then generates personalized plans
that respect users’ preferences. Users can iteratively refne their preferences until a satisfactory plan is found.

5.2 Feature Panel
Each recourse plan has a unique Feature Panel (Fig. 1B) that visual-
izes plan details and allows users to provide preferences guiding
the generation of new plans (G2). A Feature Panel consists of Fea-
ture Cards where each card represents a data feature used in the
model. To help users easily navigate through diferent features, the
panel groups Feature Cards into three sections: (1) features that are
changed in the plan, (2) features that are confgured by the user,
(3) and all other features. To prevent overwhelming users with too
much information (G4), all cards are collapsed by default—only dis-
playing the feature name and feature values. Users can hover over
the feature name to see a tooltip explaining the defnition of the
feature (G4). With a progressive disclosure design [61, 75], details
of a feature, such as the distribution of feature values, are only
shown on demand after users click that Feature Card. Progressive
disclosure also makes GAM Coach interface scalable, as users can
easily scroll and browse over hundreds of collapsed Feature Cards.
Since EBMs process continuous and categorical features diferently,
we employ diferent card designs based on the feature type.

Continuous Feature
Card. For continuous fea-
tures, such as ,
the Feature Card (Fig. 5)
uses a flled curved chart
to visualize the distribu-
tion of feature values in Figure 5: Users can test hypotheti-
the training set. Users can cal input values in real time.
drag the diamond-shaped thumb on a slider below the chart to
experiment with hypothetical values. During dragging, the deci-
sion score bar updates its width to refect a new prediction score
in real time. Therefore, users can better understand the underly-
ing decision-making process by probing the model with diferent
inputs (G3). Also, users can drag the orange thumbs to set the
lower and upper bounds of acceptable feature changes. For example,

one user might only accept recourse plans that include
at $12k or higher (Fig. 4-B2).

Categorical Feature Card. For categorical features, such as
, users can inspect the value distribution with a

horizontal bar chart (Fig. 4-B1), where a longer bar represents more
frequent options in the training data. To specify acceptable ranges,
users can click the bars to select or deselect acceptable options for
new recourse plans. Acceptable options are highlighted as orange,
whereas unacceptable options are colored as gray. Users can also
click text labels next to the bars to experiment with hypothetical
options and observe how they afect the model decision.

Specify Difculty to Change a
Feature. Besides selecting a feature’s
acceptable range, users can also spec-
ify how hard it would be for them
to change a feature. For example, it
might be easier for some users to
lower than to change

. To confgure feature
difculties, users can click the smiley
button on any Feature Card and then
select a suitable difculty option on the
pop-up window (Fig. 4-B1). Internally,
GAM Coach multiplies the distance costs of all bins in that feature
with a constant multiplier (Fig. 6). If the user selects the “impossible
to change” difculty, the tool will remove all variables associated
with this feature in the internal integer program (§ 4.3). Therefore,
when generating new recourse strategies, GAM Coach would pri-
oritize features that are easier to change and would not consider
features that are impossible to change.

5.3 Bookmarks and Receipt
During the recourse iterations, users can save any suitable plans
by clicking the star button on the plan tab (Fig. 3). Then, users

Figure 6: Distance mul-
tipliers of difculties.

black population

home ownership
loan amount

home ownership

home ownership

loan amount
loan amount

loan amount

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 7: GAM Coach allows end users to experiment with hypothetical input values and customize recourse plans. (A) Our
tool frst shows generic plans generated with default confgurations. (B) Users can explore how diferent input values afect
the model’s prediction in real time through simple interactions on the Feature Card: for example, lowering the percentage of
adults without a high school diploma increases the chance of getting a government grant. (C) Users can then specify recourse
preferences—such as feature difculties and acceptable ranges—based on their circumstances and understanding of the model’s
prediction patterns. (D) GAM Coach then generates more actionable recourse plans based on the user-specifed preferences.

can compare and update their saved plans in the Bookmarks win-
dow (Fig. 1C). Once users are satisfed with bookmarked plans, they
can save a recourse receipt as proof of the generated recourse plans.
Wachter et al. [88] frst introduced the recourse receipt concept as a
contract guaranteeing that a bank will approve a loan application if
the applicant achieves all changes listed in the recourse plan. GAM
Coach is the frst tool to realize this concept by creating a plain-
text fle that records the timestamp, a hash of EBM model weights,
the user’s original input, and details of bookmarked plans (G4).
In addition, we propose a novel security scheme that uses Pretty
Good Privacy (PGP) to sign the receipt with the bank’s private
key [17]. With public-key cryptography, users can hold the bank
accountable by being able to prove the receipt’s authenticity to
third-party authorities with the bank’s public key. Also, banks can
use their private key to verify a receipt’s integrity during recourse
redemption to avoid counterfeit receipts.

5.4 Usage Scenarios
We present two hypothetical usage scenarios to illustrate how
GAM Coach can potentially help everyday users identify actionable
strategies to alter undesirable ML-generated decisions.

Individual Loan Application. Eve is a rejected loan applicant,
and she wants to identify ways to get a loan in the future. In this
hypothetical usage scenario, to inform loan decisions, the bank has
trained an EBM model on past data (we use LendingClub [1] to
illustrate this scenario in Fig. 4). Their dataset has 9 continuous fea-
tures and 11 categorical features (Fig. S2), and the outcome variable
is binary—indicating whether a person can pay back the loan in
time. The bank gives Eve a link to GAM Coach when informing
her of the loan rejection decision. After Eve opens GAM Coach in a
web browser, the tool pre-loads Eve’s input data and generates fve
recourse plans based on the default confgurations. Each plan lists
a set of minimal changes in feature values that would lead to loan
approval. One plan suggests Eve lower the requested
from $15k to $9k along with two other changes (Fig. 4A). Eve

does not like this suggestion because she is unwilling to compro-
mise a loss of $6k in the requested loan. Therefore, she clicks the

Feature Card and drags the left thumb to set the
acceptable range of to $12k and above (Fig. 4-B2). Af-
ter browsing all recourse plans in the Coach Menu, Eve fnds that
none of the plans suggest changes to . Eve and her
partner are actually moving to their newly-purchased condo next
month. Therefore, Eve sets the acceptable range of
to “mortgage” and changes its difculty to “very easy” (Fig. 4-B1).
Eve also prefers plans that change fewer features, so she clicks the
dropdown menu on the Feature Panel to ask the tool to only generate
plans that change at most two features (Fig. 4-B3). After Eve clicks
the Regenerate button, GAM Coach quickly generates fve per-
sonalized plans that respect Eve’s preferences. Among these plans,
Eve especially likes the one suggesting she lower the
by about $200 and change to mortgage (Fig. 4C).
Finally, Eve bookmarks this plan and downloads a recourse receipt
that guarantees her a loan if all suggested terms are met. Eve plans
to apply for the loan again at the same bank next month.

Government Grant Application. Hal is a county manager in
the United States. He has applied for a federal grant for his county.
Unfortunately, his application is rejected. He wants to learn about
the decision-making process and what actions he can take to suc-
ceed in future applications. In this hypothetical usage scenario, to in-
form funding decisions, the federal government has trained an EBM
model on past data (we use the Communities and Crime dataset [67]
to illustrate this scenario in Fig. 7). This dataset has 119 continuous
features and 1 categorical feature describing the demographic and
economic information of diferent counties in the United States, and
is used to predict the risk of violent crime. As part of a performance
incentive funding program [86], the federal government provides
more funding opportunities to counties with lower predicted crime
risk [79]. Before training the EBM model, the federal government
has removed protected features (e.g.,) and features
with many (more than half) missing values, resulting in a total of
94 continuous features and 1 categorical feature.

https://poloclub.github.io/gam-coach/?dataset=lending

without high school rate

without high school rate

age percentage (>65)

employed percentage
employed percentage

age percentage (>65)

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

The federal government provides rejected counties with a link
to GAM Coach when informing them of the funding decisions.
Hal opens GAM Coach in his browser; this tool has pre-loaded
the demographic and economic features of his county and quickly
suggested fve recourse plans that would lead to funding. These
generic plans are generated with the default confguration. One
plan (Fig. 7A) suggests Hal decrease and in-
crease in his county. Hal likes the recommen-
dation of increasing because a higher employ-
ment rate is also benefcial for the economy of his county. However,
Hal is puzzled by the suggestion of lowering .
He is not sure why the population age is used to decide funding de-
cisions. Besides, lowering the percentage of the elderly population
is not actionable. Therefore, Hal “locks” this feature by setting its
difculty to “impossible” (Fig. 7C).

To gain a better understanding of how the funding decision is
made, Hal expands several Feature Cards and experiments with
hypothetical feature values by dragging the blue thumbs ; GAM
Coach visualizes the model’s prediction scores with these hypo-
thetical inputs in real time (Fig. 7B). Hal quickly fnds that lowering

can increase his chance of getting a grant.
This is good news as Hal’s county has just started a high school
dropout prevention program aiming to lower the percentage of
adults without a high school diploma to below 15% in eight years.
Hal then sets this feature’s difculty to “easy to change” and drags
the orange thumbs to set its acceptable range to between 15%
and 22.5% (Fig. 7C). After Hal clicks the Regenerate button, GAM
Coach generates fve new personalized plans in only 3 seconds
despite there being almost 100 features. Among these fve plans, Hal
likes the one that recommends decreasing
by 4.27% (Fig. 7D). Finally, Hal saves a recourse receipt, and he will
apply for this grant again once the percentage of adults without a
high school diploma in his county drops by 4.27%.

5.5 Open-source & Generalizable Tool
GAM Coach is a web-based algorithmic recourse tool that users can
access with any web browser on their laptops or tablets, no instal-
lation required (G5). We use GLPK.js [84] to solve integer programs
with WebAssembly, OpenPGP.js [23] to sign recourse receipts with
PGP, and D3.js [4] for visualizations. Therefore, the entire system
runs locally in users’ browsers without dedicated backend servers.
We also provide an additional Python package3 for developers to
generate customizable recourse plans for EBM models without a
graphical user interface. With this Python package, developers and
researchers can also easily extract model weights from any EBM
model to build their own GAM Coach. Finally, despite its name,
GAM Coach’s interface is model-agnostic—it supports any ML mod-
els where (1) one can control the difculty and acceptable range of
changing a feature during CF generation, and (2) model inference is
available. With our open-source and generalizable implementation,
detailed documentation, and examples on six datasets across a wide
range of tasks and domains—LendingClub [1], Taiwan Credit [97],
German Credit [14], Adult [45], COMPAS [47], and Communities
and Crime [97]—future researchers can easily adapt our interface
design to their models and datasets.

3Python package: https://poloclub.github.io/gam-coach/docs/gamcoach

6 USER STUDY
To evaluate GAM Coach and investigate how everyday users would
use an interactive algorithmic recourse tool, we conducted an on-
line user study with 41 United States-based crowdworkers. For
possible datasets to use in this user study, we compared fve pub-
lic datasets that are commonly used in the recourse literature:
LendingClub [e.g., 57, 82], Taiwan Credit [e.g., 73, 82, 83], German
Credit [e.g., 57, 79, 82], Adult [e.g., 34, 56, 73], and COMPAS [e.g.,
34, 57, 66]. We decided to use LendingClub in our study for the
following three reasons. First, we chose a lending scenario as it
is one scenario that many people, including crowdworkers, may
encounter in real-life. Second, there is no expert knowledge needed
to understand the setting, making our tasks appropriate for crowd-
workers. Finally, our institute requires research participants to be
United States-based: among the four datasets that can be used in a
lending setting (LendingClub, Taiwan Credit, German Credit, and
Adult), LendingClub is the only United States-based dataset col-
lected from a real lending website. In this user study, we aimed to
answer the following three research questions:

RQ1. What makes a satisfactory recourse plan for end users?
(§ 6.3.1)

RQ2. How do end users discover their satisfactory recourse plans?
(§ 6.3.2)

RQ3. How does interactivity play a role in providing algorithmic
recourse? (§ 6.3.3)

6.1 Participants
We recruited 50 anonymous and voluntary United States-based
participants from Amazon Mechanical Turk (MTurk), an online
crowdsourcing platform. We did not collect any personal informa-
tion. Collected interaction logs and subjective ratings are stored
in a secure location where only the authors have access. The au-
thors’ Institutional Review Board (IRB) has approved the study. The
average of three self-reported task completion times on a worker-
centered forum4 is 321/2-minutes. We paid 41 participants $6.50 per
study and 9 participants who had not passed our quality control
$5.50.5 Recruited participants self-report an average score of 2.7 for
ML familiarity in a 5-point Likert-scale, where 1 represents “I have
never heard of ML” and 5 represents “I have developed ML models.”

6.2 Study Design
To start, each participant signed a consent form and flled out a
background questionnaire (e.g., familarity with ML).

GAM Coach Tutorial and Short Quiz. We directed partici-
pants to a Google Survey form and a website containing GAM
Coach, task instructions, and tutorial videos. Our tool, loaded with
an EBM binary classifer that predicts loan approval on the Lend-
ingClub dataset [1], also contains input values of 500 random test
samples on which the model predicts loan rejection. Participants

4TurkerView: https://turkerview.com/
5Originally the task was posted with a base payment of $3.50 and $1 bonus for quality.
However, when analyzing participants’ responses, we realized that the task required
more time than we originally expected, so we provided an additional $2 bonus to all
participants after the study to ensure appropriate compensation for their time. This
brought the payment to $6.50 for those who passed the quality control quiz and $5.50
for those who did not.

https://poloclub.github.io/gam-coach/?dataset=crime
https://poloclub.github.io/gam-coach/?dataset=crime
https://poloclub.github.io/gam-coach/docs/gamcoach
https://poloclub.github.io/gam-coach/user-study/
https://turkerview.com/
https://OpenPGP.js

employment lengthnumber of bankruptcies

credit utilizationFICO score
loan amount

annual income

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 8: We asked user study participants to explain why
they had chosen their satisfactory plans, and why they had
not chosen two other random plans (not shown in the fgure).

were asked to watch a 3-minute tutorial video and complete eight
multiple-choice quiz questions. These questions are simple—asking
what is shown in the tool after certain interactions. All partici-
pants were asked to perform these interactions on the same data
sample, so we had “ground truth” answers for the quiz questions.
We used the quiz as a “gold standard” question to detect fraudu-
lent responses [43, 63]. Although participants were prompted that
they would need to answer all questions correctly to receive the
base compensation, we paid all participants regardless of their an-
swers. However, in our analysis, we only included responses from
participants who had correctly answered at least four questions.

Free Exploration with an Imaginary Usage Scenario. After
completing the tutorial and quiz, participants were asked to pretend
to be a rejected loan applicant and freely use GAM Coach until fnd-
ing at least one satisfactory recourse plan. These satisfactory recourse
plans could be chosen from the frst fve generic plans that GAM
Coach generates with a default confguration or follow-up plans
that are generated based on participants’ confgured preferences. To
help participants imagine the scenario, we asked them to change the
input sample (one of 500 random samples) until they fnd one that
they feel comfortable pretending to be. Participants could also man-
ually adjust the input values (Fig. S2 in the appendix). After iden-
tifying and bookmarking their satisfactory plans, participants were
asked to rate the importance of confgured preferences or briefy ex-
plain why no confguration is needed. Then, participants were asked
to explain why they had chosen their saved plans (Fig. 8) and why
they had not chosen two other plans, which were randomly picked
from the initial recourse plans. To incentivize participants to write
good-quality explanations [26, 64], we told participants that they
could get a $1 bonus reward if their explanations are well-justifed.
Regardless of their responses, all participants who had correctly an-
swered at least four quiz questions were rewarded with this bonus.

Interaction Logging and Survey. While participants were us-
ing GAM Coach, the tool logged all interactions, such as preference
confguration, hypothetical value experiment, and recourse plan
generation. Each log event includes a timestamp and associated val-
ues. After fnishing the exploration task, participants were asked to
click a button that uploads their interaction logs and recourse plan
reviews as a JSON fle to a secured Dropbox directory. The flenames

included a random number. Participants were given this number
as a verifcation code to report in the survey response and MTurk
submission—we used this number to link a participant’s MTurk
ID with their log data and survey response. Finally, participants
were asked to complete the survey consisting of subjective ratings
and open-ended comments regarding the tool. As the EBM model
used in the study is non-monotonic, the tool sometimes can suggest
counterintuitive changes [3], such as to lower for
loan approval. We asked participants to report counterintuitive
recourse plans in the survey if they had seen any.

6.3 Results
Out of 50 recruited participants, 41 (P1–P41) correctly answered at
least four “quality-control” questions. In the following sections, we
summarize our fndings through analyzing these 41 participants’
interaction logs, recourse plan reviews, and survey responses. We
denote the Wald Chi-Square statistical test score as �2.

6.3.1 RQ1: Characteristics of Satisfactory Recourse Plans. During
the exploration task, participants were asked to identify at least
one recourse plan that they would be satisfed with if they were
a rejected loan applicant using GAM Coach. On average, each
participant chose 1.54 satisfactory plans. Participants preferred
concise plans that changed only a few features, with an average
of 2.11 features per plan. Chosen plans changed a diverse
set of features, including 13 out of 20 features. The most popu-
lar features changed by chosen plans were (26.3%),

(18.8%), and (11.3%). Features that were
not changed by any chosen plans were mostly hard to change in
real life, such as and .

Reasons for Choosing Satisfactory Plans. Three main rea-
sons that participants reported choosing plans were that the plans
were (1) controllable, (2) requiring small changes or less compro-
mise, or (3) benefcial for life in general. Most participants chose
recourse plans that felt realistic and controllable. For example, P30
wrote “I think it’s very possible to reduce my credit utilization in a
short amount of time.” In particular, participants preferred plans
that only changed a few features and required a small amount of
change. Participants described these plans as “simple and fast” (P5),
“straightforward” (P7), and “easy to do” (P16). Some participants
chose plans because they could tolerate the compromises. For ex-
ample, P8 wrote “I’m fne with the lower loan amount.” Similarly, P11
reported “[The decreased] loan amount is close to what I need.” In-
terestingly, some participants favored plans that could beneft their
lives in addition to helping them get loan approval. For example,
P14 wrote “[...] lower utilization is good for me anyway from what
I know, so this seems like the best plan.” Similarly, P28 wrote “[this
plan] in my opinion would guarantee greater monetary fexibility.”

Reasons for Not Choosing a Plan. Participants’ explanations
for not choosing a plan mostly complemented the reasons for choos-
ing a plan. Some participants also skipped plans because they were
puzzled by counterintuitive suggestions, did not understand the sug-
gestions, or just wanted to see more alternatives. First, participants
disliked unrealistic suggestions: P2 explained “It tells me to increase
my income. My income is fxed. I cannot just increase them at a whim.”
Similarly, P6 wrote “With infation it might be harder to use less

loan amount

number of past dues
loan amount

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

credit.” Participants also disliked plans requiring too many changes
or a large amount of change. For example, P30 wrote “The amount
of loan suggested to be reduced is too large. Assuming I’m applying
for 9,800 for real, I wouldn’t want to reduce the amount by more than
30%.” Interestingly, some participants skipped a plan because it sug-
gested counterintuitive changes. For example, P14 wrote “It seemed
like a bug because why would asking for an extra 13 dollars [in loan
amount] result in a loan approval?” Participants also skipped plans
when they did not understand the suggestion: P9 wrote “I’m not
exactly sure what credit utilization is. I looked at the tooltip, but still
wasn’t sure.” Finally, some participants skipped the initial plans be-
cause they just wanted to explore more alternatives: P22 explained
“I wanted to check out a few more things before I made my decision.”

Design Lessons. By analyzing the characteristics of satisfactory
recourse plans, our user study is the frst study that provides em-
pirical evidence to support several hypotheses from the recourse
literature. We fnd that participants preferred plans that suggested
changes on actionable features [35, 42], are concise and make small
changes [48, 88], and could beneft participants beyond the recourse
goal [3]. Additionally, participants were likely to save multiple
satisfactory plans from one recourse session, highlighting the im-
portance of providing diverse recourse plans [57]. Our study also
shows that with transparency, end users can identify and dislike
counterintuitive recourse plans (see more discussion in § 6.3.3).
Therefore, future researchers and developers should help users
identify concise and diverse plans that change actionable features
and are benefcial overall. Also, researchers and developers should
carefully audit and improve their models to prevent a CF generation
algorithm from generating counterintuitive plans. Our fndings also
highlight that communicating recourse plans and providing a good
user experience are as important as generating good recourse plans.

6.3.2 RQ2: Path to Discover Satisfactory Recourse Plans. In the ex-
ploration task, participants could freely choose their satisfactory
recourse plans from the initial batch, where plans were generated
with default confgurations, or from follow-up batches, where plans
refected participants’ specifed preferences. We fnd that partici-
pants were more likely to choose satisfactory plans that respect
participants’ preference confgurations (33 participants out of 41)
than the default plans (8 participants). In addition, each recourse
session had a median of 3 plan iterations. In other words,
on average, a participant discovered satisfactory plans after seeing
about 15 plans, where the last 10 plans were generated based on
their preferences. The average time to identify satisfactory plans
was 8 minutes and 38 seconds.

Preference confguration is helpful. In GAM Coach, users
can specify the difculty and acceptable range to change a feature
and the max number of features a plan can change. We fnd all
three preferences helped participants discover satisfactory plans.
Among 63 total satisfactory plans chosen by 41 participants, 49
plans (77.78%) refected at least one difculty confguration and 44
plans (69.84%) refected at least one range confguration. Also, 12
participants confgured the max number of features—seven partici-
pants changed it to 1 and fve changed it to 2 (default is 4).

Diverse Preference Confgurations. By further analyzing par-
ticipants’ preferences associated with their chosen plans, we fnd

Figure 9: Difculty confguration counts across frequent fea-
tures highlighting variability of participants’ preferences.

(1) participants specifed preferences on a wide range of features;
(2) some features were more popular than others; (3) diferent par-
ticipants set diferent preferences on a given feature. Of the 20
features, at least one participant changed the difculty of 16 fea-
tures (80%) and acceptable range of 13 features (65%). Among these
confgured features, participants were more likely to specify prefer-
ences on some than others [�2 = 54.37, � < 0.001 for the difculty,
�2 = 27.68, � = 0.006 for the acceptable range]. For example, 19
satisfactory plans refected difculty for , whereas only
1 plan refected the difculty for . Also, there
was high variability in confgured preferences on popular confg-
ured feature (Fig. 9). For instance, 6 plans considered
as “very easy to change,” while 9 plans deemed it as “impossible to
change.” Our fndings confrm hypotheses that recourse preferences
can be incorporated to identify satisfactory plans [3, 94], and these
preferences are idiosyncratic [42, 87].

Design Lessons. When designing recourse systems, it is useful
to allow end users to specify a wide range of recourse preferences,
such as difculties to change a feature, acceptable feature ranges,
and max number of features to change. Additionally, there can be
predictable patterns in users’ recourse preferences—researchers
can leverage these patterns to further improve user experiences.
For example, developers can use the log data of an interactive
recourse tool to train a new ML model to predict users’ preference
confgurations. Then, for a new user, developers can predict their
recourse preference and use it as the tool’s default confguration.

6.3.3 RQ3: Interactive Algorithmic Recourse. How did participants
use and perceive various interactions throughout the exploration
task? Interestingly, 28% of participants who confgured difculty
preferences had also immediately altered the difculty levels on
the same features; most of them have changed “easy” to “very easy”
and “hard” to “very hard.” For acceptable ranges, the percentage
is higher at 88%. It suggests participants may need iterations to
learn how preference confguration works in GAM Coach and then
fne-tune confgurations to generate better plans—highlighting the
key role of iteration in interactive recourse. Survey response show
that participants found both preference confguration and iteration
helpful in fnding good recourse plans (Fig. 10B). For example, P30
commented “[I like] how easy it was to make changes to the priority
of each thing. Showing that some things can be easy changes, or
impossible to change, and making plans built around those.” Similarly,
P19 wrote “[I like] regenerating unlimited plans until I fnd a ft one.”

loan purpose

loan purpose

annual income

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 10: Average ratings and rating distributions from 41 participants on the usability and usefulness of GAM Coach. (A)
Participants thought GAM Coach was relatively easy and enjoyable to use, and the tool helped them identify actions to obtain a
preferred ML decision. (B) All interaction techniques, especially experimenting with hypothetical values, were rated favorably.

“What-if” Questions. Besides confguring preferences, par-
ticipants also engaged in other modes of interaction with GAM
Coach. For example, 32 out of 41 participants experimented with
hypothetical feature values (§ 5.2), even though it did not afect
recourse generations and was not required in the task. These par-
ticipants explored median of 3 unique features and a median of
5.5 hypothetical feature values . These 32 participants asked
what-if questions on a total of 99 features, and only 39 (39.4%) of
these features were from the presented recourse plan. It suggests
that participants were more interested in learning about the pre-
dictive efects of features that have not been changed by GAM
Coach. After exploring what-ifs on these 99 features, participants
confgured at least one preference (difculty or acceptable range)
on about half of them (49 features, 49.5%). In comparison, these
participants only confgured preferences on 13.72% features (87 out
of 634) on which they had not explored what-ifs or had explored
what-ifs after confguring preferences. It shows that participants
were more likely to customize features on which they had explored
hypothetical values [�2 = 85.459, � < 0.00001]. Finally, 20 out
of these 32 participants (62.5%) chose a satisfactory plan with a
changed feature on which they had explored what-ifs. It may sug-
gest participants preferred recourse plans that changed features on
which they had explored what-ifs, but this result is not statistically
signifcant [�2 = 2.0, � = 0.1573].

By analyzing survey responses, we also fnd that asking what-if
questions was one of the participants’ favorite features (Fig. 10B).
For example, P12 wrote “[I like] how it adjusts the plans in real time
and gives you an answer if the loan will be approved.” Throughout
the task, participants also frequently used the tooltip annotations
to inspect the decision score bar (median 8 times per participant)
and check the meaning of diferent features (median 25 times)—
highlighting the importance of clearly explaining visual represen-
tations and terminologies in interactive recourse tools.

Counterintuitive recourse plans. We asked participants to re-
port strange recourse plans that GAM Coach could rarely suggest,
such as to lower for loan approval. To our surprise,
7 out of 41 participants had encountered and reported these coun-
terintuitive plans! For example, P6 was confused that some plans
suggested conficting changes on the same feature: “One plan told
me to increase the loan amount by $13 while another plan told me
to decrease by $1,613.” Another interesting case was P39: “I don’t
understand how purpose changes approval decision. Something like

‘mortgage’ I understand, but changing something and all of a sud-
den you can do a wedding but not home improvement? Like what?”
First, P39 found it counterintuitive that GAM Coach includes the
categorical feature as a changeable feature because
they thought the model decision should be independent of the

. Then, through experimenting with hypothetical val-
ues, P39 was bafed by the observation that two diferent purposes
(wedding and home improvement) resulted in two distinct model
decisions. Some other participants also attributed these strange pat-
terns as reasons why they skipped some plans (§ 6.3.1). This fnding
provides empirical evidence that with transparency, everyday users
can discover potentially problematic behaviors in ML models.

Design Lessons. Overall, interactivity helps users identify sat-
isfactory recourse plans, and users appreciate being able to control
recourse generation. In addition, users like being able to ask what-
if questions; experimenting with hypothetical feature values also
helps them fnd satisfactory recourse plans. However, it takes time
and trial and error for users to understand how preference confg-
urations afect recourse generation. Therefore, future interactive
recourse tools can improve user experience by focusing on im-
proving learnability and reversibility. Also, our study shows that
interactivity and transparency could occasionally confuse users
with counterintuitive recourse plans. Therefore, future researchers
and developers should carefully audit and improve their ML models
before deploying interactive recourse tools.

6.3.4 Usability. Our survey included a series of 7-point Likert-scale
questions regarding the usability of GAM Coach (Fig. 10A). The
results suggest that the tool is relatively easy to use (average 5.02),
easy to understand (average 4.90), and enjoyable to use (average
5.07). However, some participants commented that the tool was not
easy to learn at frst and may be too complex for users with less
knowledge about loans. For example, P5 wrote “Without the tutori-
als, it would have taken me much longer to learn how to navigate the
program, because it is not very intuitive at frst.” Similarly, P8 wrote
“I am decent with fnances, but I’d imagine that other people would
have more difculty [using the tool].” Our participants were MTurk
workers, who are similar to the demographics of American internet
users as a whole, but slightly younger and more educated [25, 63].
Therefore, GAM Coach might be overwhelming for real-life loan
applicants who are less familiar with web technology or fnance.
Participants also provided specifc feedback for improvement, such

FICO score
credit utilization

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

as designing a better way to store and compare all generated plans.
Currently, users would lose unsaved plans when generating new
plans, and users could only compare diferent recourse plans in
the Bookmarks window (§ 5.3). We plan to continue improving the
design of GAM Coach based on participants’ feedback.

7 LIMITATIONS
We acknowledge limitations regarding our tool’s generalizability,
usage scenarios, and user study design.

Generalizability of GAM Coach. To design and develop the
frst interactive algorithmic recourse tool that enables end users to
fne-tune recourse plans with preferences, we ground our research
in GAMs, a class of accurate and transparent ML models with simple
structures. This approach enables us to generate customizable CF
examples efciently. However, not all CF generation algorithms al-
low users to specify the feature-level distance functions, acceptable
ranges, and max number of features that a CF example can change.
Therefore, while the GAM Coach interface is model-agnostic, it
does not directly support all existing ML models and CF generation
methods. Also, our novel CF generation algorithm is tailored to
EBMs. However, one can easily adapt our linear constraints to gen-
erate customizable CF examples for linear models [83]. For more
complex non-linear models (e.g., random forest, neural networks),
one can apply our method to a linear approximation [56] of these
models (§ 4.2). We also acknowledge that similar to most existing
CF generation algorithms [3, 39], our algorithm assumes all fea-
tures to be independent. However, in practice, many features can be
associated. For example, changing is likely to also
afect a user’s . Future work can generalize our algorithm
to dependent features by modeling their casual relationships [36].

Hypothetical Usage Scenarios. We situate GAM Coach in
lending and government funding settings (§ 5.4), two most cited
scenarios in existing CF literature [3, 35]. It is important to note
that none of the authors have expertise in law, fnance, or political
science. Therefore, to adapt GAM Coach for use in real lending
and government funding settings, it would require more research
and engaging with experts in the legal and fnancial domains as
well as people who would be impacted by the systems. In addition,
we use LendingClub [1] and Communities and Crime [67], two
largest suitable datasets we have access to (§ 6), to simulate two
usage scenarios and design our user study. These two datasets can
have diferent features and sizes from the data that are used in
practice. Therefore, before adapting GAM Coach, researchers and
developers should thoroughly test our tool on their own datasets.

Simulated Study Design. To study how end users would use
interactive recourse tools, we recruited MTurk workers and asked
them to pretend to be rejected loan applicants, and we logged and
analyzed their interactions with GAM Coach. We designed the task
to encourage and help participants simulate the scenario (e.g., re-
warding bonus, supporting participants to input data or choose data
from multiple random samples). However, participants’ usage pat-
terns and reactions may not fully represent real-life loan applicants.
We chose to simulate a lending scenario because (1) crowdwork-
ers may have encountered lending, (2) it does not require expert
knowledge, and (3) we have access to a large and real US-based
lending dataset. We acknowledge that participants’ usage patterns

may not full represent users in other domains. Therefore, it would
require further research with actual end users (e.g., loan applicants,
county executives, and bail applicants) to study how GAM Coach
can aid them in real-world settings. In our study, we only collected
participants’ familiarity with ML. As MTurk workers tend to be
younger and more educated than average internet users [25, 63],
future researchers can collect more self-reported demographic in-
formation (e.g., age, education, sex) to study if diferent user groups
would use an interactive recourse tool diferently.

Observational Study Design. Our observational log study can
provide a portrait of users’ natural behaviors when interacting with
interactive algorithmic recourse tools and scale to a large number of
participants [15]. However, it lacks a control group. As algorithmic
recourse research and applications are still nascent, the community
has not yet established a recommended workfow or system that
we can use as a baseline in our study (§ 2.1). Our main goal is to
study how recourse customizability can help users discover useful
recourse plans. Therefore, to mitigate the lack of a control group,
we ofer participants the option to abstain from customizing recourse
plans to probe into the usefulness of recourse customizability. In
our analysis, we compare both (1) the numbers of participants who
specify recourse preferences and who do not, (2) and the numbers
of satisfactory plans generated with a default confguration and
satisfactory plans generated with a participant-confgured prefer-
ence (§ 6.3.2). Finally, with our open-source implementation (§ 5.5),
future researchers can use GAM Coach as a baseline system to
evaluate their interactive recourse tools.

8 DISCUSSION AND FUTURE WORK
Refecting on our end-to-end realization of interactive algorithmic
recourse—from UI design to algorithm development and a user
study—we distill lessons and provide a set of future directions for
algorithmic recourse and ML interpretability.

Too much transparency. GAM Coach uses a glass-box model,
provides end users with complete control of recourse plan genera-
tion, and supports users to ask “what-if” questions with any feature
values. One might argue that GAM Coach is too transparent and
too much transparency makes the tool unfavorable, because (1) end
users can use this tool for gaming the ML model [22, 44] and (2) this
tool fails to protect the decision maker’s model intellectual prop-
erty [88]. We acknowledge these concerns. As recourse research
and applications are still nascent, it is challenging to know how we
can balance the benefts of transparency and human agency and
the risk of revealing too much information about the ML model.
Our user study shows that with transparency end users can dis-
cover and are often puzzled by counterintuitive patterns in ML
models. We believe if GAM Coach is adopted, it has the poten-
tial to incentivize decision makers to create better models in order
to avoid confusion as well as model exploitations. As one of the
furthest realizations of ML transparency, GAM Coach can be a
research instrument that facilitates future researchers to study the
tension between decision makers and decision subjects, and identify
the right amount of transparency that most benefts both parties.
Then, to adopt GAM Coach in practice, ML developers can remove
certain functionalities or impose recourse constraints accordingly.
For example, if a bank is ofering GAM Coach and is worried about

credit utilization
annual income

FICO score

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

people gaming the system by changing certain features that do not
actually improve their creditworthiness (e.g., opening more credit
cards), they could insert their own optimization constraints that
prevent these features from being modifed.

Transparent ML models for algorithmic recourse. Black-
box ML models are popular across diferent domains. To interpret
these models, researchers have developed post-hoc techniques to
identify feature importance [e.g. 53, 68] and generate CF exam-
ples [e.g. 48, 57]. However, Rudin [69] argues that researchers and
practitioners should use transparent ML models instead of black-
box models in high-stake domains due to transparent models’ high
accuracy and explanation fdelity. The design of GAM Coach is
based on GAMs, a state-of-the-art transparent model [6, 89]. We
would like to broaden the perspective of using transparent models
refecting on our study. We fnd that GAM Coach provides oppor-
tunities for everyday users to discover counterintuitive patterns
in the ML model. It implies that ML developers and researchers
can also use GAM Coach as a penetration testing tool to detect
potentially problematic behaviors in their models. Note that both
black-box and transparent learning methods would have learned
these counterintuitive behaviors [6], but with a transparent model,
developers can further vet and fx these behaviors. As an example,
an ML developer training a GAM can use GAM Coach to iteratively
generate recourse plans for potential users (e.g., training data where
the model gives unfavorable predictions). If they identify strange
suggestions, they can use existing interactive tools [60, 90] to vi-
sualize corresponding shape functions to pinpoint the root cause
of these counterintuitive patterns, and then edit shape function
parameters to avoid them from happening during recourse deploy-
ment. Future research can leverage transparent models to distill
guidelines to audit and fx models before recourse deployment.

Put users at the center. During the design and implementa-
tion of GAM Coach, we have encountered many challenges in
transforming technically sound recourse plans into a seamless user
experience. As the end users of recourse tools are everyday people
who are less familiar with ML and domain-specifc concepts, one of
our design goals is to help them understand necessary concepts and
have a frictionless experience (G4). GAM Coach aims to achieve this
goal by following a progressive disclosure and details-on-demand
design strategy [61, 75] and presenting textual annotations to ex-
plain visual representations in the tool. However, our user study
suggests that few users might still fnd it challenging to use GAM
Coach at frst (§ 6.3.4). During our development process, we identify
many edge cases that a recourse application would encounter in
practice, such as features requiring integer values (e.g.,),
features using log transformations (e.g.,), or features
less familiar to everyday users (e.g.,). Our open-
source implementation handles these edge cases, and we provide
ML developers with simple APIs to add descriptions for domain-
specifc feature names in their own instances of GAM Coach. How-
ever, these practical edge cases are rarely discussed or handled in
the recourse research community, since (1) the feld of algorithmic
recourse is relatively nascent, (2) and the main evaluation criteria
of recourse research are distance-based statistics instead of user
experience [39]. Therefore, in addition to developing faster tech-
niques to generate more actionable recourse plans, we hope future

researchers engage with end users and incorporate user experi-
ence into their research agenda. Besides interactive visualization,
researchers can also explore alternative mediums to communicate
and personalize ML recourse plans and model explanations, such
as through a textual [16] or multi-modal approach [29].

9 CONCLUSION
As ML models are increasingly used to inform high-stakes decision-
making throughout our everyday life, it is crucial to provide de-
cision subjects ways to alter unfavorable model decisions. In this
work, we present GAM Coach, an interactive algorithmic recourse
tool that empowers end users to specify their preferences and it-
eratively fne-tune recourse plans. Our tool runs in web browsers
and is open-source, broadening people’s access to responsible ML
technologies. We discuss lessons learned from our realization of
interactive algorithmic recourse and an online user study. We hope
our work will inspire future research and development of user-
centered and interactive tools that help end users restore their
human agency and eventually trust and enjoy ML technologies.

ACKNOWLEDGMENTS
We thank Kaan Sancak for his support in piloting our user study.
We appreciate Harsha Nori, Paul Koch, Samuel Jenkins, and the
InterpretML team for answering our questions about InterpretML.
We express our gratitude to our study participants for testing our
tool and providing valuable feedback. We are also grateful to our
anonymous reviewers for their insightful comments and sugges-
tions that have helped us refne our work. This work was supported
in part by a J.P. Morgan PhD Fellowship, gifts from Bosch and Cisco.

REFERENCES
[1] 2018. Lending Club: Online Personal Loans at Great Rates. https://www.

lendingclub.com/
[2] Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y. Lim, and Mohan Kankan-

halli. 2018. Trends and Trajectories for Explainable, Accountable and Intelligible
Systems: An HCI Research Agenda. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems - CHI ’18. https://doi.org/10.1145/3173574.
3174156

[3] Solon Barocas, Andrew D. Selbst, and Manish Raghavan. 2020. The Hidden
Assumptions behind Counterfactual Explanations and Principal Reasons. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
https://doi.org/10.1145/3351095.3372830

[4] M. Bostock, V. Ogievetsky, and J. Heer. 2011. D3 Data-Driven Documents. IEEE
TVCG 17 (2011).

[5] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell,
Jordan Grifth, Jonas Jongejan, Amit Pitaru, and Alexander Chen. 2020. Teach-
able Machine: Approachable Web-Based Tool for Exploring Machine Learning
Classifcation. In Extended Abstracts of the 2020 CHI Conference on Human Factors
in Computing Systems. https://doi.org/10.1145/3334480.3382839

[6] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. 2015. Intelligible Models for HealthCare: Predicting Pneumonia Risk
and Hospital 30-Day Readmission. KDD (2015). https://doi.org/10.1145/2783258.
2788613

[7] Chun-Hao Chang, Sarah Tan, Ben Lengerich, Anna Goldenberg, and Rich
Caruana. 2021. How Interpretable and Trustworthy Are GAMs? KDD (2021).
https://doi.org/10.1145/3447548.3467453

[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. https://doi.org/10.1145/2939672.2939785

[9] Furui Cheng, Yao Ming, and Huamin Qu. 2021. DECE: Decision Explorer with
Counterfactual Explanations for Machine Learning Models. IEEE TVCG 27
(2021). https://doi.org/10.1109/TVCG.2020.3030342

[10] Hao-Fei Cheng, Ruotong Wang, Zheng Zhang, Fiona O’Connell, Terrance
Gray, F. Maxwell Harper, and Haiyi Zhu. 2019. Explaining Decision-Making

https://www.lendingclub.com/
https://www.lendingclub.com/
https://doi.org/10.1145/3173574.3174156
https://doi.org/10.1145/3173574.3174156
https://doi.org/10.1145/3351095.3372830
https://doi.org/10.1145/3334480.3382839
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/3447548.3467453
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TVCG.2020.3030342

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

Algorithms through UI: Strategies to Help Non-Expert Stakeholders. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3290605.3300789

[11] Zhicheng Cui, Wenlin Chen, Yujie He, and Yixin Chen. 2015. Optimal Action
Extraction for Random Forests and Boosted Trees. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
https://doi.org/10.1145/2783258.2783281

[12] Eoin Delaney, Derek Greene, and Mark T. Keane. 2021. Instance-Based Coun-
terfactual Explanations for Time Series Classifcation. arXiv:2009.13211 [cs, stat]
(2021). http://arxiv.org/abs/2009.13211

[13] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting,
Karthikeyan Shanmugam, and Payel Das. 2018. Explanations Based on the Miss-
ing: Towards Contrastive Explanations with Pertinent Negatives. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems
(NIPS’18).

[14] Dheeru Dua and Casey Graf. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[15] Susan Dumais, Robin Jefries, Daniel M. Russell, Diane Tang, and Jaime Teevan.
2014. Understanding User Behavior Through Log Data and Analysis. In Ways
of Knowing in HCI. https://doi.org/10.1007/978-1-4939-0378-8_14

[16] Upol Ehsan, Brent Harrison, Larry Chan, and Mark O. Riedl. 2018. Rationaliza-
tion: A Neural Machine Translation Approach to Generating Natural Language
Explanations. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society. https://doi.org/10.1145/3278721.3278736

[17] Simson Garfnkel. 1995. PGP: Pretty Good Privacy.
[18] Fred Glover. 1975. Improved Linear Integer Programming Formulations of

Nonlinear Integer Problems. Management Science 22 (1975). https://doi.org/10.
1287/mnsc.22.4.455

[19] Oscar Gomez, Stefen Holter, Jun Yuan, and Enrico Bertini. 2020. ViCE: Visual
Counterfactual Explanations for Machine Learning Models. In Proceedings of
the 25th International Conference on Intelligent User Interfaces. https://doi.org/
10.1145/3377325.3377536

[20] Oscar Gomez, Stefen Holter, Jun Yuan, and Enrico Bertini. 2021. AdViCE:
Aggregated Visual Counterfactual Explanations for Machine Learning Model
Validation. In 2021 IEEE Visualization Conference (VIS). https://doi.org/10.1109/
VIS49827.2021.9623271

[21] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Counterfactual Visual Explanations. In Proceedings of the 36th International
Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97). https://proceedings.mlr.press/v97/goyal19a.html

[22] Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters.
2016. Strategic Classifcation. In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science. https://doi.org/10.1145/2840728.
2840730

[23] Tankred Hase. 2014. OpenPGP.Js: OpenPGP JavaScript Implementation. https:
//openpgpjs.org/

[24] Trevor Hastie and Robert Tibshirani. 1999. Generalized Additive Models.
[25] Paul Hitlin. 2016. Research in the Crowdsourcing Age: A Case Study. (2016).
[26] Chien-Ju Ho, Aleksandrs Slivkins, Siddharth Suri, and Jennifer Wortman

Vaughan. 2015. Incentivizing High Quality Crowdwork. In Proceedings of
the 24th International Conference on World Wide Web (WWW ’15). https:
//doi.org/10.1145/2736277.2741102

[27] Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M.
Drucker. 2019. Gamut: A Design Probe to Understand How Data Scientists
Understand Machine Learning Models. CHI (2019). https://doi.org/10.1145/
3290605.3300809

[28] Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng Chau. 2019.
SUMMIT: Scaling Deep Learning Interpretability by Visualizing Activation and
Attribution Summarizations. IEEE TVCG (2019). https://doi.org/10.1109/TVCG.
2019.2934659

[29] Fred Hohman, Arjun Srinivasan, and Steven M. Drucker. 2019. TeleGam: Com-
bining Visualization and Verbalization for Interpretable Machine Learning. In
2019 IEEE Visualization Conference (VIS). https://doi.org/10.1109/VISUAL.2019.
8933695

[30] Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, and Joy-
deep Ghosh. 2019. Towards Realistic Individual Recourse and Actionable Ex-
planations in Black-Box Decision Making Systems. arXiv:1907.09615 [cs, stat]
(2019). http://arxiv.org/abs/1907.09615

[31] Minsuk Kahng, Pierre Y. Andrews, Aditya Kalro, and Duen Horng Chau. 2018.
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models.
IEEE TVCG 24 (2018). https://doi.org/10.1109/TVCG.2017.2744718

[32] Minsuk Kahng, Nikhil Thorat, Duen Horng Chau, Fernanda B. Viegas, and
Martin Wattenberg. 2019. GAN Lab: Understanding Complex Deep Genera-
tive Models Using Interactive Visual Experimentation. IEEE Transactions on
Visualization and Computer Graphics 25 (2019).

[33] Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura. 2020.
DACE: Distribution-Aware Counterfactual Explanation by Mixed-Integer Linear

Optimization. In Proceedings of the Twenty-Ninth International Joint Conference
on Artifcial Intelligence. https://doi.org/10.24963/ijcai.2020/395

[34] Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. 2020.
Model-Agnostic Counterfactual Explanations for Consequential Decisions.
arXiv:1905.11190 [cs, stat] (2020). http://arxiv.org/abs/1905.11190

[35] Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera.
2021. A Survey of Algorithmic Recourse: Defnitions, Formulations, Solutions,
and Prospects. arXiv:2010.04050 [cs, stat] (2021). http://arxiv.org/abs/2010.04050

[36] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. 2021. Algorithmic
Recourse: From Counterfactual Explanations to Interventions. In Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and Transparency. https:
//doi.org/10.1145/3442188.3445899

[37] Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Is-
abel Valera. 2020. Algorithmic Recourse under Imperfect Causal Knowl-
edge: A Probabilistic Approach. In Advances in Neural Information Pro-
cessing Systems, Vol. 33. https://proceedings.neurips.cc/paper/2020/fle/
02a3c7fb3f489288ae6942498498db20-Paper.pdf

[38] Guolin Ke, Qi Meng, Thomas Finely, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efcient Gradient Boost-
ing Decision Tree. In Advances in Neural Information Processing Systems 30
(NIP 2017). https://www.microsoft.com/en-us/research/publication/lightgbm-
a-highly-efcient-gradient-boosting-decision-tree/

[39] Mark T. Keane, Eoin M. Kenny, Eoin Delaney, and Barry Smyth. 2021. If Only
We Had Better Counterfactual Explanations: Five Key Defcits to Rectify in the
Evaluation of Counterfactual XAI Techniques. In Proceedings of the Thirtieth
International Joint Conference on Artifcial Intelligence. https://doi.org/10.24963/
ijcai.2021/609

[40] Mark T Keane and Barry Smyth. 2020. Good Counterfactuals and Where to Find
Them: A Case-Based Technique for Generating Counterfactuals for Explainable
AI (XAI). In International Conference on Case-Based Reasoning.

[41] Eoin M. Kenny and Mark T Keane. 2021. On Generating Plausible Counterfactual
and Semi-Factual Explanations for Deep Learning. Proceedings of the AAAI
Conference on Artifcial Intelligence 35 (2021). https://ojs.aaai.org/index.php/
AAAI/article/view/17377

[42] Lara Kirfel and Alice Liefgreen. 2021. What If (and How...)? - Actionability
Shapes People’s Perceptions of Counterfactual Explanations in Automated
Decision-Making. In ICML Workshop on Algorithmic Recourse.

[43] Aniket Kittur, Ed H. Chi, and Bongwon Suh. 2008. Crowdsourcing User Studies
with Mechanical Turk. In Proceeding of the Twenty-Sixth Annual CHI Conference
on Human Factors in Computing Systems - CHI ’08. https://doi.org/10.1145/
1357054.1357127

[44] Jon Kleinberg and Manish Raghavan. 2020. How Do Classifers Induce Agents
to Invest Efort Strategically? ACM Transactions on Economics and Computation
8 (2020). https://doi.org/10.1145/3417742

[45] Ron Kohavi et al. 1996. Scaling up the Accuracy of Naive-Bayes Classifers: A
Decision-Tree Hybrid.. In KDD, Vol. 96.

[46] Josua Krause, Adam Perer, and Kenney Ng. 2016. Interacting with Predictions:
Visual Inspection of Black-box Machine Learning Models. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. https://doi.org/
10.1145/2858036.2858529

[47] Jef Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. 2016. How We
Analyzed the COMPAS Recidivism Algorithm. ProPublica 9 (2016).

[48] Thai Le, Suhang Wang, and Dongwon Lee. 2020. GRACE: Generating Con-
cise and Informative Contrastive Sample to Explain Neural Network Model’s
Prediction. arXiv:1911.02042 [cs, stat] (2020). http://arxiv.org/abs/1911.02042

[49] Cynthia C. S. Liem, Markus Langer, Andrew Demetriou, Annemarie M. F. Hiem-
stra, Achmadnoer Sukma Wicaksana, Marise Ph. Born, and Cornelius J. König.
2018. Psychology Meets Machine Learning: Interdisciplinary Perspectives on
Algorithmic Job Candidate Screening. In Explainable and Interpretable Models
in Computer Vision and Machine Learning. https://doi.org/10.1007/978-3-319-
98131-4_9

[50] Tania Lombrozo. 2016. Explanatory Preferences Shape Learning and Inference.
Trends in Cognitive Sciences 20 (2016). https://doi.org/10.1016/j.tics.2016.08.001

[51] Yin Lou, Rich Caruana, and Johannes Gehrke. 2012. Intelligible Models for
Classifcation and Regression. In Proceedings of the 18th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining - KDD ’12.
https://doi.org/10.1145/2339530.2339556

[52] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. 2013. Accurate
Intelligible Models with Pairwise Interactions. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
https://doi.org/10.1145/2487575.2487579

[53] Scott M. Lundberg and Su-In Lee. 2017. A Unifed Approach to Interpreting
Model Predictions. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (NIPS’17). https://doi.org/10.48550/arXiv.1705.
07874

[54] Divyat Mahajan, Chenhao Tan, and Amit Sharma. 2020. Preserving Causal
Constraints in Counterfactual Explanations for Machine Learning Classifers.
arXiv:1912.03277 [cs, stat] (2020). http://arxiv.org/abs/1912.03277

https://doi.org/10.1145/3290605.3300789
https://doi.org/10.1145/2783258.2783281
http://arxiv.org/abs/2009.13211
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-1-4939-0378-8_14
https://doi.org/10.1145/3278721.3278736
https://doi.org/10.1287/mnsc.22.4.455
https://doi.org/10.1287/mnsc.22.4.455
https://doi.org/10.1145/3377325.3377536
https://doi.org/10.1145/3377325.3377536
https://doi.org/10.1109/VIS49827.2021.9623271
https://doi.org/10.1109/VIS49827.2021.9623271
https://proceedings.mlr.press/v97/goyal19a.html
https://doi.org/10.1145/2840728.2840730
https://doi.org/10.1145/2840728.2840730
https://openpgpjs.org/
https://openpgpjs.org/
https://doi.org/10.1145/2736277.2741102
https://doi.org/10.1145/2736277.2741102
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1109/TVCG.2019.2934659
https://doi.org/10.1109/TVCG.2019.2934659
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
http://arxiv.org/abs/1907.09615
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.24963/ijcai.2020/395
http://arxiv.org/abs/1905.11190
http://arxiv.org/abs/2010.04050
https://doi.org/10.1145/3442188.3445899
https://doi.org/10.1145/3442188.3445899
https://proceedings.neurips.cc/paper/2020/file/02a3c7fb3f489288ae6942498498db20-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/02a3c7fb3f489288ae6942498498db20-Paper.pdf
https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/
https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/
https://doi.org/10.24963/ijcai.2021/609
https://doi.org/10.24963/ijcai.2021/609
https://ojs.aaai.org/index.php/AAAI/article/view/17377
https://ojs.aaai.org/index.php/AAAI/article/view/17377
https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1145/3417742
https://doi.org/10.1145/2858036.2858529
https://doi.org/10.1145/2858036.2858529
http://arxiv.org/abs/1911.02042
https://doi.org/10.1007/978-3-319-98131-4_9
https://doi.org/10.1007/978-3-319-98131-4_9
https://doi.org/10.1016/j.tics.2016.08.001
https://doi.org/10.1145/2339530.2339556
https://doi.org/10.1145/2487575.2487579
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.48550/arXiv.1705.07874
http://arxiv.org/abs/1912.03277
https://OpenPGP.Js

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

[55] Brent Mittelstadt, Chris Russell, and Sandra Wachter. 2019. Explaining Expla-
nations in AI. In Proceedings of the Conference on Fairness, Accountability, and
Transparency. https://doi.org/10.1145/3287560.3287574

[56] Kiarash Mohammadi, Amir-Hossein Karimi, Gilles Barthe, and Isabel Valera.
2021. Scaling Guarantees for Nearest Counterfactual Explanations. In Pro-
ceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. https:
//doi.org/10.1145/3461702.3462514

[57] Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining
Machine Learning Classifers through Diverse Counterfactual Explanations. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
https://doi.org/10.1145/3351095.3372850

[58] Chelsea M. Myers, Evan Freed, Luis Fernando Laris Pardo, Anushay Furqan,
Sebastian Risi, and Jichen Zhu. 2020. Revealing Neural Network Bias to Non-
Experts Through Interactive Counterfactual Examples. arXiv:2001.02271 [cs]
(2020). http://arxiv.org/abs/2001.02271

[59] J. A. Nelder and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal
of the Royal Statistical Society. Series A (General) 135 (1972). https://doi.org/10.
2307/2344614

[60] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. 2019. InterpretML:
A Unifed Framework for Machine Learning Interpretability. arXiv (2019).
http://arxiv.org/abs/1909.09223

[61] Donald A. Norman and Stephen W. Draper. 1986. User Centered System Design:
New Perspectives on Human-Computer Interaction.

[62] Seyednaser Nourashrafeddin, Ehsan Sherkat, Rosane Minghim, and Evangelos E.
Milios. 2018. A Visual Approach for Interactive Keyterm-Based Clustering. ACM
Transactions on Interactive Intelligent Systems 8 (2018). https://doi.org/10.1145/
3181669

[63] Judith S. Olson and Wendy Kellogg. 2014. Ways of Knowing in HCI.
[64] Gabriele Paolacci and Jesse Chandler. 2014. Inside the Turk: Understanding

Mechanical Turk as a Participant Pool. Current Directions in Psychological Science
23 (2014). https://doi.org/10.1177/0963721414531598

[65] Nicola Pezzotti, Thomas Hollt, Jan Van Gemert, Boudewijn P.F. Lelieveldt, Elmar
Eisemann, and Anna Vilanova. 2018. DeepEyes: Progressive Visual Analytics
for Designing Deep Neural Networks. IEEE Transactions on Visualization and
Computer Graphics 24 (2018). https://doi.org/10.1109/TVCG.2017.2744358

[66] Kaivalya Rawal and Himabindu Lakkaraju. 2020. Beyond Individualized
Recourse: Interpretable and Interactive Summaries of Actionable Recourses.
arXiv:2009.07165 [cs, stat] (2020). http://arxiv.org/abs/2009.07165

[67] Michael Redmond and Alok Baveja. 2002. A Data-Driven Software Tool for
Enabling Cooperative Information Sharing among Police Departments. Euro-
pean Journal of Operational Research 141 (2002). https://doi.org/10.1016/S0377-
2217(01)00264-8

[68] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifer. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. https://doi.org/10.1145/2939672.2939778

[69] Cynthia Rudin. 2019. Stop Explaining Black Box Machine Learning Models for
High Stakes Decisions and Use Interpretable Models Instead. Nature Machine
Intelligence 1 (2019). https://doi.org/10.1038/s42256-019-0048-x

[70] Chris Russell. 2019. Efcient Search for Diverse Coherent Explanations. In
Proceedings of the Conference on Fairness, Accountability, and Transparency.
https://doi.org/10.1145/3287560.3287569

[71] Harvey M. Salkin and Cornelis A. De Kluyver. 1975. The Knapsack Problem: A
Survey. Naval Research Logistics Quarterly 22 (1975). https://doi.org/10.1002/
nav.3800220110

[72] Matthew J. Saltzman. 2002. Coin-Or: An Open-Source Library for Optimization.
In Programming Languages and Systems in Computational Economics and Finance.
Vol. 18. https://doi.org/10.1007/978-1-4615-1049-9_1

[73] Maximilian Schleich, Zixuan Geng, Yihong Zhang, and Dan Suciu. 2021. GeCo:
Quality Counterfactual Explanations in Real Time. arXiv:2101.01292 [cs] (2021).
http://arxiv.org/abs/2101.01292

[74] Andrew D. Selbst and Solon Barocas. 2018. The Intuitive Appeal of Explainable
Machines. SSRN Electronic Journal (2018). https://doi.org/10.2139/ssrn.3126971

[75] B. Shneiderman. 1996. The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations. In Proceedings 1996 IEEE Symposium on Visual
Languages. https://doi.org/10.1109/VL.1996.545307

[76] Ben Shneiderman. 2020. Bridging the Gap Between Ethics and Practice: Guide-
lines for Reliable, Safe, and Trustworthy Human-centered AI Systems. ACM
Transactions on Interactive Intelligent Systems 10 (2020). https://doi.org/10.1145/
3419764

[77] Naeem Siddiqi. 2013. Credit Risk Scorecards: Developing and Implementing
Intelligent Credit Scoring. http://public.ebookcentral.proquest.com/choice/
publicfullrecord.aspx?p=4035275

[78] Sumedha Singla, Brian Pollack, Junxiang Chen, and Kayhan Batmanghelich.
2020. Explanation by Progressive Exaggeration. In ICLR.

[79] Dylan Slack, Anna Hilgard, Himabindu Lakkaraju, and Sameer Singh. 2021.
Counterfactual Explanations Can Be Manipulated. In Advances in Neural Infor-
mation Processing Systems, Vol. 34. https://proceedings.neurips.cc/paper/2021/

fle/009c434cab57de48a31f6b669e7ba266-Paper.pdf
[80] Daniel Smilkov, Shan Carter, D. Sculley, Fernanda B. Viégas, and Martin

Wattenberg. 2017. Direct-Manipulation Visualization of Deep Networks.
arXiv:1708.03788 (2017).

[81] Harini Suresh, Steven R. Gomez, Kevin K. Nam, and Arvind Satyanarayan. 2021.
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of
Interpretable Machine Learning and Their Needs. arXiv:2101.09824 [cs] (2021).
https://doi.org/10.1145/3411764.3445088

[82] Stratis Tsirtsis and Manuel Gomez Rodriguez. 2020. Decisions, Counterfac-
tual Explanations and Strategic Behavior. In Advances in Neural Information
Processing Systems, Vol. 33. https://proceedings.neurips.cc/paper/2020/fle/
c2ba1bc54b239208cb37b901c0d3b363-Paper.pdf

[83] Berk Ustun, Alexander Spangher, and Yang Liu. 2019. Actionable Recourse in
Linear Classifcation. In Proceedings of the Conference on Fairness, Accountability,
and Transparency. https://doi.org/10.1145/3287560.3287566

[84] Jan Vaillant. 2021. Glpk.Js. https://github.com/jvail/glpk.js/
[85] Arnaud Van Looveren and Janis Klaise. 2020. Interpretable Counterfactual

Explanations Guided by Prototypes. arXiv:1907.02584 [cs, stat] (2020). http:
//arxiv.org/abs/1907.02584

[86] Vera Institute of Justice. 2012. Performance Incentive Funding: Aligning Fiscal
and Operational Responsibility to Produce More Safety at Less Cost. Vera
Institute of Justice Report.

[87] Sahil Verma, John Dickerson, and Keegan Hines. 2020. Counterfactual Expla-
nations for Machine Learning: A Review. arXiv:2010.10596 [cs, stat] (2020).
http://arxiv.org/abs/2010.10596

[88] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual
Explanations Without Opening the Black Box: Automated Decisions and the
GDPR. SSRN Electronic Journal (2017). https://doi.org/10.2139/ssrn.3063289

[89] Caroline Wang, Bin Han, Bhrij Patel, Feroze Mohideen, and Cynthia Rudin. 2020.
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal
Recidivism Prediction. arXiv:2005.04176 (2020). http://arxiv.org/abs/2005.04176

[90] Zijie J. Wang, Alex Kale, Harsha Nori, Peter Stella, Mark E. Nunnally,
Duen Horng Chau, Mihaela Vorvoreanu, Jennifer Wortman Vaughan, and
Rich Caruana. 2022. Interpretability, Then What? Editing Machine Learning
Models to Refect Human Knowledge and Values. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22).
https://doi.org/10.1145/3534678.3539074

[91] Zijie J. Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred
Hohman, Minsuk Kahng, and Duen Horng Chau. 2020. CNN Explainer: Learning
Convolutional Neural Networks with Interactive Visualization. IEEE Transac-
tions on Visualization and Computer Graphics (TVCG) (2020).

[92] Zijie J. Wang, Chudi Zhong, Rui Xin, Takuya Takagi, Zhi Chen, Duen Horng
Chau, Cynthia Rudin, and Margo Seltzer. 2022. TimberTrek: Exploring and
Curating Sparse Decision Trees with Interactive Visualization. In 2022 IEEE
Visualization and Visual Analytics (VIS). https://doi.org/10.1109/VIS54862.2022.
00021

[93] Austin Waters and Risto Miikkulainen. 2014. GRADE: Machine Learning Support
for Graduate Admissions. AI Magazine 35 (2014). https://doi.org/10.1609/aimag.
v35i1.2504

[94] Daniel S. Weld and Gagan Bansal. 2019. The Challenge of Crafting Intelligible
Intelligence. Commun. ACM 62 (2019). https://doi.org/10.1145/3282486

[95] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fer-
nanda Viegas, and Jimbo Wilson. 2019. The What-If Tool: Interactive Probing
of Machine Learning Models. IEEE TVCG 26 (2019). https://doi.org/10.1109/
TVCG.2019.2934619

[96] Tongshuang Wu, Marco Tulio Ribeiro, Jefrey Heer, and Daniel Weld. 2021.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improv-
ing Models. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). https://doi.org/10.18653/v1/2021.acl-
long.523

[97] I-Cheng Yeh and Che-hui Lien. 2009. The Comparisons of Data Mining Tech-
niques for the Predictive Accuracy of Probability of Default of Credit Card
Clients. Expert Systems with Applications 36 (2009). https://doi.org/10.1016/j.
eswa.2007.12.020

[98] Jun Yuan and Enrico Bertini. 2022. Context Sight: Model Understanding and
Debugging via Interpretable Context. In Proceedings of the Workshop on Human-
in-the-Loop Data Analytics (HILDA ’22). Article 1. https://doi.org/10.1145/
3546930.3547502

[99] Zahra Zahedi, Alberto Olmo, Tathagata Chakraborti, Sarath Sreedharan, and
Subbarao Kambhampati. 2019. Towards Understanding User Preferences for
Explanation Types in Model Reconciliation. In 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). https://doi.org/10.1109/HRI.2019.
8673097

[100] Xuezhou Zhang, Sarah Tan, Paul Koch, Yin Lou, Urszula Chajewska, and Rich
Caruana. 2019. Axiomatic Interpretability for Multiclass Additive Models. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. https://doi.org/10.1145/3292500.3330898

https://doi.org/10.1145/3287560.3287574
https://doi.org/10.1145/3461702.3462514
https://doi.org/10.1145/3461702.3462514
https://doi.org/10.1145/3351095.3372850
http://arxiv.org/abs/2001.02271
https://doi.org/10.2307/2344614
https://doi.org/10.2307/2344614
http://arxiv.org/abs/1909.09223
https://doi.org/10.1145/3181669
https://doi.org/10.1145/3181669
https://doi.org/10.1177/0963721414531598
https://doi.org/10.1109/TVCG.2017.2744358
http://arxiv.org/abs/2009.07165
https://doi.org/10.1016/S0377-2217(01)00264-8
https://doi.org/10.1016/S0377-2217(01)00264-8
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1145/3287560.3287569
https://doi.org/10.1002/nav.3800220110
https://doi.org/10.1002/nav.3800220110
https://doi.org/10.1007/978-1-4615-1049-9_1
http://arxiv.org/abs/2101.01292
https://doi.org/10.2139/ssrn.3126971
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1145/3419764
https://doi.org/10.1145/3419764
http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=4035275
http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=4035275
https://proceedings.neurips.cc/paper/2021/file/009c434cab57de48a31f6b669e7ba266-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/009c434cab57de48a31f6b669e7ba266-Paper.pdf
https://doi.org/10.1145/3411764.3445088
https://proceedings.neurips.cc/paper/2020/file/c2ba1bc54b239208cb37b901c0d3b363-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c2ba1bc54b239208cb37b901c0d3b363-Paper.pdf
https://doi.org/10.1145/3287560.3287566
https://github.com/jvail/glpk.js/
http://arxiv.org/abs/1907.02584
http://arxiv.org/abs/1907.02584
http://arxiv.org/abs/2010.10596
https://doi.org/10.2139/ssrn.3063289
http://arxiv.org/abs/2005.04176
https://doi.org/10.1145/3534678.3539074
https://doi.org/10.1109/VIS54862.2022.00021
https://doi.org/10.1109/VIS54862.2022.00021
https://doi.org/10.1609/aimag.v35i1.2504
https://doi.org/10.1609/aimag.v35i1.2504
https://doi.org/10.1145/3282486
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.1016/j.eswa.2007.12.020
https://doi.org/10.1016/j.eswa.2007.12.020
https://doi.org/10.1145/3546930.3547502
https://doi.org/10.1145/3546930.3547502
https://doi.org/10.1109/HRI.2019.8673097
https://doi.org/10.1109/HRI.2019.8673097
https://doi.org/10.1145/3292500.3330898

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

A RECOURSE GENERATION DETAILS

A.1 EBM CF Generation Problem Defnition
Given a trained EBM model � and an instance � ∈ R� , our goal
is to generate a set of CF examples {� (1) , � (2) , . . . , � (�) }, where �
gives a diferent decision than the original input � . In other words,
we would like to fnd � such that � (�) ≠ � (�). Without loss of
generality, we use binary classifcation as an example in this section.

1For binary classifcations, EBM use sigmoid function � (�) = 1+� −�

as a link function. This link function rescales the sum of shape
function values �� = �0 + �1 (�1) + �2 (�2) + · · · + �� (��) + · · · +� �
��, � �� , � � to a probability � (��), ranging from 0 to 1. If � (��) ≥
0.5 or �� ≥ 0, � predicts the input � as positive; otherwise �
predicts � as negative. To generate a CF example � that leads to a
diferent decision than the original input � , we need to make some
changes to � so that the new score �� has a diferent sign from �� .

A.2 Counterfactual Constraint
A CF example � is valid if it changes the sign of the original score
�� . If the model predicts the original input � as positive (�� ≥ 0),
then the score gain � (�, �) = �� − �� should be smaller than −�� .
Similarly, if the model predicts � as negative (�� < 0), then the score
gain � (�, �) should be at least −�� . Since EBM is additive during
inference, we can write � (�, �) as:

� (�, �) = �� − �� � � � �
= �0 + �1 (�1) + · · · + �� (��) + · · · + ��, � �� , � � − � � � �

�0 + �1 (�1) + · · · + �� (��) + · · · + ��, � �� , � �

= (�1 (�1) − �1 (�1)) + · · · + (�� (��) − �� (��)) + · · · + � � � � � �
��, � �� , � � − ��, � �� , � � � �

= � (�1, �2) + · · · + � (�� , ��) + · · · + � �� , � � , �� , � � (3)

We defne the local score gain � (�� , ��) = �� (��) − �� (��) as the
shape function value diference of changing the main feature �� to
�� . Similarly, we defne the local score gain of a pair-wise interaction� � � � � �
term as � �� , � � , �� , � � = �� � �� , � � − �� � �� , � � . Then, we can see
that the counterfactual constraint � (�, �) ≥ −�� or � (�, �) < −��
is just a linear constraint that consists of a linear combination of
shape function value diferences.

A.3 Proximity Requirement
To provide helpful recourse to end users, we want CF examples to
be actionable. One of the most critical measurements of recourse
actionability is high proximity between the CF example and the
original input, where we want the CF example to only make mini-
mal changes to the original input values [83, 88]. For example, a CF
example that suggests increasing annual income by $5k would be
more actionable than another CF example suggesting to increase
annual income by $10k. We can formulate this proximity require-
ment as to minimize the distance � (�, �) between the original input
and the CF example—sum of the distances across all features.

� (�, �) = � (�1, �1) + � (�2, �2) + · · · + � (�� , ��) (4)

Note that there is no distance cost for pair-wise interaction terms
after considering the main efects. We will discuss our choice of
distance functions for continuous and categorical features in-depth

in § A.5. If all distance functions are linear, or we can pre-compute
each � (�� , ��), then the proximity requirement can be formulated
as a linear objective function that we want to minimize.

A.4 Integer Linear Optimization
As a gradient-boost tree model, EBM applies equal-frequency bin-
ning on continuous features to speed up the training process with
a minimal accuracy cost. For categorical features, EBM uses the
discrete levels as bins. For pair-wise interaction terms, EBM also
bins two feature values to construct a lookup table. Therefore, a
CF example can alter the model output if and only if it changes the
active bins that some feature values are in. There are fnite number
of bins, where each bin provides a local score gain � (�� , ��) and
has a distance cost � (�� , ��). Therefore, generating CF examples
for EBM can be thought as solving a variation of Knapsack Prob-
lems [71]. A knapsack problem considers a set of items where each
item has a reward and a weight, and the goal is to fnd the optimal
way to pack items to maximize the total reward under a weight
budget. Popular methods used to solve knapsack problems include
integer programming (IP) and dynamic programming. GAM Coach
uses IP because (1) it allows users to easily customize optimization
constraints (§ A.8); (2) users can generate multiple optimal and
sub-optimal CF example as recourse (§ A.8); (3) modern IP solvers
can quickly fnd a globally optimal solution (§ A.10).

We express the GAM Coach CF generation method as an integer
linear programming of the form:

min distance (5a)
�∑ ∑

s.t. distance = ������ (5b)
�=1 � ∈��

�∑ ∑ ∑ ∑ ∑
− �� ≤ ������ + ℎ� ��1�2 �� ��1�2

�=1 � ∈�� (�, �) ∈� �1 ∈�� �2 ∈� �

(5c)
�� ��1�2 = ���1 � ��2 for (�, �) ∈ �, �1 ∈ �� , �2 ∈ � � (5d) ∑

��� ≤ 1 for � = 1, . . . , � (5e)
� ∈��

��� ∈ {0, 1} for � = 1, . . . , �, � ∈ �� (5f)
�� ��1�2 ∈ {0, 1} for (�, �) ∈ �, �1 ∈ �� , �2 ∈ � � (5g)

Here, we use an indicator variable ��� (5f) to denote if a main efect
bin is active. If ��� = 1, it means that we change the feature value
of �� to the closest value in its bin �. All bin options of �� are listed
in a set �� . For each feature �� , there can be at most one active
bin (5e); if there is no active bin, then we do not change the feature
value of �� . Similarly, we use an indicator variable �� ��1�2 (5g) to
denote if an interaction efect is active. This interaction efect is
active if and only if bin �1 of feature �� and bin �2 of feature � �
are both active (5d). � denotes a set of feature pairs that the given
EBM computes interaction efects from. Constraint (5b) determines
the total distance cost for a potential CF example; it uses a set of
pre-computed distance costs ��� of changing one feature �� to the
closest value in bin � (§ A.3).

��� ���

�

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

Constraint (5c) ensures that any solution would fip the predic-
tion of the given EBM model (§ A.2). Constraint (5c) is used when
the model predicts the original input as negative; if the original
prediction is positive, we only need to change ≤ to > (§ A.2). Here,
��� and ℎ� ��1�2 denote pre-computed local score gains of activating
bin � in �� and activating the interaction efect �� ��1�2 , respectively.
Note that activating one bin can trigger multiple interaction efects,
but ℎ� ��1�2 is only counted when both ���1 and � ��2 are active (5c
and 5g). Therefore, we compute ��� by preemptively adding the
shape function diferences of all partially afected interaction efects
to the shape function diference of the main efect. For example, if
� = {(�, �) , (�,�) , (�,�)}, we compute ��� and � �� as: � � � � � �

��� = (�� (���) − �� (��0)) + �� � ��� , � � 0 − �� � ��0, � � 0 +

(��� (��� , ��0) − ��� (��0, ��0)) (6a)� � � � � �� � � � � �
� �� = �� � �� − �� � � 0 + �� � ��0, � �� − �� � ��0, � � 0

(6b)

Here, ��� denotes the closest value of bin � of feature �� , and ��0
denotes the original value of feature �� . In 6a, we add two partial
interaction score gains because activating bin � of feature �� afects
two interaction terms (�, �) and (�,�). Similarly, 6a only includes
one partial interaction score gain because activating bin � of feature
� � only afects one interaction term (�, �).

However, when both ���1 and � ��2 are active, the interaction score � � � �
gain should be �� � ���1 , � ��2 − �� � ��0, � �0 . Therefore, we need to

ofset two partial interaction score gains added preemptively when
computing ��� and � �� (6a and 6b). To do that, we simply subtract
them when computing the interaction score gain ℎ� ��1�2 : � � � � � �

ℎ� ��1�2 = �� � ���1 , � ��2 − �� � ��0, � �0 − � � � � � �
�� � ���1 , � �0 − �� � ��0, � �0 − (7)� � � � �
�� � ��0, � ��2 − �� � ��0, � � 0

Once trained, the EBM model transforms all parameters into lookup
histograms and lookup tables (§ 4.1), so we can quickly pre-compute
all ��� and ℎ� ��1�2 terms. Furthermore, we can linearize the binary
variable multiplication constraint (5d) as three linear constraints:
(1) �� ��� ≤ ��� ; (2) �� ��� ≤ � �� ; (3) �� ��� ≥ ��� + � �� − 1. Then, all
constraints (5b–5g) are linear, and (5) is an integer linear program
with all binary variables, which can be efciently solved by modern
IP solvers [72]. As this formulation considers all possible efective
changes to the original input, the solution to (5) is guaranteed to
be the optimal CF example regarding the given distance functions.

A.5 Choice of Distance Function
It is challenging to defne a distance function that can accurately
measure the difculty for end users to change a feature [3]. In GAM
Coach, we use the ℓ1 distance to measure the distance between
the original input and the CF example across continuous features.
As diferent continuous features often have diferent scales, we
divide each feature-wise distance by the median absolute deviation
(MAD) of that feature on the training set, which is a common
choice among other CF generation methods [e.g., 33, 57, 88]. MAD

provides a robust way to measure the variance within each feature.
Here, � is the size of the training set. Dividing the ℓ1 distance with
MAD implies that it is relatively easier for end users to change a
high-variance features than low-variance features.

|�� − �� |
�cont (�� , ��) = � � � � (8)

(�) (�)Median� � − Median� �
�=1 � �=1 �

It is harder to defne the distance for categorical features. Some
CF methods use 1 for features having the same level and 0 for
diferent level [57], and others consider the probability that two
examples would share the same level [95]. In GAM Coach, we use
the complement of the probability of seeing one level based on its
frequency in the training set. Here, � is the size of the training set
and I is the indicator function. This distance defnition implies that
it is easier for end users to change to a more frequent level in a
given categorical feature. � �Í� (�)

� = �� � =1 I �
�cat (�� , ��) = 1 − (9)

�
After counting distance costs of all bins of main efects, we re-

weight distance costs of all categorical bins so that the average of
continuous feature distances is the same as the average of cate-
gorical feature distances. There is no right way to choose distance
functions [3, 57]. Fortunately, all distances are pre-computed before
solving the actual IP, and GAM Coach provides fexible APIs to let
developers use their own distance functions.

Ultimately, we believe that instead
of researchers searching for a one-
ft-all distance function, we should
enable end users to directly specify
their own difculty to change fea-
tures (G2). To do that, GAM Coach
provides end users with an interface
to select feature difculties by clicking
buttons (Fig. 4-B1). Internally, GAM
Coach assigns each difculty level Figure S1: Distance mul-
with a constant multiplier (Fig. S1). tipliers of difculties.
Before solving the IP, the tool multi-
plies the pre-computed distances of all bins in a feature with this
constant multiplier. For example, if a user selects “very easy” for
feature � , then the distance between the original value �� and the � �
closest value in bin �� � of feature � is computed as 0.1 ×� �� � , �� . If
a user selects the “impossible to change” difculty, GAM Coach will
remove all variables associated with this feature in the IP. Therefore,
when generating new recourse plans, GAM Coach would prioritize
features that are easier to change and would not consider features
that are impossible to change. We choose six levels of feature dif-
fculties because we observe that we can mix and match these six
levels on diferent features to fexibly fne-tune recourse generation
in our experiments with six datasets. We choose the four constant
multipliers [0.1, 0.5, 2, 10] because they can noticeably afect the
IP solutions with “appropriate” strengths. However, researchers
and developers can easily change these constant values and also
the difculty granularity (e.g., with only three levels “very easy”,
“neutral”, and “impossible”) in their specifc use cases.

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

A.6 Generalization to Regression
Barocas et al. [3] fnds that algorithmic recourse literature often
assumes the ML model outcome to be binary, such as loan approval,
school acceptance, and hiring decision. However, in reality, end
users also need recourse for AI-generated decisions on continuous
values such as a loan’s interest rate. GAM Coach supports generat-
ing CF examples for regression problems. To do that, we only need
to modify the CF constraint to bound the needed score gain to meet
the desired range provided by the end user (§ A.2). Then, we can
update the left side value −�� and the inequality in 5c to refect the
score gain boundaries. This constraint would still be linear, and IP
solver can solve the whole program. For example, to increase the
predicted continuous value (e.g., interest rate) by at least � , we only
need to modify 5c to be: ∑� ∑ ∑ ∑ ∑

� ≤ ������ + ℎ� ��1�2 �� ��1�2 (10)
�=1 � ∈�� (�, �) ∈� �1 ∈�� �2 ∈� �

A.7 Generalization to Multiclass Classifcation
In addition to regression, our IP can be easily generalized for multi-
class classifcation. Compared to binary EBM, multiclass EBM [100]
uses a multiclass cross entropy as its loss function and softmax
as its link function. Once trained, an �-class EBM has a similar
structure as the binary EBM. However, there are no interaction
terms in a multiclass EBM, and each bin of a feature now has �
associated additive scores instead of just 1 score as in binary EBM.
During inference, the �-class EBM adds up the additive scores
from all features and an intercept for each class. For example,
we use �1 to denote the score for class 1 of input � , then �1 = � �
�0
1 + �1

1 (�1) + �2
1 (�2) + · · · + � 1 (��). Next, the softmax link func-

�
tion (Equation 11) rescales � scores ��

1 , ��
2 , . . . , ��

� to � class prob-Í� � abilities ��
1, ��

2 , . . . , ��
� , where =0 � = 1. Finally, the multiclass � �

� EBM chooses the class � with the largest �� as the fnal prediction. � �
exp ��

� �
� � = � � (11)Í� �

=1 exp � � �

Note that the softmax function is monotonic and it preserves the
rank order of its input values. In other words, to make a multiclass
EBM predict class � on a CF example � , we only need to make
� �

� < � for � = 1, . . . , � and � ≠ � , which can be written as� �
� − 1 linear constraints. Therefore, the GAM Coach CF generation
method for multiclass classifcation (target class is �) can be written
as the following integer linear program:

min distance (12a)
�∑ ∑

s.t. distance = ��� ��� (12b)
�=1 � ∈��

� � ∑ ∑ ∑ ∑
� � � �

� � � � + ��� < �� + ��� �� ��
�=1 � ∈�� �=1 � ∈��

for � = 1, . . . , � and � ≠ � (12c) ∑
��� ≤ 1 for � = 1, . . . , � (12d)

� ∈��

��� ∈ {0, 1} for � = 1, . . . , �, � ∈ �� (12e)

� In constraint 12c, � is the total score for class � of the original �
� input � . Similar to ��� in 5c, � denotes the score gain for class � of
��

changing feature �� to the closest value in its bin �. All constants
� �

�� and � can be pre-computed.
��

A.8 Support Various Actionability Constraints
To generate recourses that are actionable for end users, we not only
prefer CF examples that are close to the original input (§ A.3), but
also concise [48], diverse [57, 70], and respect to individual end users’
preferences [3, 39]. With GAM Coach, we can generate CF examples
with these desired properties by formulating these requirements
as linear constraints in the IP. For example, to generate concise
or sparse CF examples—examples that only change a few features
from the original input—we can introduce a linear constraint to
bound the total number (up to �) of active variables for main efects: Í� Í

��� ≤ � . To generate diverse CF examples, we can solve �=1 � ∈��

the same IP multiple times, where each time we add a new constraint
to force the solver to avoid previous solutions. For example, we
can set ���� � �� � ����

= 0 for new iterations where {���� = 1, � �� � =
1, ����

= 1} is a previous solution. Since all variables are binary,
we can linearize these multiplication constraints [18]. With this
approach, the generated � diverse solutions are also guaranteed to
be the top-� optimal solutions. Similarly, if we have prior knowledge
of end users’ preferences, such as difculties and actionable ranges
of individual features, we can adjust the distance costs during the
pre-computation process. Therefore, the fexibility of IP helps us
operationalize the design of GAM Coach (G2).

A.9 CF Generation Method Comparison
Our CF generation method is the frst and only CF algorithm specif-
cally developed for EBM models. Before our method, ML researchers
and developers would need to use model-agnostic algorithms like
genetic algorithm [73] and KD-tree [85] to generate recourse plans
for EBM models. Our technique is guaranteed to outperform or tie
with these algorithms if we measure the quality of CFs by their
distances (e.g., ℓ1 distance) to the original input. This is because
our technique formulates CF generation as a linear optimization
program (§ A.4) that minimizes the distance between the modifed
and original inputs. For completeness, we have included such com-
parison results in Table S1 to give readers a sense of how far from
optimal existing CF generation methods are in terms of distance.

In the comparison experiment, we train three EBM binary clas-
sifers on LendingClub [1], Adult [45], and German Credit [14]
datasets. We use our IP approach, genetic algorithm, and KD-tree to
generate CFs for test samples that are rejected for a loan (378, 400,
and 239 samples from three datasets). We use the DICE library’s
implementation [57] of the genetic algorithm and KD-tree. We dis-
able our method’s default categorical distance (§ A.5) to match the
other two algorithms (distance is 1 if the category is changed and 0
otherwise). All three algorithms use MAD adjusted ℓ1 to measure
the distance of continuous variables. The distance between two
samples is defned as the mean of all categorical and continuous
distances. The results (Table S1) highlight that compared to existing
methods, CFs generated by our method are signifcantly closer to
the original input, more sparse, and encounter fewer failures.

GAM Coach: Towards Interactive and User-centered Algorithmic Recourse CHI ’23, April 23–28, 2023, Hamburg, Germany

Table S1: We compare our method with two existing CF generation methods: genetic algorithm and KD-tree. We train three
EBM binary classifers on LendingClub, German Credit, and Adult datasets, and then apply three CF algorithms to generate CFs
for test samples that are rejected for a loan. The results highlight that our method signifcantly outperforms existing methods.
In particular, CFs generated by our method are closer to the original input, more sparse, and encounter less failures.

Mean Distance Mean Number of Features Changed Number of Failures

Lending Club (378 samples)
Our Method 0.1836 2.2222 0

Genetic Algorithm [73] 3.1950 10.2520 1

KD Tree [85] 3.7388 10.8360 6

German Credit (239 samples)
Our Method 1.1392 2.0962 0

Genetic Algorithm [73] 6.8573 9.3305 0

KD Tree [85] 7.3565 9.9414 0

Adult (400 samples)
Our Method 1.6856 2.4075 0

Genetic Algorithm [73] 4.9231 4.6475 0

KD Tree [85] 5.1082 4.9500 0

A.10 Fast CF Generation
In many cases of providing algorithmic recourse, we need to priori-
tize CF example generation speed over the optimality of generated
CF examples [73]. With GAM Coach, modern IP solvers can ef-
ciently solve the program (Equation 5). The complexity of solving
an integer linear program increases along two factors: the number
of variables and the number of constraints. Here, all variables are
binary—making the program easier to solve than a program with
non-binary integer variables. For any dataset, there are always ex-
actly 3 constraints from 5b, 5c, and 5e. The number of constraints
from 5d increases along the number of interaction terms |� | and
the number of bins per feature |�� | on these interaction terms.
In practice, |� | and |�� | are often bounded to ensure GAMs are
interpretable. For example, by default the popular GAM library
InterpretML [60] bounds |� | ≤ 10 and |�� | ≤ 32. Therefore, in
the worst-case scenario with 10 continuous-continuous interaction
terms, there will be at most 10 × 32 × 32 = 10, 240 constraints from
5d. For example, on the Communities and Crime dataset [67] with

119 continuous features, 1 categorical feature, and 10 pairwise in-
teraction terms, there are about 7.2k constraints and 3.6k variables
in our program. It only takes about 0.5–3.0 seconds to generate a
recourse plan using Firefox Browser on a MacBook.

In addition, in applications where the generation speed is critical,
developers can signifcantly improve the run time by fltering less
efective bins during the pre-computation process, which decreases
the number of variables quadratically. First, developers can flter out
main efect bins that give opposite score gains from the objective
(i.e., positive score gain when the goal is to lower the prediction
score). By default, GAM Coach does not apply this fltering, because
in rare cases the score gains of associated interaction terms can
ofset the opposite score gain from the main efect. By fltering
out bins with opposite score gains, GAM Coach can consistently
generate CF examples in under 1 second in end users’ browsers (§ 5).
To further improve the speed, developers can also flter out main
efect bins that give similar score gains as existing bins but have a
higher distance cost.

CHI ’23, April 23–28, 2023, Hamburg, Germany Zijie J. Wang, et al.

B SUPPLEMENTARY FIGURES

Figure S2: To help user study participants imagine the loan application scenario, the GAM Coach interface allows participants
to change the input values of the hypothetical loan applicant. The top row includes input felds for the 9 continuous features,
and the bottom row contains dropdowns for the 11 categorical features used in the EBM model. Users can hover over the feature
name to see the detailed description for that feature.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Algorithmic Recourse
	2.2 Interactive Tools for Interpretable ML

	3 Design Goals
	4 Techniques for Customizable Recourse Generation
	4.1 Model Choice
	4.2 CF Generation: Integer Linear Programming
	4.3 Recourse Customization

	5 User Interface
	5.1 Coach Menu
	5.2 Feature Panel
	5.3 Bookmarks and Receipt
	5.4 Usage Scenarios
	5.5 Open-source & Generalizable Tool

	6 User Study
	6.1 Participants
	6.2 Study Design
	6.3 Results

	7 Limitations
	8 Discussion and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Recourse Generation Details
	A.1 EBM CF Generation Problem Definition
	A.2 Counterfactual Constraint
	A.3 Proximity Requirement
	A.4 Integer Linear Optimization
	A.5 Choice of Distance Function
	A.6 Generalization to Regression
	A.7 Generalization to Multiclass Classification
	A.8 Support Various Actionability Constraints
	A.9 CF Generation Method Comparison
	A.10 Fast CF Generation

	B Supplementary Figures

