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Figure 1: With a novel interactive interface and an adaptation of integer linear programming, GAM Coach empowers people who 
are impacted by machine learning-based decision-making systems to iteratively generate algorithmic recourse plans that refect 
their preferences. Take loan application as an example. (A) The Coach Menu helps a rejected loan applicant browse diverse re-
course plans that would lead to loan approval. After the user selects a plan, (B) the Feature Panel visualizes all feature information 
with progressive disclosure, enabling users to explore how hypothetical inputs afect the model’s decision and specify recourse 
preferences—such as (B1) the difculty of changing a feature and (B2) its acceptable range of values—guiding GAM Coach to 
generate actionable plans. (C) The Bookmarks window allows users to compare bookmarked plans and save a verifable receipt. 

ABSTRACT 
Machine learning (ML) recourse techniques are increasingly used in 
high-stakes domains, providing end users with actions to alter ML 
predictions, but they assume ML developers understand what input 
variables can be changed. However, a recourse plan’s actionability 
is subjective and unlikely to match developers’ expectations com-
pletely. We present GAM Coach, a novel open-source system that 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

adapts integer linear programming to generate customizable coun-
terfactual explanations for Generalized Additive Models (GAMs), 
and leverages interactive visualizations to enable end users to iter-
atively generate recourse plans meeting their needs. A quantitative 
user study with 41 participants shows our tool is usable and useful, 
and users prefer personalized recourse plans over generic plans. 
Through a log analysis, we explore how users discover satisfactory 
recourse plans, and provide empirical evidence that transparency 
can lead to more opportunities for everyday users to discover coun-
terintuitive patterns in ML models. GAM Coach is available at: 
https://poloclub.github.io/gam-coach/. 
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1 INTRODUCTION 
As machine learning (ML) is increasingly used in high-stakes decision-
making, such as lending [77], hiring [49], and college admissions [93], 
there has been a call for greater transparency and increased oppor-
tunities for algorithmic recourse [88]. Algorithmic recourse aims to 
help those impacted by ML systems learn about the decision rules 
used [74], and provide suggestions for actions to change decision 
outcome in the future [83]. This often involves generating coun-
terfactual (CF) examples, which suggest minimal changes in a few 
features that would have led to the desired decision outcome [88], 
such as “if you had decreased your requested loan amount by $9k 
and changed your home ownership from renting to mortgage, your 
loan application would have been approved.” (Fig. 2A) 

For such approaches to be useful, it is necessary for the suggested 
actions to be actionable—realistic actions that users can appreciate 
and follow in their real-life circumstances. In the example above, 
changing home ownership status would arguably not be an action-
able suggestion for most loan applicants. To provide actionable re-
course, recent work proposes techniques such as generating concise 
CF examples [48], creating a diverse set of CF examples [57, 70], and 
grouping features into diferent actionability categories [36]. These 
approaches often rely on the underlying assumption that ML devel-
opers can measure and predict which CF examples are actionable for 
all users. However, the actionability of recourse is ultimately subjec-
tive and varies from one user to another [3, 87], or even for a single 
user at diferent times [50, 99]. Therefore, there is a pressing need to 
capture and integrate user preferences into algorithmic recourse [3, 
42]. GAM Coach aims to take a user-centered approach (Fig. 2B–C) 
to fll this critical research gap. In this work, we contribute: 

• GAM Coach, the frst interactive algorithmic recourse tool 
that empowers end users to specify their recourse preferences, 
such as difculty and acceptable range for changing a feature, and 
iteratively fne-tune actionable recourse plans (Fig. 1). With an 
exploratory interface design [76], our tool helps users understand 
the ML model behaviors by experimenting with hypothetical 
input values and inspecting their efects on the model outcomes. 
Our tool advances over existing interactive ML tools [19, 95], 
overcoming unique design challenges identifed from a literature 
review of recent algorithmic recourse work (§ 3, § 5). 

• Novel adaptation of integer linear programming to gen-
erate CF examples. To operationalize interactive recourse, we 
ground our research in generalized additive models (GAMs) [6, 
59], a popular class of models that performs competitively to 
other state-of-the-art models yet has a transparent and simple 
structure [7, 60, 89, 94]. GAMs enable end users to probe model 
behaviors with hypothetical inputs in real time directly in web 
browsers. Adapting integer linear programming, we propose an 

Figure 2: GAM Coach enables end users to iteratively fne-
tune recourse plans. (A) If a user fnds the initial generic 
plan less actionable, (B) they can specify their recourse pref-
erences through simple interactions. (C) Our tool will then 
generate tailored plans that refect the user’s preferences. 

efcient and fexible method to generate optimal CF examples 
for GAM-based classifers and regressors with continuous and 
categorical features and pairwise feature interactions [52] (§ 4). 

• Design lessons distilled from a user study with log analysis. 
We conducted an online user study with 41 Amazon Mechanical 
Turk workers to evaluate GAM Coach and investigate how ev-
eryday users would use an interactive algorithmic recourse tool. 
Through analyzing participants’ interaction logs and subjective 
ratings in a hypothetical lending scenario, our study highlights 
that GAM Coach is usable and useful, and users prefer personal-
ized recourse plans over generic plans. We discuss the charac-
teristics of users’ satisfactory recourse plans, approaches users 
take to discover them, and design lessons for future interactive 
recourse tools. We also provide empirical evidence that with 
transparency, everyday users can discover and are often puzzled 
by counterintuitive patterns in ML models (§ 6). 

• An open-source, web-based implementation that broadens 
people’s access to developing and using interactive algorithmic 
recourse tools. We implement our CF generation method in both 
Python and JavaScript, enabling future researchers to use it on 
diverse platforms. We develop GAM Coach with modern web 
technologies such as WebAssembly, so that anyone can access 
our tool using their web browsers without the need for instal-
lation or a dedicated backend server. We open-source1 our CF 
generation library and GAM Coach system with comprehensive 
documentation2 (§ 5.5). For a demo video of GAM Coach, visit 
https://youtu.be/ubacP34H9XE. 

To design and evaluate a prospective interface [76] for interactive 
algorithmic recourse, we situate GAM Coach in loan application 
scenarios. However, we caution that adapting GAM Coach for 
real lending settings would require further research with fnancial 
and legal experts as well as people who would be impacted by the 
system. Our goal is for this work to serve as a foundation for the 
design of future user-centered recourse and interpretable ML tools. 

2 RELATED WORK 

2.1 Algorithmic Recourse 
Algorithmic recourse aims to design techniques that provide those 
impacted by ML systems with actionable feedback about how to 

1GAM Coach code: https://github.com/poloclub/gam-coach
2GAM Coach documentation: https://poloclub.github.io/gam-coach/docs 
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alter the outcome of ML models. Popularized by Wachter et al. [88], 
researchers typically generate this actionable feedback by creating 
CF examples. Here, a CF example represents a recourse plan that 
contains minimal changes to the original input but leads to a dif-
ferent model prediction [35, 83]. For example, a bank that uses ML 
models to inform loan application decisions can provide a rejected 
loan applicant with a recourse plan that suggests the applicant 
increase their annual income by $5k so that they can obtain a loan 
approval. CF examples not only inform end users about the key fea-
tures contributing to the decision, but also provide suggestions that 
end users can act on to obtain the desired outcome [83]. Researchers 
have developed various methods to generate CF examples, such as 
casting it as an optimization problem [e.g., 11, 33, 56, 70, 83, 88], 
searching through similar samples [e.g., 12, 21, 40, 73, 85], and 
developing generative models [e.g., 13, 30, 41, 78]. 

It is challenging to generate helpful CF examples in practice. 
Besides making minimal changes, a helpful CF example should 
also be actionable for the end user [39, 83]. To generate action-
able recourse plans, recent research includes proposals to fnd con-
cise CF examples [48], consider causality [36, 37, 54], present di-
verse plans [57, 70], and assign features with diferent actionability 
scores [36]. However, the actionability of recourse is ultimately 
subjective and varies among end users [42, 50, 87, 99]. To restore 
users’ autonomy with CF examples, some researchers explore the 
potential of interactive tools. For example, Prospector [46], What-
If Tool [95], Polyjuice [96], and AdViCE [20] leverage interactive 
visualizations to help ML developers debug models with CF exam-
ples. Context Sight [98] allows ML developers to analyze model 
errors by customizing the acceptable feature range and desired 
number of changes in CF examples. CEB [58] interactively presents 
CF examples to help non-experts understand neural networks. In 
comparison, GAM Coach aims to empower end users to discover 
actionable strategies to alter undesirable ML decisions. 

DECE [9] is a visual analytics tool designed to help ML devel-
opers and end users interpret neural network predictions with CF 
examples. It allows users to customize CF examples by specifying 
acceptable feature ranges. In comparison, while the interface for 
GAM Coach is model agnostic, the recourse generation technique 
it employs is tailored to GAMs, a diferent model family, and our 
tool especially focuses on end users without an ML background. We 
evaluate GAM Coach through an observational log study with 41 
crowdworkers, while DECE is evaluated through three expert inter-
views. These evaluations provide complementary viewpoints and 
insights into how interactive recourse tools may be used in practice. 
Possibly closest in spirit to our work is ViCE [19], an interactive vi-
sualization tool that generates CF examples on end users’ selected 
continuous features. In contrast, GAM Coach—which supports 
both continuous and categorical features, as well as their pairwise 
interactions—allows end users to specify a much wider range of 
recourse preferences including feature difculty, acceptable range, 
and the number of features to change. Our tool then generates 
optimal and diverse CF examples meeting specifed preferences. 

2.2 Interactive Tools for Interpretable ML 
Besides CF explanations, researchers have developed interactive 
tools to help diferent ML stakeholders interpret ML models [e.g., 

28, 31, 65, 92]. In particular, the simple structure and high perfor-
mance of GAMs have attracted many researchers to use this model 
to explore how interactivity plays a role in interpretable ML. For 
example, Gamut [27] provides both global and local explanations by 
visualizing the shape functions in GAMs. Similarly, TeleGam [29] 
helps users understand GAM predictions by combining both graph-
ical and textual explanations. GAM Changer [90] supports users 
to edit GAM model parameters through interactive visualization. 
However, the target users of these tools are ML experts, such as ML 
researchers and model developers, or domain experts who need to 
vet and correct models before deployment. In comparison, GAM 
Coach targets people who are impacted by ML models and who are 
less knowledgeable about ML and domain-specifc concepts [81]. 

There is an increasing body of research in developing interactive 
systems to help non-experts interact with ML models. The main goal 
of these tools is to educate non-experts about the underlying mech-
anisms of ML models. For example, Teachable Machine [5] helps 
users learn about basic ML concepts through interactive demos. Ten-
sorfow Playground [80], GAN Lab [32], and CNN Explainer [91] use 
interactive visualizations to help novices learn about the underlying 
mechanisms of neural networks, generative adversarial networks, 
and convolutional neural networks, respectively. In contrast, in-
stead of educating non-experts on the technical inner workings of 
ML models, we focus on helping non-experts who are impacted by 
ML models understand why a model makes a particular decision 
and what actions they can take to alter that decision. 

3 DESIGN GOALS 
Our goal is to design and develop an interactive, visual experimenta-
tion tool that respects end users’ autonomy in algorithmic recourse, 
helping them discover and fne-tune recourse plans that refect 
their preferences and needs. We identify fve main design goals of 
GAM Coach through synthesizing the trends and limitations of 
traditional algorithmic recourse systems [e.g., 2, 3, 35, 39, 55, 76, 88]. 
G1. Visual summary of diverse algorithmic recourse plans. 

To help end users fnd actionable recourse plans, researchers 
suggest presenting diverse CF options that users can pick 
from [3, 57]. Thus, GAM Coach should efciently generate 
diverse recourse plans (§ 4.2) and present a visual summary 
of each plan as well as display multiple plans at the same 
time (§ 5.1). This could help users compare diferent strategies 
and inform interactions to generate better recourse plans. 

G2. Easy ways to specify recourse preferences. What makes a 
recourse plan actionable varies from one user to another—it 
is crucial for a recourse tool to enable users to specify a wide 
range of recourse preferences [3, 42, 55]. Therefore, we would 
like to allow users to easily confgure (1) the difculty of chang-
ing a feature, (2) the acceptable range within which a feature 
can change, and (2) the maximum number of features that a 
recourse plan can change (§ 5.2), and GAM Coach should gen-
erate plans refecting users’ specifed preferences (§ 4.3). This 
interactive recourse design would empower users to iteratively 
customize recourse plans until they fnd satisfactory plans. 

G3. Exploratory interface to experiment with hypothetical 
inputs. The goal of algorithmic recourse is not only to help 
users identify actions to alter unfavorable model decisions, but 
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also to help them understand how a model makes decisions [35, 
88]. When explaining a model’s decision-making, research 
shows that interfaces allowing users to probe an ML model 
with diferent inputs help users understand model behaviors 
and lead to greater satisfaction with the model [10, 62, 76, 
95]. Therefore, we would like GAM Coach to enable users 
to experiment with diferent hypothetical inputs and inspect 
how these changes afect the model’s decision (§ 5.2). 

G4. Clear communication and engagement. The target users 
of GAM Coach are everyday people who are usually less 
knowledgeable about ML and domain-specifc concepts [81]. 
Our goal is to design and develop an interactive system that is 
easy to understand and engaging to use, requiring the tool to 
communicate and explain recourse plans and domain-specifc 
information to end users (§ 5.2, § 5.3). 

G5. Open-source and model-agnostic implementation. We 
aim to develop an interactive recourse tool that is easily ac-
cessible to users, with no installation required. By using web 
browsers as the platform, users can directly access GAM Coach 
through their laptops or tablets. Additionally, we aim to make 
our interface model-agnostic so that future researchers can 
use it with diferent ML models and recourse techniques. Fi-
nally, we would like to open-source our implementation and 
provide documentation to support future design, research, and 
development of interactive algorithmic recourse (§ 5.5). 

4 TECHNIQUES FOR CUSTOMIZABLE 
RECOURSE GENERATION 

Given our design goals (G1–G5), it is crucial for GAM Coach to 
generate customizable recourse plans interactively with a short 
response time. Therefore, we base our design on GAMs, a family of 
ML models that perform competitively to state-of-the-art models 
yet have a transparent and simple structure—enabling end users to 
probe model behaviors in real-time with hypothetical inputs. In ad-
dition, with a novel adaptation of integer linear programming (§ 4.2), 
GAMs allow us to efciently generate recourse plans that respect 
users’ preferences and thus achieve our design goals (§ 4.3). 

4.1 Model Choice 
To operationalize our design of interactive algorithmic recourse, we 
ground our research in GAMs [24]. More specifcally, we make use 
of a type of GAMs called Explainable Boosting Machines, (EBMs) [6, 
60], which perform competitively to the state-of-the-art black-box 
models yet have a transparent and simple structure [7, 60, 89, 94]. 
Compared to simple models like linear models or decision trees, 
EBMs achieve superior accuracy by learning complex relations 
between features through gradient-boosting trees [52], and thus 
deploying our design is realistic. Compared to complex models like 
neural networks, EBMs have a similar performance on tabular data 
but a simpler structure; therefore, users can probe model behaviors 
in real-time with hypothetical inputs (G3). 

Given an input � ∈ R� with � features, the output � ∈ R of an 
EBM model can be written as: 

� = � (�� ) 
(1)

�� = �0 + �1 (�1) + �2 (�2) + · · · + �� (�� ) + · · · + �� � (�� , � � ) 

Here, each shape function �� for single features � ∈ {1, 2, . . . , �} or 
�� � (�� , � � ) for pairwise interactions between features [52] is learned 
using gradient-boosted trees [51]. �� is the sum of all shape function 
outputs as well as the intercept constant �0. The model converts 
�� to the output � through a link function � that is determined by 
the ML task. For example, a sigmoid function is used for binary 
classifcations, and an identity function for regressions. 

What distinguishes EBMs from other GAMs is that the shape 
function �� or �� � is an ensemble of trees, mapping a main efect fea-
ture value � � or a pairwise interaction (�� , � � ) to a scalar score. Be-
fore training, EBM applies equal-frequency binning on each continu-
ous feature, where bins have diferent widths but the same number 
of training samples. This discrete bucketing process is commonly 
used to speed up gradient-boosting tree methods with little cost in 
accuracy, such as in popular tree-based models LightGBM [38] and 
XGBoost [8]. For categorical features, EBMs treat each discrete level 
as a bin. Once an EBM model is trained, the learned parameters for 
each ensemble of trees which defnes the feature split points and 
scores in each region defned by these split points are transformed 
to a lookup histogram (for univariate features) and a lookup table (for 
pairwise interactions). When predicting on a data point, the model 
frst looks up corresponding scores for all feature values and inter-
action terms and then applies Equation 1 to compute the output. 

4.2 CF Generation: Integer Linear Programming 
A recourse plan is a CF example � that makes minimal changes to the 
original input � but leads to a diferent prediction. Without loss of 
generality, we use binary classifcation as an example, with sigmoid

1function � (�) = as a link function. If � (�� ) ≥ 0.5 or �� ≥ 0,1+� −� 

the model predicts the input � as positive; otherwise it predicts � as 
negative. To generate � , we can change � so that the new score �� 
has a diferent sign from �� . Note that �� is a linear combination of 
shape function scores and so is �� − �� . Thus, we can express this 
counterfactual constraint as a linear constraint (derivation in § A.2). 
To enforce � to only make minimal changes to � , we can minimize 
the distance between � and � , which can also be expressed as a 
linear function (§ A.3). Since all constraints are linear, and there 
are a fnite number of bins for each feature, we express the GAM 
Coach recourse generation as an integer linear program: 

We use an indicator variable ��� (2f) to denote if a main efect bin 

min distance (2a) 
�∑ ∑ 

s.t. distance= ������ (2b) 
�=1 � ∈�� 

� ∑ ∑ ∑ ∑ ∑ 
−�� ≤ ��� ��� + ℎ� ��1�2 �� ��1�2 (2c) 

�=1 � ∈�� 

�� ��1�2 =���1 � ��2∑ 

(�, � ) ∈� �1 ∈�� �2 ∈� � 

for (�, �)∈�, �1 ∈�� , �2 ∈� � (2d) 

��� ≤1 for �=1, . . . , � (2e) 
� ∈�� 

��� ∈{0, 1}
�� ��1�2 ∈{0, 1} 

for �=1, . . . , �, �∈�� 
for (�, �)∈�, �1 ∈�� , �2 ∈� � 

(2f) 
(2g) 

is active: if ��� = 1, we change the feature value of �� to the closest 
value in its bin �. All bin options of �� are included in a set �� . For 
each feature �� , there can be at most one active bin (2e); if there 
is no active bin, then we do not change the value of �� . We use an 
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indicator variable �� ��1�2 (2g) to denote if a pairwise interaction 
efect is active—it is active if and only if bin �1 of �� and bin �2 of 
� � are both active (2d). The set � includes all available interaction 
efect terms. Constraint 2b determines the total distance cost for a 
potential CF example; it uses a set of pre-computed distance costs 
��� of changing one feature �� to the closest value in bin �. Con-
straint 2c ensures that any solution would fip the model prediction, 
by gaining enough total score from main efect scores (��� ) and 
interaction efect scores (ℎ� ��1�2 ). Constants ��� and ℎ� ��1�2 are pre-
computed and adjusted for cases where a single active main efect 
bin results in changes in interaction terms (see § A.4 for details). 

Novelty. Advancing existing works that use integer linear pro-
grams for CF generation (on linear models [83] or using a linear 
approximation of neural networks [56]), our algorithm is the frst 
that works on non-linear models without approximation. Our al-
gorithm is also the frst and only CF method specifcally designed 
for EBM models. Without it, users would have to rely on model-
agnostic techniques such as genetic algorithm [73] and KD-tree [85] 
to generate CF examples. These model-agnostic methods do not 
allow for customization. Also, by quantitatively comparing our 
method with these two model-agnostic CF techniques on three 
datasets, we fnd CFs generated by our method are signifcantly 
closer to the original input, more sparse, and encounter less failures 
(see § A.9 and Table S1 for details). 

Generalizability. Our algorithm can easily be adapted for EBM 
regressors and multiclass classifers. For regression, we modify the 
left side and the inequality of constraint 2c to bound the prediction 
value in the desired range (see § A.6 for details). For multiclass 
classifcation, we can modify constraint 2c to ensure that the desired 
class has the largest score (see § A.7 for details). In addition to EBMs, 
one can also adapt our algorithm to generate CF examples for linear 
models [83]. For other non-linear models (e.g., neural networks), 
one can frst use a linear approximation [56] and then apply our 
algorithm, verifying suggested recourse plans with respect to the 
original model. If the suggested recourse plan would not change 
the output of the original model, an alternative can be generated 
by solving the program again with the previous solution blocked. 

Scalability. Modern linear solvers can efciently solve our in-
teger linear programs. The complexity of solving an integer linear 
program increases along two factors: the number of variables and 
the number of constraints. In Equation 2, all variables are binary— 
making the program easier to solve than a program with non-binary 
integer variables. For any dataset, there are always exactly 3 con-
straints from 2b, 2c, and 2e. The number of constraints from 2d 
increases along the number of interaction terms |� | and the num-
ber of bins per feature |�� | on these interaction terms. In practice, 
|� | and |�� | are often bounded to ensure EBM are interpretable. 
For example, by default the popular EBM library InterpretML [60] 
bounds |� | ≤ 10 and |�� | ≤ 32. Therefore, in the worst-case sce-
nario with 10 continuous-continuous interaction terms, there will 
be at most 10 × 32 × 32 = 10, 240 constraints from 2d. For instance, 
on the Communities and Crime dataset [67] with 119 continuous 
features, 1 categorical feature, and 10 pairwise interaction terms, 
there are about 7.2k constraints and 3.6k variables in our program. 
It only takes about 0.5–3.0 seconds to generate a recourse plan 
using Firefox Browser on a MacBook (see § A.10 for details). 

4.3 Recourse Customization 
With integer linear programming, we can generate recourse plans 
that refect a wide range of user preferences (G2). For example, to 
prioritize a feature that is easier for a user to change, we can lower 
the distance cost ��� for that feature (§ A.5). To enforce recourse 
plans to only change a feature in a user specifed acceptable range, 
we can remove out-of-range binary variables ��� . If a user requires 
the recourse plans to only change at most � features, we can add Í� Í
an additional linear constraint �=1 � ∈�� 

��� ≤ � . Finally, with 
modern linear solvers, we can efciently generate diverse recourse 
plans (G1) by solving the program multiple times while blocking 
previous solutions (see § A.6–§ A.8 for details). 

5 USER INTERFACE 
Given the design goals (G1–G5) described in § 3, we present GAM 
Coach, an interactive tool that empowers end users to specify 
preferences and iteratively fne-tune recourse plans (Fig. 4). The 
interface tightly integrates three components: the Coach Menu that 
provides overall controls and organizes multiple recourse plans as 
tabs (§ 5.1), the Feature Panel containing Feature Cards that allow 
users to specify recourse preferences with simple interactions (§ 5.2), 
and the Bookmark Window summarizing saved recourse plans (§ 5.3). 
To explain these views in this section, we use a loan application 
scenario with the LendingClub dataset [1], where a bank refers a 
rejected loan applicant to GAM Coach pre-loaded with the appli-
cant’s input data. Our tool can be easily applied to GAMs trained 
on diferent datasets while providing a consistent user experience. 
On GAM Coach’s public demo page, we present fve additional 
examples with fve datasets that are commonly used in algorith-
mic recourse literature: Communities and Crime [67] (also used in 
the second usage scenario in § 5.4), Taiwan Credit [97], German 
Credit [14], Adult [45], and COMPAS [47]. 

5.1 Coach Menu 
The Coach Menu (Fig. 1A) is the primary control panel of GAM 
Coach. Users can use the dropdown menu and input felds to specify 
desired decisions for classifcation and regression. For each recourse 
plan generation iteration, the tool generates fve diverse plans (G1) 
to help users achieve their goal, with each plan representing a CF 
example. Users can access each plan by clicking the corresponding 
tab on the plan tab bar. When a plan is selected, the Feature Panel 
updates to show details about the plan, and the plan’s corresponding 
tab extends to show the model’s decision score (Fig. 3). Users can 
click the Bookmarks

Regenerate

button to open the Bookmarks window and 
click the button to generate fve new recourse plans 
that refect the currently specifed recourse preferences. 

Figure 3: A bar chart visualizes the model’s decision score of a 
recourse plan: the bar is marked with the user’s original score 
(shorter vertical line on the left) and the threshold needed to 
obtain the desired decision (longer vertical line on the right). 

https://poloclub.github.io/gam-coach/
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Figure 4: GAM Coach enables end users to inspect and customize recourse plans through simple interactions. (A) Initial generic 
plans are generated with the same confgurations for all users. (B) Users can specify recourse preferences if they are not satisfed 
with the initial plans; by confguring (B1) the difculty to change a feature; (B2) the acceptable range that a feature can change 
between, and (B3) the max number of features that a recourse plan can alter. (C) GAM Coach then generates personalized plans 
that respect users’ preferences. Users can iteratively refne their preferences until a satisfactory plan is found. 

5.2 Feature Panel 
Each recourse plan has a unique Feature Panel (Fig. 1B) that visual-
izes plan details and allows users to provide preferences guiding 
the generation of new plans (G2). A Feature Panel consists of Fea-
ture Cards where each card represents a data feature used in the 
model. To help users easily navigate through diferent features, the 
panel groups Feature Cards into three sections: (1) features that are 
changed in the plan, (2) features that are confgured by the user, 
(3) and all other features. To prevent overwhelming users with too 
much information (G4), all cards are collapsed by default—only dis-
playing the feature name and feature values. Users can hover over 
the feature name to see a tooltip explaining the defnition of the 
feature (G4). With a progressive disclosure design [61, 75], details 
of a feature, such as the distribution of feature values, are only 
shown on demand after users click that Feature Card. Progressive 
disclosure also makes GAM Coach interface scalable, as users can 
easily scroll and browse over hundreds of collapsed Feature Cards. 
Since EBMs process continuous and categorical features diferently, 
we employ diferent card designs based on the feature type. 

Continuous Feature 
Card. For continuous fea-
tures, such as , 
the Feature Card (Fig. 5) 
uses a flled curved chart 
to visualize the distribu-
tion of feature values in Figure 5: Users can test hypotheti-
the training set. Users can cal input values in real time. 
drag the diamond-shaped thumb on a slider below the chart to 
experiment with hypothetical values. During dragging, the deci-
sion score bar updates its width to refect a new prediction score 
in real time. Therefore, users can better understand the underly-
ing decision-making process by probing the model with diferent 
inputs (G3). Also, users can drag the orange thumbs to set the 
lower and upper bounds of acceptable feature changes. For example, 

one user might only accept recourse plans that include 
at $12k or higher (Fig. 4-B2). 

Categorical Feature Card. For categorical features, such as 
, users can inspect the value distribution with a 

horizontal bar chart (Fig. 4-B1), where a longer bar represents more 
frequent options in the training data. To specify acceptable ranges, 
users can click the bars to select or deselect acceptable options for 
new recourse plans. Acceptable options are highlighted as orange, 
whereas unacceptable options are colored as gray. Users can also 
click text labels next to the bars to experiment with hypothetical 
options and observe how they afect the model decision. 

Specify Difculty to Change a 
Feature. Besides selecting a feature’s 
acceptable range, users can also spec-
ify how hard it would be for them 
to change a feature. For example, it 
might be easier for some users to 
lower than to change 

. To confgure feature 
difculties, users can click the smiley 
button on any Feature Card and then 
select a suitable difculty option on the 
pop-up window (Fig. 4-B1). Internally, 
GAM Coach multiplies the distance costs of all bins in that feature 
with a constant multiplier (Fig. 6). If the user selects the “impossible 
to change” difculty, the tool will remove all variables associated 
with this feature in the internal integer program (§ 4.3). Therefore, 
when generating new recourse strategies, GAM Coach would pri-
oritize features that are easier to change and would not consider 
features that are impossible to change. 

5.3 Bookmarks and Receipt 
During the recourse iterations, users can save any suitable plans 
by clicking the star button on the plan tab (Fig. 3). Then, users 

Figure 6: Distance mul-
tipliers of difculties. 
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Figure 7: GAM Coach allows end users to experiment with hypothetical input values and customize recourse plans. (A) Our 
tool frst shows generic plans generated with default confgurations. (B) Users can explore how diferent input values afect 
the model’s prediction in real time through simple interactions on the Feature Card: for example, lowering the percentage of 
adults without a high school diploma increases the chance of getting a government grant. (C) Users can then specify recourse 
preferences—such as feature difculties and acceptable ranges—based on their circumstances and understanding of the model’s 
prediction patterns. (D) GAM Coach then generates more actionable recourse plans based on the user-specifed preferences. 

can compare and update their saved plans in the Bookmarks win-
dow (Fig. 1C). Once users are satisfed with bookmarked plans, they 
can save a recourse receipt as proof of the generated recourse plans. 
Wachter et al. [88] frst introduced the recourse receipt concept as a 
contract guaranteeing that a bank will approve a loan application if 
the applicant achieves all changes listed in the recourse plan. GAM 
Coach is the frst tool to realize this concept by creating a plain-
text fle that records the timestamp, a hash of EBM model weights, 
the user’s original input, and details of bookmarked plans (G4). 
In addition, we propose a novel security scheme that uses Pretty 
Good Privacy (PGP) to sign the receipt with the bank’s private 
key [17]. With public-key cryptography, users can hold the bank 
accountable by being able to prove the receipt’s authenticity to 
third-party authorities with the bank’s public key. Also, banks can 
use their private key to verify a receipt’s integrity during recourse 
redemption to avoid counterfeit receipts. 

5.4 Usage Scenarios 
We present two hypothetical usage scenarios to illustrate how 
GAM Coach can potentially help everyday users identify actionable 
strategies to alter undesirable ML-generated decisions. 

Individual Loan Application. Eve is a rejected loan applicant, 
and she wants to identify ways to get a loan in the future. In this 
hypothetical usage scenario, to inform loan decisions, the bank has 
trained an EBM model on past data (we use LendingClub [1] to 
illustrate this scenario in Fig. 4). Their dataset has 9 continuous fea-
tures and 11 categorical features (Fig. S2), and the outcome variable 
is binary—indicating whether a person can pay back the loan in 
time. The bank gives Eve a link to GAM Coach when informing 
her of the loan rejection decision. After Eve opens GAM Coach in a 
web browser, the tool pre-loads Eve’s input data and generates fve 
recourse plans based on the default confgurations. Each plan lists 
a set of minimal changes in feature values that would lead to loan 
approval. One plan suggests Eve lower the requested 
from $15k to $9k along with two other changes (Fig. 4A). Eve 

does not like this suggestion because she is unwilling to compro-
mise a loss of $6k in the requested loan. Therefore, she clicks the 

Feature Card and drags the left thumb to set the 
acceptable range of to $12k and above (Fig. 4-B2). Af-
ter browsing all recourse plans in the Coach Menu, Eve fnds that 
none of the plans suggest changes to . Eve and her 
partner are actually moving to their newly-purchased condo next 
month. Therefore, Eve sets the acceptable range of 
to “mortgage” and changes its difculty to “very easy” (Fig. 4-B1). 
Eve also prefers plans that change fewer features, so she clicks the 
dropdown menu on the Feature Panel to ask the tool to only generate 
plans that change at most two features (Fig. 4-B3). After Eve clicks 
the Regenerate button, GAM Coach quickly generates fve per-
sonalized plans that respect Eve’s preferences. Among these plans, 
Eve especially likes the one suggesting she lower the 
by about $200 and change to mortgage (Fig. 4C). 
Finally, Eve bookmarks this plan and downloads a recourse receipt 
that guarantees her a loan if all suggested terms are met. Eve plans 
to apply for the loan again at the same bank next month. 

Government Grant Application. Hal is a county manager in 
the United States. He has applied for a federal grant for his county. 
Unfortunately, his application is rejected. He wants to learn about 
the decision-making process and what actions he can take to suc-
ceed in future applications. In this hypothetical usage scenario, to in-
form funding decisions, the federal government has trained an EBM 
model on past data (we use the Communities and Crime dataset [67] 
to illustrate this scenario in Fig. 7). This dataset has 119 continuous 
features and 1 categorical feature describing the demographic and 
economic information of diferent counties in the United States, and 
is used to predict the risk of violent crime. As part of a performance 
incentive funding program [86], the federal government provides 
more funding opportunities to counties with lower predicted crime 
risk [79]. Before training the EBM model, the federal government 
has removed protected features (e.g., ) and features 
with many (more than half) missing values, resulting in a total of 
94 continuous features and 1 categorical feature. 

https://poloclub.github.io/gam-coach/?dataset=lending
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The federal government provides rejected counties with a link 
to GAM Coach when informing them of the funding decisions. 
Hal opens GAM Coach in his browser; this tool has pre-loaded 
the demographic and economic features of his county and quickly 
suggested fve recourse plans that would lead to funding. These 
generic plans are generated with the default confguration. One 
plan (Fig. 7A) suggests Hal decrease and in-
crease in his county. Hal likes the recommen-
dation of increasing because a higher employ-
ment rate is also benefcial for the economy of his county. However, 
Hal is puzzled by the suggestion of lowering . 
He is not sure why the population age is used to decide funding de-
cisions. Besides, lowering the percentage of the elderly population 
is not actionable. Therefore, Hal “locks” this feature by setting its 
difculty to “impossible” (Fig. 7C). 

To gain a better understanding of how the funding decision is 
made, Hal expands several Feature Cards and experiments with 
hypothetical feature values by dragging the blue thumbs ; GAM 
Coach visualizes the model’s prediction scores with these hypo-
thetical inputs in real time (Fig. 7B). Hal quickly fnds that lowering 

can increase his chance of getting a grant. 
This is good news as Hal’s county has just started a high school 
dropout prevention program aiming to lower the percentage of 
adults without a high school diploma to below 15% in eight years. 
Hal then sets this feature’s difculty to “easy to change” and drags 
the orange thumbs to set its acceptable range to between 15% 
and 22.5% (Fig. 7C). After Hal clicks the Regenerate button, GAM 
Coach generates fve new personalized plans in only 3 seconds 
despite there being almost 100 features. Among these fve plans, Hal 
likes the one that recommends decreasing 
by 4.27% (Fig. 7D). Finally, Hal saves a recourse receipt, and he will 
apply for this grant again once the percentage of adults without a 
high school diploma in his county drops by 4.27%. 

5.5 Open-source & Generalizable Tool 
GAM Coach is a web-based algorithmic recourse tool that users can 
access with any web browser on their laptops or tablets, no instal-
lation required (G5). We use GLPK.js [84] to solve integer programs 
with WebAssembly, OpenPGP.js [23] to sign recourse receipts with 
PGP, and D3.js [4] for visualizations. Therefore, the entire system 
runs locally in users’ browsers without dedicated backend servers. 
We also provide an additional Python package3 for developers to 
generate customizable recourse plans for EBM models without a 
graphical user interface. With this Python package, developers and 
researchers can also easily extract model weights from any EBM 
model to build their own GAM Coach. Finally, despite its name, 
GAM Coach’s interface is model-agnostic—it supports any ML mod-
els where (1) one can control the difculty and acceptable range of 
changing a feature during CF generation, and (2) model inference is 
available. With our open-source and generalizable implementation, 
detailed documentation, and examples on six datasets across a wide 
range of tasks and domains—LendingClub [1], Taiwan Credit [97], 
German Credit [14], Adult [45], COMPAS [47], and Communities 
and Crime [97]—future researchers can easily adapt our interface 
design to their models and datasets. 

3Python package: https://poloclub.github.io/gam-coach/docs/gamcoach 

6 USER STUDY 
To evaluate GAM Coach and investigate how everyday users would 
use an interactive algorithmic recourse tool, we conducted an on-
line user study with 41 United States-based crowdworkers. For 
possible datasets to use in this user study, we compared fve pub-
lic datasets that are commonly used in the recourse literature: 
LendingClub [e.g., 57, 82], Taiwan Credit [e.g., 73, 82, 83], German 
Credit [e.g., 57, 79, 82], Adult [e.g., 34, 56, 73], and COMPAS [e.g., 
34, 57, 66]. We decided to use LendingClub in our study for the 
following three reasons. First, we chose a lending scenario as it 
is one scenario that many people, including crowdworkers, may 
encounter in real-life. Second, there is no expert knowledge needed 
to understand the setting, making our tasks appropriate for crowd-
workers. Finally, our institute requires research participants to be 
United States-based: among the four datasets that can be used in a 
lending setting (LendingClub, Taiwan Credit, German Credit, and 
Adult), LendingClub is the only United States-based dataset col-
lected from a real lending website. In this user study, we aimed to 
answer the following three research questions: 

RQ1. What makes a satisfactory recourse plan for end users? 
(§ 6.3.1) 

RQ2. How do end users discover their satisfactory recourse plans? 
(§ 6.3.2) 

RQ3. How does interactivity play a role in providing algorithmic 
recourse? (§ 6.3.3) 

6.1 Participants 
We recruited 50 anonymous and voluntary United States-based 
participants from Amazon Mechanical Turk (MTurk), an online 
crowdsourcing platform. We did not collect any personal informa-
tion. Collected interaction logs and subjective ratings are stored 
in a secure location where only the authors have access. The au-
thors’ Institutional Review Board (IRB) has approved the study. The 
average of three self-reported task completion times on a worker-
centered forum4 is 321/2-minutes. We paid 41 participants $6.50 per 
study and 9 participants who had not passed our quality control 
$5.50.5 Recruited participants self-report an average score of 2.7 for 
ML familiarity in a 5-point Likert-scale, where 1 represents “I have 
never heard of ML” and 5 represents “I have developed ML models.” 

6.2 Study Design 
To start, each participant signed a consent form and flled out a 
background questionnaire (e.g., familarity with ML). 

GAM Coach Tutorial and Short Quiz. We directed partici-
pants to a Google Survey form and a website containing GAM 
Coach, task instructions, and tutorial videos. Our tool, loaded with 
an EBM binary classifer that predicts loan approval on the Lend-
ingClub dataset [1], also contains input values of 500 random test 
samples on which the model predicts loan rejection. Participants 

4TurkerView: https://turkerview.com/
5Originally the task was posted with a base payment of $3.50 and $1 bonus for quality. 
However, when analyzing participants’ responses, we realized that the task required 
more time than we originally expected, so we provided an additional $2 bonus to all 
participants after the study to ensure appropriate compensation for their time. This 
brought the payment to $6.50 for those who passed the quality control quiz and $5.50 
for those who did not. 

https://poloclub.github.io/gam-coach/?dataset=crime
https://poloclub.github.io/gam-coach/?dataset=crime
https://poloclub.github.io/gam-coach/docs/gamcoach
https://poloclub.github.io/gam-coach/user-study/
https://turkerview.com/
https://OpenPGP.js
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Figure 8: We asked user study participants to explain why 
they had chosen their satisfactory plans, and why they had 
not chosen two other random plans (not shown in the fgure). 

were asked to watch a 3-minute tutorial video and complete eight 
multiple-choice quiz questions. These questions are simple—asking 
what is shown in the tool after certain interactions. All partici-
pants were asked to perform these interactions on the same data 
sample, so we had “ground truth” answers for the quiz questions. 
We used the quiz as a “gold standard” question to detect fraudu-
lent responses [43, 63]. Although participants were prompted that 
they would need to answer all questions correctly to receive the 
base compensation, we paid all participants regardless of their an-
swers. However, in our analysis, we only included responses from 
participants who had correctly answered at least four questions. 

Free Exploration with an Imaginary Usage Scenario. After 
completing the tutorial and quiz, participants were asked to pretend 
to be a rejected loan applicant and freely use GAM Coach until fnd-
ing at least one satisfactory recourse plan. These satisfactory recourse 
plans could be chosen from the frst fve generic plans that GAM 
Coach generates with a default confguration or follow-up plans 
that are generated based on participants’ confgured preferences. To 
help participants imagine the scenario, we asked them to change the 
input sample (one of 500 random samples) until they fnd one that 
they feel comfortable pretending to be. Participants could also man-
ually adjust the input values (Fig. S2 in the appendix). After iden-
tifying and bookmarking their satisfactory plans, participants were 
asked to rate the importance of confgured preferences or briefy ex-
plain why no confguration is needed. Then, participants were asked 
to explain why they had chosen their saved plans (Fig. 8) and why 
they had not chosen two other plans, which were randomly picked 
from the initial recourse plans. To incentivize participants to write 
good-quality explanations [26, 64], we told participants that they 
could get a $1 bonus reward if their explanations are well-justifed. 
Regardless of their responses, all participants who had correctly an-
swered at least four quiz questions were rewarded with this bonus. 

Interaction Logging and Survey. While participants were us-
ing GAM Coach, the tool logged all interactions, such as preference 
confguration, hypothetical value experiment, and recourse plan 
generation. Each log event includes a timestamp and associated val-
ues. After fnishing the exploration task, participants were asked to 
click a button that uploads their interaction logs and recourse plan 
reviews as a JSON fle to a secured Dropbox directory. The flenames 

included a random number. Participants were given this number 
as a verifcation code to report in the survey response and MTurk 
submission—we used this number to link a participant’s MTurk 
ID with their log data and survey response. Finally, participants 
were asked to complete the survey consisting of subjective ratings 
and open-ended comments regarding the tool. As the EBM model 
used in the study is non-monotonic, the tool sometimes can suggest 
counterintuitive changes [3], such as to lower for 
loan approval. We asked participants to report counterintuitive 
recourse plans in the survey if they had seen any. 

6.3 Results 
Out of 50 recruited participants, 41 (P1–P41) correctly answered at 
least four “quality-control” questions. In the following sections, we 
summarize our fndings through analyzing these 41 participants’ 
interaction logs, recourse plan reviews, and survey responses. We 
denote the Wald Chi-Square statistical test score as �2. 

6.3.1 RQ1: Characteristics of Satisfactory Recourse Plans. During 
the exploration task, participants were asked to identify at least 
one recourse plan that they would be satisfed with if they were 
a rejected loan applicant using GAM Coach. On average, each 
participant chose 1.54 satisfactory plans. Participants preferred 
concise plans that changed only a few features, with an average 
of 2.11 features per plan. Chosen plans changed a diverse 
set of features, including 13 out of 20 features. The most popu-
lar features changed by chosen plans were (26.3%), 

(18.8%), and (11.3%). Features that were 
not changed by any chosen plans were mostly hard to change in 
real life, such as and . 

Reasons for Choosing Satisfactory Plans. Three main rea-
sons that participants reported choosing plans were that the plans 
were (1) controllable, (2) requiring small changes or less compro-
mise, or (3) benefcial for life in general. Most participants chose 
recourse plans that felt realistic and controllable. For example, P30 
wrote “I think it’s very possible to reduce my credit utilization in a 
short amount of time.” In particular, participants preferred plans 
that only changed a few features and required a small amount of 
change. Participants described these plans as “simple and fast” (P5), 
“straightforward” (P7), and “easy to do” (P16). Some participants 
chose plans because they could tolerate the compromises. For ex-
ample, P8 wrote “I’m fne with the lower loan amount.” Similarly, P11 
reported “[The decreased] loan amount is close to what I need.” In-
terestingly, some participants favored plans that could beneft their 
lives in addition to helping them get loan approval. For example, 
P14 wrote “[...] lower utilization is good for me anyway from what 
I know, so this seems like the best plan.” Similarly, P28 wrote “[this 
plan] in my opinion would guarantee greater monetary fexibility.” 

Reasons for Not Choosing a Plan. Participants’ explanations 
for not choosing a plan mostly complemented the reasons for choos-
ing a plan. Some participants also skipped plans because they were 
puzzled by counterintuitive suggestions, did not understand the sug-
gestions, or just wanted to see more alternatives. First, participants 
disliked unrealistic suggestions: P2 explained “It tells me to increase 
my income. My income is fxed. I cannot just increase them at a whim.” 
Similarly, P6 wrote “With infation it might be harder to use less 
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credit.” Participants also disliked plans requiring too many changes 
or a large amount of change. For example, P30 wrote “The amount 
of loan suggested to be reduced is too large. Assuming I’m applying 
for 9,800 for real, I wouldn’t want to reduce the amount by more than 
30%.” Interestingly, some participants skipped a plan because it sug-
gested counterintuitive changes. For example, P14 wrote “It seemed 
like a bug because why would asking for an extra 13 dollars [in loan 
amount] result in a loan approval?” Participants also skipped plans 
when they did not understand the suggestion: P9 wrote “I’m not 
exactly sure what credit utilization is. I looked at the tooltip, but still 
wasn’t sure.” Finally, some participants skipped the initial plans be-
cause they just wanted to explore more alternatives: P22 explained 
“I wanted to check out a few more things before I made my decision.” 

Design Lessons. By analyzing the characteristics of satisfactory 
recourse plans, our user study is the frst study that provides em-
pirical evidence to support several hypotheses from the recourse 
literature. We fnd that participants preferred plans that suggested 
changes on actionable features [35, 42], are concise and make small 
changes [48, 88], and could beneft participants beyond the recourse 
goal [3]. Additionally, participants were likely to save multiple 
satisfactory plans from one recourse session, highlighting the im-
portance of providing diverse recourse plans [57]. Our study also 
shows that with transparency, end users can identify and dislike 
counterintuitive recourse plans (see more discussion in § 6.3.3). 
Therefore, future researchers and developers should help users 
identify concise and diverse plans that change actionable features 
and are benefcial overall. Also, researchers and developers should 
carefully audit and improve their models to prevent a CF generation 
algorithm from generating counterintuitive plans. Our fndings also 
highlight that communicating recourse plans and providing a good 
user experience are as important as generating good recourse plans. 

6.3.2 RQ2: Path to Discover Satisfactory Recourse Plans. In the ex-
ploration task, participants could freely choose their satisfactory 
recourse plans from the initial batch, where plans were generated 
with default confgurations, or from follow-up batches, where plans 
refected participants’ specifed preferences. We fnd that partici-
pants were more likely to choose satisfactory plans that respect 
participants’ preference confgurations (33 participants out of 41) 
than the default plans (8 participants). In addition, each recourse 
session had a median of 3 plan iterations. In other words, 
on average, a participant discovered satisfactory plans after seeing 
about 15 plans, where the last 10 plans were generated based on 
their preferences. The average time to identify satisfactory plans 
was 8 minutes and 38 seconds. 

Preference confguration is helpful. In GAM Coach, users 
can specify the difculty and acceptable range to change a feature 
and the max number of features a plan can change. We fnd all 
three preferences helped participants discover satisfactory plans. 
Among 63 total satisfactory plans chosen by 41 participants, 49 
plans (77.78%) refected at least one difculty confguration and 44 
plans (69.84%) refected at least one range confguration. Also, 12 
participants confgured the max number of features—seven partici-
pants changed it to 1 and fve changed it to 2 (default is 4). 

Diverse Preference Confgurations. By further analyzing par-
ticipants’ preferences associated with their chosen plans, we fnd 

Figure 9: Difculty confguration counts across frequent fea-
tures highlighting variability of participants’ preferences. 

(1) participants specifed preferences on a wide range of features; 
(2) some features were more popular than others; (3) diferent par-
ticipants set diferent preferences on a given feature. Of the 20 
features, at least one participant changed the difculty of 16 fea-
tures (80%) and acceptable range of 13 features (65%). Among these 
confgured features, participants were more likely to specify prefer-
ences on some than others [�2 = 54.37, � < 0.001 for the difculty, 
�2 = 27.68, � = 0.006 for the acceptable range]. For example, 19 
satisfactory plans refected difculty for , whereas only 
1 plan refected the difculty for . Also, there 
was high variability in confgured preferences on popular confg-
ured feature (Fig. 9). For instance, 6 plans considered 
as “very easy to change,” while 9 plans deemed it as “impossible to 
change.” Our fndings confrm hypotheses that recourse preferences 
can be incorporated to identify satisfactory plans [3, 94], and these 
preferences are idiosyncratic [42, 87]. 

Design Lessons. When designing recourse systems, it is useful 
to allow end users to specify a wide range of recourse preferences, 
such as difculties to change a feature, acceptable feature ranges, 
and max number of features to change. Additionally, there can be 
predictable patterns in users’ recourse preferences—researchers 
can leverage these patterns to further improve user experiences. 
For example, developers can use the log data of an interactive 
recourse tool to train a new ML model to predict users’ preference 
confgurations. Then, for a new user, developers can predict their 
recourse preference and use it as the tool’s default confguration. 

6.3.3 RQ3: Interactive Algorithmic Recourse. How did participants 
use and perceive various interactions throughout the exploration 
task? Interestingly, 28% of participants who confgured difculty 
preferences had also immediately altered the difculty levels on 
the same features; most of them have changed “easy” to “very easy” 
and “hard” to “very hard.” For acceptable ranges, the percentage 
is higher at 88%. It suggests participants may need iterations to 
learn how preference confguration works in GAM Coach and then 
fne-tune confgurations to generate better plans—highlighting the 
key role of iteration in interactive recourse. Survey response show 
that participants found both preference confguration and iteration 
helpful in fnding good recourse plans (Fig. 10B). For example, P30 
commented “[I like] how easy it was to make changes to the priority 
of each thing. Showing that some things can be easy changes, or 
impossible to change, and making plans built around those.” Similarly, 
P19 wrote “[I like] regenerating unlimited plans until I fnd a ft one.” 
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Figure 10: Average ratings and rating distributions from 41 participants on the usability and usefulness of GAM Coach. (A) 
Participants thought GAM Coach was relatively easy and enjoyable to use, and the tool helped them identify actions to obtain a 
preferred ML decision. (B) All interaction techniques, especially experimenting with hypothetical values, were rated favorably. 

“What-if” Questions. Besides confguring preferences, par-
ticipants also engaged in other modes of interaction with GAM 
Coach. For example, 32 out of 41 participants experimented with 
hypothetical feature values (§ 5.2), even though it did not afect 
recourse generations and was not required in the task. These par-
ticipants explored median of 3 unique features and a median of 
5.5 hypothetical feature values . These 32 participants asked 
what-if questions on a total of 99 features, and only 39 (39.4%) of 
these features were from the presented recourse plan. It suggests 
that participants were more interested in learning about the pre-
dictive efects of features that have not been changed by GAM 
Coach. After exploring what-ifs on these 99 features, participants 
confgured at least one preference (difculty or acceptable range) 
on about half of them (49 features, 49.5%). In comparison, these 
participants only confgured preferences on 13.72% features (87 out 
of 634) on which they had not explored what-ifs or had explored 
what-ifs after confguring preferences. It shows that participants 
were more likely to customize features on which they had explored 
hypothetical values [�2 = 85.459, � < 0.00001]. Finally, 20 out 
of these 32 participants (62.5%) chose a satisfactory plan with a 
changed feature on which they had explored what-ifs. It may sug-
gest participants preferred recourse plans that changed features on 
which they had explored what-ifs, but this result is not statistically 
signifcant [�2 = 2.0, � = 0.1573]. 

By analyzing survey responses, we also fnd that asking what-if 
questions was one of the participants’ favorite features (Fig. 10B). 
For example, P12 wrote “[I like] how it adjusts the plans in real time 
and gives you an answer if the loan will be approved.” Throughout 
the task, participants also frequently used the tooltip annotations 
to inspect the decision score bar (median 8 times per participant) 
and check the meaning of diferent features (median 25 times)— 
highlighting the importance of clearly explaining visual represen-
tations and terminologies in interactive recourse tools. 

Counterintuitive recourse plans. We asked participants to re-
port strange recourse plans that GAM Coach could rarely suggest, 
such as to lower for loan approval. To our surprise, 
7 out of 41 participants had encountered and reported these coun-
terintuitive plans! For example, P6 was confused that some plans 
suggested conficting changes on the same feature: “One plan told 
me to increase the loan amount by $13 while another plan told me 
to decrease by $1,613.” Another interesting case was P39: “I don’t 
understand how purpose changes approval decision. Something like 

‘mortgage’ I understand, but changing something and all of a sud-
den you can do a wedding but not home improvement? Like what?” 
First, P39 found it counterintuitive that GAM Coach includes the 
categorical feature as a changeable feature because 
they thought the model decision should be independent of the 

. Then, through experimenting with hypothetical val-
ues, P39 was bafed by the observation that two diferent purposes 
(wedding and home improvement) resulted in two distinct model 
decisions. Some other participants also attributed these strange pat-
terns as reasons why they skipped some plans (§ 6.3.1). This fnding 
provides empirical evidence that with transparency, everyday users 
can discover potentially problematic behaviors in ML models. 

Design Lessons. Overall, interactivity helps users identify sat-
isfactory recourse plans, and users appreciate being able to control 
recourse generation. In addition, users like being able to ask what-
if questions; experimenting with hypothetical feature values also 
helps them fnd satisfactory recourse plans. However, it takes time 
and trial and error for users to understand how preference confg-
urations afect recourse generation. Therefore, future interactive 
recourse tools can improve user experience by focusing on im-
proving learnability and reversibility. Also, our study shows that 
interactivity and transparency could occasionally confuse users 
with counterintuitive recourse plans. Therefore, future researchers 
and developers should carefully audit and improve their ML models 
before deploying interactive recourse tools. 

6.3.4 Usability. Our survey included a series of 7-point Likert-scale 
questions regarding the usability of GAM Coach (Fig. 10A). The 
results suggest that the tool is relatively easy to use (average 5.02), 
easy to understand (average 4.90), and enjoyable to use (average 
5.07). However, some participants commented that the tool was not 
easy to learn at frst and may be too complex for users with less 
knowledge about loans. For example, P5 wrote “Without the tutori-
als, it would have taken me much longer to learn how to navigate the 
program, because it is not very intuitive at frst.” Similarly, P8 wrote 
“I am decent with fnances, but I’d imagine that other people would 
have more difculty [using the tool].” Our participants were MTurk 
workers, who are similar to the demographics of American internet 
users as a whole, but slightly younger and more educated [25, 63]. 
Therefore, GAM Coach might be overwhelming for real-life loan 
applicants who are less familiar with web technology or fnance. 
Participants also provided specifc feedback for improvement, such 
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as designing a better way to store and compare all generated plans. 
Currently, users would lose unsaved plans when generating new 
plans, and users could only compare diferent recourse plans in 
the Bookmarks window (§ 5.3). We plan to continue improving the 
design of GAM Coach based on participants’ feedback. 

7 LIMITATIONS 
We acknowledge limitations regarding our tool’s generalizability, 
usage scenarios, and user study design. 

Generalizability of GAM Coach. To design and develop the 
frst interactive algorithmic recourse tool that enables end users to 
fne-tune recourse plans with preferences, we ground our research 
in GAMs, a class of accurate and transparent ML models with simple 
structures. This approach enables us to generate customizable CF 
examples efciently. However, not all CF generation algorithms al-
low users to specify the feature-level distance functions, acceptable 
ranges, and max number of features that a CF example can change. 
Therefore, while the GAM Coach interface is model-agnostic, it 
does not directly support all existing ML models and CF generation 
methods. Also, our novel CF generation algorithm is tailored to 
EBMs. However, one can easily adapt our linear constraints to gen-
erate customizable CF examples for linear models [83]. For more 
complex non-linear models (e.g., random forest, neural networks), 
one can apply our method to a linear approximation [56] of these 
models (§ 4.2). We also acknowledge that similar to most existing 
CF generation algorithms [3, 39], our algorithm assumes all fea-
tures to be independent. However, in practice, many features can be 
associated. For example, changing is likely to also 
afect a user’s . Future work can generalize our algorithm 
to dependent features by modeling their casual relationships [36]. 

Hypothetical Usage Scenarios. We situate GAM Coach in 
lending and government funding settings (§ 5.4), two most cited 
scenarios in existing CF literature [3, 35]. It is important to note 
that none of the authors have expertise in law, fnance, or political 
science. Therefore, to adapt GAM Coach for use in real lending 
and government funding settings, it would require more research 
and engaging with experts in the legal and fnancial domains as 
well as people who would be impacted by the systems. In addition, 
we use LendingClub [1] and Communities and Crime [67], two 
largest suitable datasets we have access to (§ 6), to simulate two 
usage scenarios and design our user study. These two datasets can 
have diferent features and sizes from the data that are used in 
practice. Therefore, before adapting GAM Coach, researchers and 
developers should thoroughly test our tool on their own datasets. 

Simulated Study Design. To study how end users would use 
interactive recourse tools, we recruited MTurk workers and asked 
them to pretend to be rejected loan applicants, and we logged and 
analyzed their interactions with GAM Coach. We designed the task 
to encourage and help participants simulate the scenario (e.g., re-
warding bonus, supporting participants to input data or choose data 
from multiple random samples). However, participants’ usage pat-
terns and reactions may not fully represent real-life loan applicants. 
We chose to simulate a lending scenario because (1) crowdwork-
ers may have encountered lending, (2) it does not require expert 
knowledge, and (3) we have access to a large and real US-based 
lending dataset. We acknowledge that participants’ usage patterns 

may not full represent users in other domains. Therefore, it would 
require further research with actual end users (e.g., loan applicants, 
county executives, and bail applicants) to study how GAM Coach 
can aid them in real-world settings. In our study, we only collected 
participants’ familiarity with ML. As MTurk workers tend to be 
younger and more educated than average internet users [25, 63], 
future researchers can collect more self-reported demographic in-
formation (e.g., age, education, sex) to study if diferent user groups 
would use an interactive recourse tool diferently. 

Observational Study Design. Our observational log study can 
provide a portrait of users’ natural behaviors when interacting with 
interactive algorithmic recourse tools and scale to a large number of 
participants [15]. However, it lacks a control group. As algorithmic 
recourse research and applications are still nascent, the community 
has not yet established a recommended workfow or system that 
we can use as a baseline in our study (§ 2.1). Our main goal is to 
study how recourse customizability can help users discover useful 
recourse plans. Therefore, to mitigate the lack of a control group, 
we ofer participants the option to abstain from customizing recourse 
plans to probe into the usefulness of recourse customizability. In 
our analysis, we compare both (1) the numbers of participants who 
specify recourse preferences and who do not, (2) and the numbers 
of satisfactory plans generated with a default confguration and 
satisfactory plans generated with a participant-confgured prefer-
ence (§ 6.3.2). Finally, with our open-source implementation (§ 5.5), 
future researchers can use GAM Coach as a baseline system to 
evaluate their interactive recourse tools. 

8 DISCUSSION AND FUTURE WORK 
Refecting on our end-to-end realization of interactive algorithmic 
recourse—from UI design to algorithm development and a user 
study—we distill lessons and provide a set of future directions for 
algorithmic recourse and ML interpretability. 

Too much transparency. GAM Coach uses a glass-box model, 
provides end users with complete control of recourse plan genera-
tion, and supports users to ask “what-if” questions with any feature 
values. One might argue that GAM Coach is too transparent and 
too much transparency makes the tool unfavorable, because (1) end 
users can use this tool for gaming the ML model [22, 44] and (2) this 
tool fails to protect the decision maker’s model intellectual prop-
erty [88]. We acknowledge these concerns. As recourse research 
and applications are still nascent, it is challenging to know how we 
can balance the benefts of transparency and human agency and 
the risk of revealing too much information about the ML model. 
Our user study shows that with transparency end users can dis-
cover and are often puzzled by counterintuitive patterns in ML 
models. We believe if GAM Coach is adopted, it has the poten-
tial to incentivize decision makers to create better models in order 
to avoid confusion as well as model exploitations. As one of the 
furthest realizations of ML transparency, GAM Coach can be a 
research instrument that facilitates future researchers to study the 
tension between decision makers and decision subjects, and identify 
the right amount of transparency that most benefts both parties. 
Then, to adopt GAM Coach in practice, ML developers can remove 
certain functionalities or impose recourse constraints accordingly. 
For example, if a bank is ofering GAM Coach and is worried about 
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people gaming the system by changing certain features that do not 
actually improve their creditworthiness (e.g., opening more credit 
cards), they could insert their own optimization constraints that 
prevent these features from being modifed. 

Transparent ML models for algorithmic recourse. Black-
box ML models are popular across diferent domains. To interpret 
these models, researchers have developed post-hoc techniques to 
identify feature importance [e.g. 53, 68] and generate CF exam-
ples [e.g. 48, 57]. However, Rudin [69] argues that researchers and 
practitioners should use transparent ML models instead of black-
box models in high-stake domains due to transparent models’ high 
accuracy and explanation fdelity. The design of GAM Coach is 
based on GAMs, a state-of-the-art transparent model [6, 89]. We 
would like to broaden the perspective of using transparent models 
refecting on our study. We fnd that GAM Coach provides oppor-
tunities for everyday users to discover counterintuitive patterns 
in the ML model. It implies that ML developers and researchers 
can also use GAM Coach as a penetration testing tool to detect 
potentially problematic behaviors in their models. Note that both 
black-box and transparent learning methods would have learned 
these counterintuitive behaviors [6], but with a transparent model, 
developers can further vet and fx these behaviors. As an example, 
an ML developer training a GAM can use GAM Coach to iteratively 
generate recourse plans for potential users (e.g., training data where 
the model gives unfavorable predictions). If they identify strange 
suggestions, they can use existing interactive tools [60, 90] to vi-
sualize corresponding shape functions to pinpoint the root cause 
of these counterintuitive patterns, and then edit shape function 
parameters to avoid them from happening during recourse deploy-
ment. Future research can leverage transparent models to distill 
guidelines to audit and fx models before recourse deployment. 

Put users at the center. During the design and implementa-
tion of GAM Coach, we have encountered many challenges in 
transforming technically sound recourse plans into a seamless user 
experience. As the end users of recourse tools are everyday people 
who are less familiar with ML and domain-specifc concepts, one of 
our design goals is to help them understand necessary concepts and 
have a frictionless experience (G4). GAM Coach aims to achieve this 
goal by following a progressive disclosure and details-on-demand 
design strategy [61, 75] and presenting textual annotations to ex-
plain visual representations in the tool. However, our user study 
suggests that few users might still fnd it challenging to use GAM 
Coach at frst (§ 6.3.4). During our development process, we identify 
many edge cases that a recourse application would encounter in 
practice, such as features requiring integer values (e.g., ), 
features using log transformations (e.g., ), or features 
less familiar to everyday users (e.g., ). Our open-
source implementation handles these edge cases, and we provide 
ML developers with simple APIs to add descriptions for domain-
specifc feature names in their own instances of GAM Coach. How-
ever, these practical edge cases are rarely discussed or handled in 
the recourse research community, since (1) the feld of algorithmic 
recourse is relatively nascent, (2) and the main evaluation criteria 
of recourse research are distance-based statistics instead of user 
experience [39]. Therefore, in addition to developing faster tech-
niques to generate more actionable recourse plans, we hope future 

researchers engage with end users and incorporate user experi-
ence into their research agenda. Besides interactive visualization, 
researchers can also explore alternative mediums to communicate 
and personalize ML recourse plans and model explanations, such 
as through a textual [16] or multi-modal approach [29]. 

9 CONCLUSION 
As ML models are increasingly used to inform high-stakes decision-
making throughout our everyday life, it is crucial to provide de-
cision subjects ways to alter unfavorable model decisions. In this 
work, we present GAM Coach, an interactive algorithmic recourse 
tool that empowers end users to specify their preferences and it-
eratively fne-tune recourse plans. Our tool runs in web browsers 
and is open-source, broadening people’s access to responsible ML 
technologies. We discuss lessons learned from our realization of 
interactive algorithmic recourse and an online user study. We hope 
our work will inspire future research and development of user-
centered and interactive tools that help end users restore their 
human agency and eventually trust and enjoy ML technologies. 
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A RECOURSE GENERATION DETAILS 

A.1 EBM CF Generation Problem Defnition 
Given a trained EBM model � and an instance � ∈ R� , our goal 
is to generate a set of CF examples {� (1) , � (2) , . . . , � (� ) }, where � 
gives a diferent decision than the original input � . In other words, 
we would like to fnd � such that � (�) ≠ � (�). Without loss of 
generality, we use binary classifcation as an example in this section.

1For binary classifcations, EBM use sigmoid function � (�) = 1+� −� 

as a link function. This link function rescales the sum of shape 
function values �� = �0 + �1 (�1) + �2 (�2) + · · · + �� (�� ) + · · · +� � 
��, � �� , � � to a probability � (�� ), ranging from 0 to 1. If � (�� ) ≥ 
0.5 or �� ≥ 0, � predicts the input � as positive; otherwise � 
predicts � as negative. To generate a CF example � that leads to a 
diferent decision than the original input � , we need to make some 
changes to � so that the new score �� has a diferent sign from �� . 

A.2 Counterfactual Constraint 
A CF example � is valid if it changes the sign of the original score 
�� . If the model predicts the original input � as positive (�� ≥ 0), 
then the score gain � (�, �) = �� − �� should be smaller than −�� . 
Similarly, if the model predicts � as negative (�� < 0), then the score 
gain � (�, �) should be at least −�� . Since EBM is additive during 
inference, we can write � (�, �) as: 

� (�, �) = �� − �� � � � � 
= �0 + �1 (�1) + · · · + �� (�� ) + · · · + ��, � �� , � � − � � � � 

�0 + �1 (�1) + · · · + �� (�� ) + · · · + ��, � �� , � � 

= (�1 (�1) − �1 (�1)) + · · · + (�� (�� ) − �� (�� )) + · · · + � � � � � � 
��, � �� , � � − ��, � �� , � � � � 

= � (�1, �2) + · · · + � (�� , �� ) + · · · + � �� , � � , �� , � � (3) 

We defne the local score gain � (�� , �� ) = �� (�� ) − �� (�� ) as the 
shape function value diference of changing the main feature �� to 
�� . Similarly, we defne the local score gain of a pair-wise interaction� � � � � � 
term as � �� , � � , �� , � � = �� � �� , � � − �� � �� , � � . Then, we can see 
that the counterfactual constraint � (�, �) ≥ −�� or � (�, �) < −�� 
is just a linear constraint that consists of a linear combination of 
shape function value diferences. 

A.3 Proximity Requirement 
To provide helpful recourse to end users, we want CF examples to 
be actionable. One of the most critical measurements of recourse 
actionability is high proximity between the CF example and the 
original input, where we want the CF example to only make mini-
mal changes to the original input values [83, 88]. For example, a CF 
example that suggests increasing annual income by $5k would be 
more actionable than another CF example suggesting to increase 
annual income by $10k. We can formulate this proximity require-
ment as to minimize the distance � (�, �) between the original input 
and the CF example—sum of the distances across all features. 

� (�, �) = � (�1, �1) + � (�2, �2) + · · · + � (�� , �� ) (4) 

Note that there is no distance cost for pair-wise interaction terms 
after considering the main efects. We will discuss our choice of 
distance functions for continuous and categorical features in-depth 

in § A.5. If all distance functions are linear, or we can pre-compute 
each � (�� , �� ), then the proximity requirement can be formulated 
as a linear objective function that we want to minimize. 

A.4 Integer Linear Optimization 
As a gradient-boost tree model, EBM applies equal-frequency bin-
ning on continuous features to speed up the training process with 
a minimal accuracy cost. For categorical features, EBM uses the 
discrete levels as bins. For pair-wise interaction terms, EBM also 
bins two feature values to construct a lookup table. Therefore, a 
CF example can alter the model output if and only if it changes the 
active bins that some feature values are in. There are fnite number 
of bins, where each bin provides a local score gain � (�� , �� ) and 
has a distance cost � (�� , �� ). Therefore, generating CF examples 
for EBM can be thought as solving a variation of Knapsack Prob-
lems [71]. A knapsack problem considers a set of items where each 
item has a reward and a weight, and the goal is to fnd the optimal 
way to pack items to maximize the total reward under a weight 
budget. Popular methods used to solve knapsack problems include 
integer programming (IP) and dynamic programming. GAM Coach 
uses IP because (1) it allows users to easily customize optimization 
constraints (§ A.8); (2) users can generate multiple optimal and 
sub-optimal CF example as recourse (§ A.8); (3) modern IP solvers 
can quickly fnd a globally optimal solution (§ A.10). 

We express the GAM Coach CF generation method as an integer 
linear programming of the form: 

min distance (5a) 
�∑ ∑ 

s.t. distance = ������ (5b) 
�=1 � ∈�� 

�∑ ∑ ∑ ∑ ∑ 
− �� ≤ ������ + ℎ� ��1�2 �� ��1�2 

�=1 � ∈�� (�, � ) ∈� �1 ∈�� �2 ∈� � 

(5c) 
�� ��1�2 = ���1 � ��2 for (�, �) ∈ �, �1 ∈ �� , �2 ∈ � � (5d) ∑ 

��� ≤ 1 for � = 1, . . . , � (5e) 
� ∈�� 

��� ∈ {0, 1} for � = 1, . . . , �, � ∈ �� (5f) 
�� ��1�2 ∈ {0, 1} for (�, �) ∈ �, �1 ∈ �� , �2 ∈ � � (5g) 

Here, we use an indicator variable ��� (5f) to denote if a main efect 
bin is active. If ��� = 1, it means that we change the feature value 
of �� to the closest value in its bin �. All bin options of �� are listed 
in a set �� . For each feature �� , there can be at most one active 
bin (5e); if there is no active bin, then we do not change the feature 
value of �� . Similarly, we use an indicator variable �� ��1�2 (5g) to 
denote if an interaction efect is active. This interaction efect is 
active if and only if bin �1 of feature �� and bin �2 of feature � � 
are both active (5d). � denotes a set of feature pairs that the given 
EBM computes interaction efects from. Constraint (5b) determines 
the total distance cost for a potential CF example; it uses a set of 
pre-computed distance costs ��� of changing one feature �� to the 
closest value in bin � (§ A.3). 



��� ���

� 
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Constraint (5c) ensures that any solution would fip the predic-
tion of the given EBM model (§ A.2). Constraint (5c) is used when 
the model predicts the original input as negative; if the original 
prediction is positive, we only need to change ≤ to > (§ A.2). Here, 
��� and ℎ� ��1�2 denote pre-computed local score gains of activating 
bin � in �� and activating the interaction efect �� ��1�2 , respectively. 
Note that activating one bin can trigger multiple interaction efects, 
but ℎ� ��1�2 is only counted when both ���1 and � ��2 are active (5c 
and 5g). Therefore, we compute ��� by preemptively adding the 
shape function diferences of all partially afected interaction efects 
to the shape function diference of the main efect. For example, if 
� = {(�, �) , (�,�) , (�,�)}, we compute ��� and � �� as: � � � � � � 

��� = (�� (��� ) − �� (��0)) + �� � ��� , � � 0 − �� � ��0, � � 0 + 

(��� (��� , ��0) − ��� (��0, ��0)) (6a)� � � � � �� � � � � � 
� �� = �� � �� − �� � � 0 + �� � ��0, � �� − �� � ��0, � � 0 

(6b) 

Here, ��� denotes the closest value of bin � of feature �� , and ��0 
denotes the original value of feature �� . In 6a, we add two partial 
interaction score gains because activating bin � of feature �� afects 
two interaction terms (�, �) and (�,�). Similarly, 6a only includes 
one partial interaction score gain because activating bin � of feature 
� � only afects one interaction term (�, �). 

However, when both ���1 and � ��2 are active, the interaction score � � � �
gain should be �� � ���1 , � ��2 − �� � ��0, � �0 . Therefore, we need to 

ofset two partial interaction score gains added preemptively when 
computing ��� and � �� (6a and 6b). To do that, we simply subtract 
them when computing the interaction score gain ℎ� ��1�2 : � � � � � � 

ℎ� ��1�2 = �� � ���1 , � ��2 − �� � ��0, � �0 − � � � � � � 
�� � ���1 , � �0 − �� � ��0, � �0 − (7)� � � � � 
�� � ��0, � ��2 − �� � ��0, � � 0 

Once trained, the EBM model transforms all parameters into lookup 
histograms and lookup tables (§ 4.1), so we can quickly pre-compute 
all ��� and ℎ� ��1�2 terms. Furthermore, we can linearize the binary 
variable multiplication constraint (5d) as three linear constraints: 
(1) �� ��� ≤ ��� ; (2) �� ��� ≤ � �� ; (3) �� ��� ≥ ��� + � �� − 1. Then, all 
constraints (5b–5g) are linear, and (5) is an integer linear program 
with all binary variables, which can be efciently solved by modern 
IP solvers [72]. As this formulation considers all possible efective 
changes to the original input, the solution to (5) is guaranteed to 
be the optimal CF example regarding the given distance functions. 

A.5 Choice of Distance Function 
It is challenging to defne a distance function that can accurately 
measure the difculty for end users to change a feature [3]. In GAM 
Coach, we use the ℓ1 distance to measure the distance between 
the original input and the CF example across continuous features. 
As diferent continuous features often have diferent scales, we 
divide each feature-wise distance by the median absolute deviation 
(MAD) of that feature on the training set, which is a common 
choice among other CF generation methods [e.g., 33, 57, 88]. MAD 

provides a robust way to measure the variance within each feature.
Here, � is the size of the training set. Dividing the ℓ1 distance with 
MAD implies that it is relatively easier for end users to change a 
high-variance features than low-variance features. 

|�� − �� |
�cont (�� , �� ) = � � � � (8)

( � ) (� )Median� � − Median� � 
�=1 � �=1 � 

It is harder to defne the distance for categorical features. Some 
CF methods use 1 for features having the same level and 0 for 
diferent level [57], and others consider the probability that two 
examples would share the same level [95]. In GAM Coach, we use 
the complement of the probability of seeing one level based on its 
frequency in the training set. Here, � is the size of the training set 
and I is the indicator function. This distance defnition implies that 
it is easier for end users to change to a more frequent level in a 
given categorical feature. � �Í� ( � )

� = �� � =1 I � 
�cat (�� , �� ) = 1 − (9)

� 
After counting distance costs of all bins of main efects, we re-

weight distance costs of all categorical bins so that the average of 
continuous feature distances is the same as the average of cate-
gorical feature distances. There is no right way to choose distance 
functions [3, 57]. Fortunately, all distances are pre-computed before 
solving the actual IP, and GAM Coach provides fexible APIs to let 
developers use their own distance functions. 

Ultimately, we believe that instead 
of researchers searching for a one-
ft-all distance function, we should 
enable end users to directly specify 
their own difculty to change fea-
tures (G2). To do that, GAM Coach 
provides end users with an interface 
to select feature difculties by clicking 
buttons (Fig. 4-B1). Internally, GAM 
Coach assigns each difculty level Figure S1: Distance mul-
with a constant multiplier (Fig. S1). tipliers of difculties. 
Before solving the IP, the tool multi-
plies the pre-computed distances of all bins in a feature with this 
constant multiplier. For example, if a user selects “very easy” for 
feature � , then the distance between the original value �� and the � �
closest value in bin �� � of feature � is computed as 0.1 ×� �� � , �� . If 
a user selects the “impossible to change” difculty, GAM Coach will 
remove all variables associated with this feature in the IP. Therefore, 
when generating new recourse plans, GAM Coach would prioritize 
features that are easier to change and would not consider features 
that are impossible to change. We choose six levels of feature dif-
fculties because we observe that we can mix and match these six 
levels on diferent features to fexibly fne-tune recourse generation 
in our experiments with six datasets. We choose the four constant 
multipliers [0.1, 0.5, 2, 10] because they can noticeably afect the 
IP solutions with “appropriate” strengths. However, researchers 
and developers can easily change these constant values and also 
the difculty granularity (e.g., with only three levels “very easy”, 
“neutral”, and “impossible”) in their specifc use cases. 
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A.6 Generalization to Regression 
Barocas et al. [3] fnds that algorithmic recourse literature often 
assumes the ML model outcome to be binary, such as loan approval, 
school acceptance, and hiring decision. However, in reality, end 
users also need recourse for AI-generated decisions on continuous 
values such as a loan’s interest rate. GAM Coach supports generat-
ing CF examples for regression problems. To do that, we only need 
to modify the CF constraint to bound the needed score gain to meet 
the desired range provided by the end user (§ A.2). Then, we can 
update the left side value −�� and the inequality in 5c to refect the 
score gain boundaries. This constraint would still be linear, and IP 
solver can solve the whole program. For example, to increase the 
predicted continuous value (e.g., interest rate) by at least � , we only 
need to modify 5c to be: ∑� ∑ ∑ ∑ ∑ 

� ≤ ������ + ℎ� ��1�2 �� ��1�2 (10) 
�=1 � ∈�� (�, � ) ∈� �1 ∈�� �2 ∈� � 

A.7 Generalization to Multiclass Classifcation 
In addition to regression, our IP can be easily generalized for multi-
class classifcation. Compared to binary EBM, multiclass EBM [100] 
uses a multiclass cross entropy as its loss function and softmax 
as its link function. Once trained, an �-class EBM has a similar 
structure as the binary EBM. However, there are no interaction 
terms in a multiclass EBM, and each bin of a feature now has � 
associated additive scores instead of just 1 score as in binary EBM. 
During inference, the �-class EBM adds up the additive scores 
from all features and an intercept for each class. For example, 
we use �1 to denote the score for class 1 of input � , then �1 = � � 
�0
1 + �1

1 (�1) + �2
1 (�2) + · · · + � 1 (�� ). Next, the softmax link func-

� 
tion (Equation 11) rescales � scores �� 

1 , �� 
2 , . . . , ��

� to � class prob-Í� � abilities �� 
1, �� 

2 , . . . , ��
� , where =0 � = 1. Finally, the multiclass � � 

� EBM chooses the class � with the largest �� as the fnal prediction. � � 
exp �� 

� � 
� � = � � (11)Í� � 

=1 exp � � � 

Note that the softmax function is monotonic and it preserves the 
rank order of its input values. In other words, to make a multiclass 
EBM predict class � on a CF example � , we only need to make 
� � 

� < � for � = 1, . . . , � and � ≠ � , which can be written as� � 
� − 1 linear constraints. Therefore, the GAM Coach CF generation 
method for multiclass classifcation (target class is �) can be written 
as the following integer linear program: 

min distance (12a) 
�∑ ∑ 

s.t. distance = ��� ��� (12b) 
�=1 � ∈�� 

� � ∑ ∑ ∑ ∑ 
� � � � 

� � � � + ��� < �� + ��� �� �� 
�=1 � ∈�� �=1 � ∈�� 

for � = 1, . . . , � and � ≠ � (12c) ∑ 
��� ≤ 1 for � = 1, . . . , � (12d) 

� ∈�� 

��� ∈ {0, 1} for � = 1, . . . , �, � ∈ �� (12e) 

� In constraint 12c, � is the total score for class � of the original � 
� input � . Similar to ��� in 5c, � denotes the score gain for class � of
�� 

changing feature �� to the closest value in its bin �. All constants 
� � 

�� and � can be pre-computed. 
�� 

A.8 Support Various Actionability Constraints 
To generate recourses that are actionable for end users, we not only 
prefer CF examples that are close to the original input (§ A.3), but 
also concise [48], diverse [57, 70], and respect to individual end users’ 
preferences [3, 39]. With GAM Coach, we can generate CF examples 
with these desired properties by formulating these requirements 
as linear constraints in the IP. For example, to generate concise 
or sparse CF examples—examples that only change a few features 
from the original input—we can introduce a linear constraint to 
bound the total number (up to �) of active variables for main efects: Í� Í 

��� ≤ � . To generate diverse CF examples, we can solve �=1 � ∈�� 

the same IP multiple times, where each time we add a new constraint 
to force the solver to avoid previous solutions. For example, we 
can set ���� � �� � ���� 

= 0 for new iterations where {���� = 1, � �� � = 
1, ���� 

= 1} is a previous solution. Since all variables are binary, 
we can linearize these multiplication constraints [18]. With this 
approach, the generated � diverse solutions are also guaranteed to 
be the top-� optimal solutions. Similarly, if we have prior knowledge 
of end users’ preferences, such as difculties and actionable ranges 
of individual features, we can adjust the distance costs during the 
pre-computation process. Therefore, the fexibility of IP helps us 
operationalize the design of GAM Coach (G2). 

A.9 CF Generation Method Comparison 
Our CF generation method is the frst and only CF algorithm specif-
cally developed for EBM models. Before our method, ML researchers 
and developers would need to use model-agnostic algorithms like 
genetic algorithm [73] and KD-tree [85] to generate recourse plans 
for EBM models. Our technique is guaranteed to outperform or tie 
with these algorithms if we measure the quality of CFs by their 
distances (e.g., ℓ1 distance) to the original input. This is because 
our technique formulates CF generation as a linear optimization 
program (§ A.4) that minimizes the distance between the modifed 
and original inputs. For completeness, we have included such com-
parison results in Table S1 to give readers a sense of how far from 
optimal existing CF generation methods are in terms of distance. 

In the comparison experiment, we train three EBM binary clas-
sifers on LendingClub [1], Adult [45], and German Credit [14] 
datasets. We use our IP approach, genetic algorithm, and KD-tree to 
generate CFs for test samples that are rejected for a loan (378, 400, 
and 239 samples from three datasets). We use the DICE library’s 
implementation [57] of the genetic algorithm and KD-tree. We dis-
able our method’s default categorical distance (§ A.5) to match the 
other two algorithms (distance is 1 if the category is changed and 0 
otherwise). All three algorithms use MAD adjusted ℓ1 to measure 
the distance of continuous variables. The distance between two 
samples is defned as the mean of all categorical and continuous 
distances. The results (Table S1) highlight that compared to existing 
methods, CFs generated by our method are signifcantly closer to 
the original input, more sparse, and encounter fewer failures. 
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Table S1: We compare our method with two existing CF generation methods: genetic algorithm and KD-tree. We train three 
EBM binary classifers on LendingClub, German Credit, and Adult datasets, and then apply three CF algorithms to generate CFs 
for test samples that are rejected for a loan. The results highlight that our method signifcantly outperforms existing methods. 
In particular, CFs generated by our method are closer to the original input, more sparse, and encounter less failures. 

Mean Distance Mean Number of Features Changed Number of Failures 

Lending Club (378 samples) 
Our Method 0.1836 2.2222 0 

Genetic Algorithm [73] 3.1950 10.2520 1 

KD Tree [85] 3.7388 10.8360 6 

German Credit (239 samples) 
Our Method 1.1392 2.0962 0 

Genetic Algorithm [73] 6.8573 9.3305 0 

KD Tree [85] 7.3565 9.9414 0 

Adult (400 samples) 
Our Method 1.6856 2.4075 0 

Genetic Algorithm [73] 4.9231 4.6475 0 

KD Tree [85] 5.1082 4.9500 0 

A.10 Fast CF Generation 
In many cases of providing algorithmic recourse, we need to priori-
tize CF example generation speed over the optimality of generated 
CF examples [73]. With GAM Coach, modern IP solvers can ef-
ciently solve the program (Equation 5). The complexity of solving 
an integer linear program increases along two factors: the number 
of variables and the number of constraints. Here, all variables are 
binary—making the program easier to solve than a program with 
non-binary integer variables. For any dataset, there are always ex-
actly 3 constraints from 5b, 5c, and 5e. The number of constraints 
from 5d increases along the number of interaction terms |� | and 
the number of bins per feature |�� | on these interaction terms. 
In practice, |� | and |�� | are often bounded to ensure GAMs are 
interpretable. For example, by default the popular GAM library 
InterpretML [60] bounds |� | ≤ 10 and |�� | ≤ 32. Therefore, in 
the worst-case scenario with 10 continuous-continuous interaction 
terms, there will be at most 10 × 32 × 32 = 10, 240 constraints from 
5d. For example, on the Communities and Crime dataset [67] with 

119 continuous features, 1 categorical feature, and 10 pairwise in-
teraction terms, there are about 7.2k constraints and 3.6k variables 
in our program. It only takes about 0.5–3.0 seconds to generate a 
recourse plan using Firefox Browser on a MacBook. 

In addition, in applications where the generation speed is critical, 
developers can signifcantly improve the run time by fltering less 
efective bins during the pre-computation process, which decreases 
the number of variables quadratically. First, developers can flter out 
main efect bins that give opposite score gains from the objective 
(i.e., positive score gain when the goal is to lower the prediction 
score). By default, GAM Coach does not apply this fltering, because 
in rare cases the score gains of associated interaction terms can 
ofset the opposite score gain from the main efect. By fltering 
out bins with opposite score gains, GAM Coach can consistently 
generate CF examples in under 1 second in end users’ browsers (§ 5). 
To further improve the speed, developers can also flter out main 
efect bins that give similar score gains as existing bins but have a 
higher distance cost. 
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B SUPPLEMENTARY FIGURES 

Figure S2: To help user study participants imagine the loan application scenario, the GAM Coach interface allows participants 
to change the input values of the hypothetical loan applicant. The top row includes input felds for the 9 continuous features, 
and the bottom row contains dropdowns for the 11 categorical features used in the EBM model. Users can hover over the feature 
name to see the detailed description for that feature. 
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