
Regret to the Best vs. Regret to the Average

Eyal Even-Dar1, Michael Kearns1, Yishay Mansour2⋆, Jennifer Wortman1

1 Department of Computer and Information Science, University of Pennsylvania
2 School of Computer Science, Tel Aviv University

Abstract. We study online regret minimization algorithms in a bicrite-
ria setting, examining not only the standard notion of regret to the best
expert, but also the regret to the average of all experts, the regret to any
fixed mixture of experts, and the regret to the worst expert. This study
leads both to new understanding of the limitations of existing no-regret
algorithms, and to new algorithms with novel performance guarantees.
More specifically, we show that any algorithm that achieves only O(

√
T)

cumulative regret to the best expert on a sequence of T trials must, in the
worst case, suffer regret Ω(

√
T) to the average, and that for a wide class

of update rules that includes many existing no-regret algorithms (such
as Exponential Weights and Follow the Perturbed Leader), the product
of the regret to the best and the regret to the average is Ω(T). We then
describe and analyze a new multi-phase algorithm, which achieves cumu-
lative regret only O(

√
T log T) to the best expert and has only constant

regret to any fixed distribution over experts (that is, with no dependence
on either T or the number of experts N). The key to the new algorithm
is the gradual increase in the “aggressiveness” of updates in response to
observed divergences in expert performances.

1 Introduction

Beginning at least as early as the 1950s, the long and still-growing literature on
no-regret learning has established the following type of result. On any sequence
of T trials in which the predictions of N “experts” are observed, it is possible to
maintain a dynamically weighted prediction whose cumulative regret to the best
single expert in hindsight (that is, after the full sequence has been revealed) is
O(

√
T log N), with absolutely no statistical assumptions on the sequence. Such

results are especially interesting in light of the fact that even in known stochastic
models, there is a matching lower bound of Ω(

√
T log N). The term “no-regret”

derives from the fact that the per-step regret is only O(
√

log N/T), which ap-
proaches zero as T becomes large.

In this paper we revisit no-regret learning, but with a bicriteria performance
measure that is of both practical and philosophical interest. More specifically,

⋆ Y. Mansour was supported in part by grant no. 1079/04 from the Israel Science
Foundation, a grant from BSF, an IBM faculty award, and the IST Programme of
the European Community, under the PASCAL Network of Excellence, IST-2002-
506778. This paper reflects only the authors’ views.

in addition to looking at the cumulative regret to the best expert in hindsight,
we simultaneously analyze the regret to the average gain of all experts (or more
generally, any fixed weighting of the experts). For comparisons to the average,
the gold standard will be only constant regret (independent of T and N). Note
that considering regret to the average in isolation, zero regret is easily achieved
by simply leaving the weights uniform at all times.

We consider a setting in which each expert receives a (bounded) gain at each
time step. The gain of the algorithm on a given time step is then a weighted
average of these expert gains. The regret of the algorithm is measured in terms
of cumulative gains over time. Our results establish hard trade-offs between re-
gret to the best expert and the regret to the average in this setting, demonstrate
that most known algorithms manage this trade-off poorly, and provide new al-
gorithms with near optimal bicriteria performance. On the practical side, our
new algorithms augment traditional no-regret results with a “safety net”: while
still managing to track the best expert near-optimally, they are guaranteed to
never underperform the average (or any other fixed weighting of experts) by
more than just constant regret. On the philosophical side, the bicriteria analyses
and lower bounds shed new light on prior no-regret algorithms, showing that
the unchecked aggressiveness of their updates can indeed cause them to badly
underperform simple benchmarks like the average.

Viewed at a suitably high level, many existing no-regret algorithms have a
similar flavor. These algorithms maintain a distribution over the experts that
is adjusted according to performance. Since we would like to compete with the
best expert, a “greedy” or “momentum” algorithm that rapidly adds weight to
an outperforming expert (or set of experts) is natural. Most known algorithms
shift weight between competing experts at a rate proportional to 1/

√
T , in order

to balance the tracking of the current best expert with the possibility of this
expert’s performance suddenly dropping. Updates on the scale of 1/

√
T can be

viewed as “aggressive”, at least in comparison to the minimal average update
of 1/T required for any interesting learning effects. (If updates are o(1/T), the
algorithm cannot make even a constant change to any given weight in T steps.)

How poorly can existing regret minimization algorithms perform with respect
to the average? Consider a sequence of gains for two experts where the gains for
expert 1 are 1, 0, 1, 0, · · · , while the gains for expert 2 are 0, 1, 0, 1, · · · . Typical
regret minimization algorithms (such as Exponential Weights [1, 2], Follow the
Perturbed Leader [3], and the Prod algorithm [4]) will yield a gain of T/2 −
O(

√
T), meeting their guarantee of O(

√
T) regret with respect to the best expert.

However, this performance leaves something to be desired. Note that in this
example the performance of the best expert, worst expert, and average of the
experts is identically T/2. Thus all of the algorithms mentioned above actually
suffer a regret to the average (and to the worst expert) of Ω(

√
T). The problem

stems from the fact that in all even time steps the probability of expert 1 is
exactly 1/2; after expert 1 observes a gain of 1 we increase its probability by
c/
√

T ; and therefore in odd steps the probability of expert 2 is only (1/2−c/
√

T)

Summary of Lower Bounds

Algorithm: If Regret to Best Is: Then Regret to Average Is:

Any Algorithm O(
√

T) Ω(
√

T)

Any Algorithm ≤
√

T log T/10 Ω(T ǫ)

Any Difference Algorithm O(T
1

2
+α) Ω(T

1

2
−α)

Summary of Algorithmic Results

Algorithm: Regret to Best: Regret to Average: Regret to Worst:

PhasedAggression O(
√

T log N(logT+loglogN)) O(1) O(1)

BestAverage O(
√

TN log T) O(1) O(1)

BestWorst O(N
√

T log N) O(
√

T log N) 0

EW O(T
1

2
+α log N) O(T

1

2
−α) O(T

1

2
−α)

Fig. 1. Summary of lower bounds and algorithmic results presented in this paper.

(where the value of c depends on the specific algorithm). Note that adding a third
expert, which is the average, would not change this.3

This paper establishes a sequence of results that demonstrates the inher-
ent tension between regret to the best expert and the average, illuminates the
problems of existing algorithms in managing this tension, and provides new al-
gorithms that enjoy optimal bicriteria performance guarantees.

On the negative side, we show that any algorithm that has a regret of O(
√

T)
to the best expert must suffer a regret of Ω(

√
T) to the average. We also show

that any regret minimization algorithm that achieves at most
√

T log T/10 regret
to the best expert, must, in the worst case, suffer regret Ω(T ǫ) to the average, for
some constant ǫ ≥ 0.02. These lower bounds are established even when N = 2.

On the positive side, we describe a new algorithm, Phased Aggression, that
almost matches the lower bounds above. Given any algorithm whose cumulative
regret to the best expert is at most R (which may be a function of T and N), we
can use it to derive an algorithm whose regret to the best expert is O(R log R)
with only constant regret to the average (or any fixed distribution over the
experts). Using an O(

√
T log N) regret algorithm, this gives regret to the best

of O(
√

T log N(log T + log log N)). In addition, we show how to use an R-regret
algorithm to derive an algorithm with regret O(NR) to the best expert and zero
regret to the worst expert. These algorithms treat the given R-regret algorithm
as a black box. Remaining closer to the specifics of existing algorithms, we also
show that by restarting the Exponential Weights algorithm with progressively
more aggressive learning rates (starting initially at the most conservative rate
of 1/T), we achieve a somewhat inferior tradeoff of O(

√
TN log T) regret to the

best expert and constant regret to the average.
Our algorithms are somewhat different than many of the traditional regret

minimization algorithms, especially in their apparently essential use of restarts

3 The third expert would clearly have a gain of 1/2 at every time step. At odd time
steps, the weight of the first expert would be 1/3 + c/

√
T , while that of the second

expert would be 1/3 − c/
√

T , resulting in a regret of Ω(
√

T) to the average.

that are driven by observed differences in expert performance. We show that
this is no coincidence. For a wide class of update rules that includes many ex-
isting algorithms (such as Weighted Majority/Exponential Weights, Follow the
Perturbed Leader, and Prod), we show that the product of the regret to the best
and the regret to the average is Ω(T). This establishes a frontier from which such
algorithms inherently cannot escape. Furthermore, any point on this frontier can
in fact be achieved by such an algorithm (i.e., a standard multiplicative update
rule with an appropriately tuned learning rate).

It is worth noting that it is not possible in general to guarantee o(
√

T) regret
to any arbitrary pair of distributions, D1 and D2. Suppose D1 places all weight
on one expert, while D2 places all weight on a second. Competing simultaneously
with both distributions is then equivalent to competing with the best expert.

Finally, we remark that our lower bounds on the trade-off between best and
average regret cannot be circumvented by simply adding an “average expert” and
running standard no-regret algorithms, even with the use of a prior distribution
with a significant amount of weight on the average.4

Related Work: Previous work by Auer et al. [5] considered adapting the learn-
ing rate of expert algorithms gradually. However, the goal of their work was to
get an any-time regret bound without using the standard doubling technique.
Vovk [6] also considered trade-offs in best expert algorithms. His work examined
for which values of a and b it is possible for an algorithm’s gain to be bounded
by aGbest,T + b log N , where Gbest,T is the gain of the best expert.

2 Preliminaries

In the classic experts framework, each expert i ∈ {1, · · · , N} receives a gain
gi,t ∈ [0, 1] at each time step t.5 The cumulative gain of expert i up to time t

is Gi,t =
∑t

t′=1 gi,t′ . We denote the average cumulative gain of the experts at

time t as Gavg,t = (1/N)
∑N

i=1 Gi,t, and the gain of the best and worst expert as
Gbest,t = maxi Gi,t and Gworst,t = mini Gi,t. For any fixed distribution D over

the experts, we define the gain of this distribution to be GD,t =
∑N

i=1 D(i)Gi,t.
At each time t, an algorithm A assigns a weight wi,t to each expert i. These

weights are normalized to probabilities pi,t = wi,t/Wt where Wt =
∑

i wi,t.

Algorithm A then receives a gain gA,t =
∑N

i=1 pi,tgi,t. The cumulative gain of

algorithm A up to time t is GA,t =
∑t

t′=1 gA,t′ =
∑t

t′=1

∑N
i=1 pi,t′gi,t′ .

The standard goal of an algorithm in this setting is to minimize the re-
gret to the best expert at a fixed time T . In particular, we would like to
minimize the regret Rbest,A,T = max{Gbest,T − GA,T , 1}. 6 In this work, we

4 Achieving a constant regret to the average would require a prior of 1 − O(1/T) on
this artificial expert and a learning rate of O(1/T). Putting this much weight on the
average results in Ω(T) regret to each of the original experts.

5 All results presented in this paper can be generalized to hold for instantaneous gains
in any bounded region.

6 This minimal value of 1 makes the presentation of the trade-off “nicer” (for example
in the statement of Theorem 1), but has no real significance otherwise.

are simultaneously concerned with minimizing both this regret and the re-
gret to the average and worst expert, Ravg,A,T = max{Gavg,T − GA,T , 1} and
Rworst,A,T = max{Gworst,T − GA,T , 1} respectively, in addition to the regret
RD,A,T to an arbitrary distribution D, which is defined similarly.

3 The Θ(T) Frontier for Difference Algorithms

We begin our results with an analysis of the trade-off between regret to the best
and average for a wide class of existing algorithms, showing that the product
between the two regrets for this class is Θ(T).

We call an algorithm A a difference algorithm if, when N = 2 and instanta-
neous gains are restricted to {0, 1}, the normalized weights A places on each of
the two experts depend only on the difference between the experts’ cumulative
gains. In other words, A is a difference algorithm if there exists a function f such
that when N = 2 and gi,t ∈ {0, 1} for all i and t, p1,t = f(dt) and p2,t = 1−f(dt)
where dt = G1,t −G2,t. Exponential Weights [1, 2], Follow the Perturbed Leader
[3], and the Prod algorithm [4] are all examples of difference algorithms.7 While
a more general definition of the class of difference algorithms might be possible,
this simple definition is sufficient to show the lower bound.

3.1 Difference Frontier Lower Bound

Theorem 1. Let A be any difference algorithm. Then

Rbest,A,T · Ravg,A,T ≥ Rbest,A,T · Rworst,A,T = Ω(T).

Proof. For simplicity, assume that T is an even integer. We will consider the
behavior of the difference algorithm A on two sequences of expert payoffs. Both
sequences involve only two experts with instantaneous gains in {0, 1}. (Since the
theorem provides a lower bound, it is sufficient to consider an example in this
restricted setting.) Assume without loss of generality that initially p1,1 ≤ 1/2.

In the first sequence, S1, Expert 1 has a gain of 1 at every time step while
Expert 2 always has a gain 0. Let ρ be the first time t at which A has p1,t ≥ 2/3.
A must have regret Rbest,A,T ≥ ρ/3 since it loses at least 1/3 to the best expert
on each of the first ρ time steps and cannot compensate for this later.8

Since the probability of Expert 1 increases from p1,1 ≤ 1/2 to at least 2/3 in
ρ time steps in S1, there must be one time step τ ∈ [2, ρ] in which the probability
of Expert 1 increased by at least 1/(6ρ), i.e., p1,τ − p1,τ−1 ≥ 1/(6ρ). The second
sequence S2 we consider is as follows. For the first τ time steps, Expert 1 will
have a gain of 1 (as in S1). For the last τ time steps, Expert 1 will have a gain
of 0. For the remaining T − 2τ time steps (in the range [τ, T − τ]), the gain
of Expert 1 will alternate 0, 1, 0, 1, · · · . Throughout the sequence, Expert 2 will
have a gain of 1 whenever Expert 1 has a gain of 0 and a gain of 0 every time

7 For Prod, this follows from the restriction on the instantaneous gains to {0, 1}.
8 If such a ρ does not exists, then Rbest,A,T = Ω(T) and we are done.

Expert 1 has a gain of 1. This implies that each expert has a gain of exactly T/2
(and hence Gbest,T = Gavg,T = Gworst,T = T/2).

During the period [τ, T − τ], consider a pair of consecutive times such that
g1,t = 0 and g1,t+1 = 1. Since A is a difference algorithm we have that p1,t =
p1,τ and p1,t+1 = p1,τ−1. The gain of algorithm A in time steps t and t + 1 is
(1−p1,τ)+p1,τ−1 ≤ 1−1/(6ρ), since p1,τ −p1,τ−1 ≥ 1/(6ρ). In every pair of time
steps t and T − t, for t ≤ τ , the gain of A in those times steps is exactly 1, since
the difference between the experts is identical at times t and T − t, and hence
the probabilities are identical. This implies that the total gain of the algorithm
A is at most

τ +
T − 2τ

2

(

1 − 1

6ρ

)

≤ T

2
− T − 2τ

12ρ

On sequence S1, the regret of algorithm A with respect to the best expert
is Ω(ρ). On sequence S2, the regret with respect to the average and worst is
Ω(T/ρ). The theorem follows. ⊓⊔

3.2 A Difference Algorithm Achieving the Frontier

We now show that the standard Exponential Weights (EW) algorithm with an
appropriate choice of the learning rate parameter η [2] is a difference algorithm
achieving the trade-off described in Section 3.1, thus rendering it tight for this
class. Recall that for all experts i, EW assigns initial weights wi,1 = 1, and at
each subsequent time t, updates weights with wi,t+1 = eηGi,t = wi,te

ηgi,t . The
probability with which expert i is chosen at time t is then given by pi,t = wi,t/Wt

where Wt =
∑N

j=1 wj,t.

Theorem 2. Let G∗ ≤ T be an upper bound on Gmax. For any α such that
0 ≤ α ≤ 1/2, let EW = EW (η) with η = (G∗)−(1/2+α). Then Rbest,EW,T ≤
(G∗)1/2+α(1 + lnN) and Ravg,EW,T ≤ (G∗)1/2−α.

Proof. These bounds can be derived using a series of bounds on the quantity
ln(WT+1/W1). First we bound this quantity in terms of the gain of the best
expert. This piece of the analysis is standard (see, for example, Theorem 2.4 in
[7]), and gives us the following: Gbest,T − GEW,T ≤ ηGEW,T + lnN/η.

Next we bound the same quantity in terms of the average cumulative gain,
using the fact that the arithmetic mean of a set of numbers is always greater
than or equal to the geometric mean.

ln

(

WT+1

W1

)

= ln

(

∑N
i=1 wi,T+1

N

)

≥ ln





(

N
∏

i=1

wi,T+1

)

1

N



 (1)

=
1

N

N
∑

i=1

lnwi,T+1 =
1

N

N
∑

i=1

ηGi,T = ηGavg,T

Together with the analysis in [7], this gives us Gavg,T − GEW,T ≤ ηGEW,T .

Note that if Gbest,T ≤ GEW,T , both the regret to the best expert and the
regret to the average will be minimal, so we can assume this is not the case and
replace the term GEW,T on the right hand side of these bounds with Gbest,T

which is in turn bounded by G∗. This yields the following pair of bounds.

Gbest,T − GEW,T ≤ ηG∗ + lnN/η, Gavg,T − GEW,T ≤ ηG∗

By changing the value of η, we can construct different trade-offs between the
two bounds. Setting η = (G∗)−(1/2+α) yields the desired result. ⊓⊔

This trade-off can be generalized to hold when we would like to compete
with an arbitrary distribution D by initializing wi,1 = D(i) and substituting an
alternate inequality into (1). The ln(N) term in the regret to the best expert will
be replaced by maxi∈N ln(1/D(i)), making this practical only for distributions
that lie inside the probability simplex and not too close to the boundaries.

4 Breaking the Difference Frontier via Restarts

The results so far have established a Θ(T) frontier on the product of regrets to
the best and average experts for difference algorithms. In this section, we will
show how this frontier can be broken by non-difference algorithms that gradually
increase the aggressiveness of their updates via a series of restarts invoked by
observed differences in performance so far. As a warm-up, we first show how
a very simple algorithm that is not a difference algorithm can enjoy standard
regret bounds compared to the best expert in terms of T (though worse in terms
of N), while having zero cumulative regret to the worst.

4.1 Regret to the Best and Worst Experts

Using a standard regret-minimization algorithm as a black box, we can produce
a very simple algorithm that achieves a clear trade-off between regret to the best
expert and regret to the worst expert. Let A be a regret minimization algorithm
such that Rbest,A,T ≤ R for some R which may be a function of T and N .
We define the modified algorithm BestWorst(A) as follows. While the difference
between the cumulative gains of the best and worst experts is smaller than NR,
BestWorst(A) places equal weight on each expert, playing the average. After the
first time τ at which this condition is violated, it begins running a fresh instance
of algorithm A and continues to use A until the end of the sequence.

Until time τ , this algorithm must be performing at least as well as the worst
expert since it is playing the average. At time τ , the algorithm’s gain must be
R more than that of the worst expert since the gain of the best expert is NR
above the gain of the worst. Now since from time τ algorithm A is run, we know
that the gain of BestWorst(A) in the final T − τ time steps will be within R of
the gain of the best expert. Therefore, BestWorst(A) will maintain a lead over
the worst expert. In addition, the regret of the algorithm to the best expert will
be bounded by NR, since up to time τ it will have a regret of at most (N − 1)R
with respect to the best expert. This establishes the following theorem.

BestAverage (G∗)
Let k∗ = 1

2
log G∗ − 3 and ℓ = 8

√
NG∗

for k = 1 : k∗ − 1 do

Reset weights and run a new instance of EW(η) with η = ηk = 2
k

G∗ until a
time t such that (Gp

best,t − Gp
avg,t) ≥ ℓ

end

Reset and run EW(η) with η = ηk∗ = 2
k∗

G∗ until time T

Fig. 2. The BestAverage algorithm for N experts.

Theorem 3. Let A be a regret minimization algorithm with regret at most R to
the best expert and let BW be BestWorst(A). Then Rbest,BW,T = O(NR) and
GBW,T ≥ Gworst,T .

It follows immediately that using a standard regret minimization algorithm
with R = O(

√
T log N) as the black box, we can achieve a regret of O(N

√
T log N)

to the best expert while maintaining a lead over the worst.

4.2 An EW-Based Algorithm with Restarts

In Section 4.3 below we will give a general algorithm whose specialization will
produce our best bicriteria regret bounds to the best and average. For peda-
gogical purposes, in this section we first present an algorithm for which we can
prove inferior bicriteria bounds, but which works by directly applying restarts
with increasingly aggressive learning rates to an existing difference algorithm.
This multi-phase algorithm, which we shall call BestAverage, competes with the
best expert while maintaining only constant regret to the average.

The algorithm is given in Figure 2. In each phase, a new instance of EW is
run with a new, increasingly large value for the learning rate η. In the pseudo-
code and throughout the remainder of this paper, we will use the notation Gp

i,t

to mean the cumulative gain of expert i at time t only from the current phase
of the algorithm, i.e. the amount that expert i has gained since the last time
the learning rate η was reset. Similarly we will use Gp

best,t, Gp
avg,t, and Gp

BA,t to
be the gain of the best expert, average, and the BestAverage algorithm in the
current phase through time t.

The following theorem states that BestAverage can guarantee a regret to the
best expert that is “almost” as low as a standard no-regret algorithm while main-
taining a constant regret to the average. The proof, which involves an analysis
of the algorithm’s gain compared to the gain of the best expert and the average
both in the middle and at the end of each phase, has been omitted due to lack of
space. The main insight of the proof is that whenever BestAverage exits a phase,
it must have a quantifiable gain over the average. While the algorithm may lose
to the average during the next phase, it will never lose much more than the gain
it has already acquired. At the same time, we can bound how far the average is

PhasedAggression (A, R, D)
for k = 1 : log(R) do

Let η = 2k−1/R
Reset and run a new instance of A
while (Gp

best,t − Gp
D,t < 2R) do

Feed A with the previous gains gt−1 and let qt be it distribution
Use pt = ηqt + (1 − η)D

end

end
Reset and run a new instance of A until time T

Fig. 3. The Phased Aggression algorithm for N experts.

behind the best expert at any given phase and use this to bound the regret of
the algorithm to the best expert.

Theorem 4. Let G∗ ≤ T be an upper bound on Gmax. Then Rbest,BA,T =

O(
√

G∗N log G∗) and Ravg,BA,T ≤ 2.

This theorem can be extended to hold when we would like to compete
with arbitrary distributions D by using the generalized version of EW with
prior D. The term

√
N in the regret to the best expert will be replaced by

max(
√

N,maxi∈N ln(1/D(i))).

4.3 Improved Dependence on N and Fixed Mixtures

Figure 3 shows Phased Aggression, an algorithm that achieves similar guarantees
to BestAverage with a considerably better dependence on the number of experts.
This algorithm has the added advantage that it can achieve a constant regret
to any specified distribution D, not only the average, with no change to the
bounds. The name of the algorithm refers to the fact that it operates in distinct
phases separated by restarts, with each phase more aggressive than the last.

The idea behind the algorithm is rather simple. We take a regret minimization
algorithm A, and mix between A and the target distribution D. As the gain of
the best expert exceeds the gain of D by larger amounts, we put more and more
weight on the regret minimization algorithm A, “resetting” A to its initial state
at the start of each phase. Once the weight on A has been increased, it is never
decreased again. We note that this algorithm (or reduction) is similar in spirit
to the EW-based approach above, in the sense that each successive phase is
moving weight from something that is not learning at all (the fixed distribution
D) to an algorithm that is implicitly learning aggressively (the given algorithm
A). As before, new phases are invoked only in response to greater and greater
outperformance by the current best expert.

Theorem 5. Let A be any algorithm with regret R to the best expert, D be any
distribution, and PA be an instantiation of PhasedAggression(A,R,D). Then
Rbest,PA,T ≤ 2R(log R + 1) and RD,PA,T ≤ 1.

Proof. We will again analyze the performance of the algorithm compared to the
best expert and the distribution D both during and at the end of any phase k.
First consider any time t during phase k. The regret of the algorithm is split
between the regret of the fixed mixture and the regret of the no-regret algorithm
according to their weights. Since A is an R-regret algorithm its regret to both
the best expert and to the distribution D is bounded by R, and thus the regret
of the algorithm due to the weight on A is 2k−1/R times R. With the remaining
1 − (2k−1/R) weight, the regret to the best expert is bounded by 2R since
Gp

best,t −Gp
D,t < 2R during the phase, and its regret to distribution D is 0. Thus

at any time t during phase k we have

Gp
best,t − Gp

PA,t < R

(

2k−1

R

)

+ 2R

(

1 − 2k−1

R

)

< 2R

and

Gp
D,t − Gp

PA,t ≤ R

(

2k−1

R

)

= 2k−1

Now consider what happens when the algorithm exits phase k. A phase is
only exited at some time t such that Gp

best,t − Gp
D,t > 2R. Since A is R-regret,

its gain (in the current phase) will be within R of the gain of the best expert,
resulting in the algorithm PA gaining a lead over distribution D for the phase:
Gp

PA,t − Gp
D,t ≥ R(2k−1/R) = 2k−1.

Combining these inequalities, it is clear that if the algorithm ends in phase
k at time T , then

Gbest,T − GPA,T ≤ 2Rk ≤ 2R(log R + 1)

and

GD,T − GPA,T ≤ 2k−1 −
k−1
∑

j=1

2j−1 = 2k−1 − (2k−1 − 1) = 1

These inequalities hold even when the algorithm reaches the final phase and
has all of its weight on A, thus proving the theorem. ⊓⊔

5 A General Lower Bound

So far we have seen that a wide class of existing algorithms (namely all difference
algorithms) is burdened with a stark best/average regret trade-off, but that this
frontier can be obliterated by simple algorithms that tune how aggressively they
update, in phases modulated by the observed payoffs so far. What is the limit
of what can be achieved in our bicriteria regret setting?

In this section we show a pair of general lower bounds that hold for all
algorithms. The bounds are stated and proved for the average but once again
hold for any fixed distribution D. These lower bounds come close to the upper
bound achieved by the Phased Aggression algorithm described in the previous
section.

Theorem 6. Any algorithm with regret O(
√

T) to the best expert must have
regret Ω(

√
T) to the average. Furthermore, any algorithm with regret at most√

T log T/10 to the best expert must have regret Ω(T ǫ) to the average for some
positive constant ǫ ≥ 0.02.

More specifically, we will show that for any constant α > 0, there exists a
constant β > 0 such that for sufficiently large values of T (i.e. T > (150α)2),
for any algorithm A, there exists a sequence of gains g of length T such that
if Rbest,A,T ≤ α

√
T then Ravg,A,T ≥ β

√
T . Additionally, for any constant α′ >

1/10 there exist constants β′ > 0 and ǫ > 0 such that for sufficiently large values

of T (i.e. T > 2(10α)2), for any algorithm A, there exists a sequence of gains of
length T such that if Rbest,A,T ≤ α′

√
T log T then Ravg,A,T ≥ β′T ǫ.

The proof of this theorem begins by defining a procedure for creating a
“bad” sequence g of expert gains for a given algorithm A. This sequence can be
divided into a number of (possibly noncontiguous) segments. By first analyzing
the maximum amount that the algorithm can gain over the average and the
minimum amount it can lose to the average in each segment, and then bounding
the total number of segments possible under the assumption that an algorithm
is no-regret, we can show that it is not possible for an algorithm to have O(

√
T)

regret to the best expert without having Ω(
√

T) regret to the average. The full
proof is rather technical and appears in a separate subsection below.

5.1 Proof of Theorem 6

Fix a constant α > 0. Given an algorithm A, we will generate a sequence of expert
gains g of length T > (150α)2 such that g will be “bad” for A. In Figure 4, we
show how to generate such a sequence. Here dt is the difference between the
gains of the two experts at time t, and ǫt is the increase in the probability that
the algorithm assigns to the current best expert since the last time the dt was
smaller. This is used to ensure that the best expert will only do well when the
algorithm does not have “too much” weight on it. The function f and parameter
γ will be defined later in the analysis.

We say that an algorithm A is f-compliant if at any time t we have ǫt =
f(dt−1) ± δ, for an arbitrarily small δ, and if for any time t in which dt = 0, we
have p1,t = p2,t = 1/2. For the sake of this analysis, it is more convenient to think
of ǫt as being exactly equal to f(dt−1) and to allow the algorithm to “choose”
whether it should be considered larger or smaller. Lemma 1 states that given the
sequence generation process in Figure 4, we can concentrate only on the class of
f -compliant algorithms. Due to space constraints, the proof is omitted.

Lemma 1. Consider any algorithm A and let g = GenerateBadSeq(A, f, γ).
There exists an f-compliant algorithm A′ such that GenerateBadSeq(A′, f, γ) =
g and at any time t, gA′,t ≥ gA,t.

Given an f -compliant algorithm, we can write its probabilities as a function
of the difference between expert gains dt. We define a function F (d) = 1/2 +

GenerateBadSeq(A, f, γ)
t = 1; Gavg,0 = GA,0 = d0 = 0;
while (Gavg,t−1 − GA,t−1 ≤ 0.115

√
T/γ) do

p1,t = A(g); p2,t = 1 − A(g)
if (dt−1 = 0) then

if
`

p1,t ≤ 1

2

´

then
g1,t = 1; g2,t = 0; last(|dt−1|) = p1,t;

else
g1,t = 0; g2,t = 1; last(|dt−1|) = p2,t;

end

else
it = argmaxi Gi,t; jt = argminj Gj,t;
last(|dt−1|) = pit,t;
ǫt = pit,t − last(|dt−1 − 1|);
if (ǫt ≤ f(|dt−1|)) then

git,t = 1; gjt,t = 0;
else

git,t = 0; gjt,t = 1;
end

end
GA,t = GA,t−1 + p1,tg1,t + p2,tg2,t;
Gavg,t = Gavg,t−1 + (g1,t + g2,t)/2;
dt = dt−1 + g1,t − g2,t;
t = t + 1;

end
g1,t = g2,t = 1

2
for the rest of the sequence

Fig. 4. Algorithm for creating a bad sequence for any algorithm A.

∑|d|
i=1 f(i), where F (0) = 1/2. It is easy to verify that an algorithm A that sets

the probability of the best expert at time t to F (dt) is an f -compliant algorithm.
We are now ready to define the function f used in the sequence generation.

f(d) =
2m(d)−1

γ
√

T
where m(d) =

⌈

16α√
T
|d|
⌉

The following fact is immediate from this definition and will be useful many
times in our analysis.

F (d) ≤ 1

2
+

m(d)
∑

i=1

2i−1

γ
√

T

(√
T

16α

)

≤ 1

2
+

2m(d)

16γα
(2)

We define the (possibly noncontiguous) m segment to be the set of all
times t for which m(dt) = m, or more explicitly, all times t for which (m −
1)(

√
T/(16α)) ≤ |dt| < m(

√
T/(16α)). We denote this set of times by Tm.

We now introduce the notion of matched times and unmatched times. We
define a pair of matched times as two times t1 and t2 such that the difference

between the cumulative gains the two experts changes from d to d + 1 at time
t1 and stays at least as high as d+1 until changing from d+1 back to d at time
t2. More formally, for some difference d, dt1−1 = d, dt1 = d + 1, dt2 = d, and for
all t such that t1 < t < t2, dt > d (which implies that dt2−1 = d + 1). Clearly
each pair of matched times consists of one time step in which the gain of one
expert is 1 and the other 0 while at the other time step the reverse holds. We
refer to any time at which one expert has gain 1 while the other has gain 0 that
is not part of a pair of matched times as an unmatched time. If at any time t
we have dt = d, then there must have been d unmatched times. We denote by
Mm and UMm the matched and unmatched times in Tm, respectively. These
concepts will become important due to the fact that an algorithm will generally
lose with respect to the average for every pair of matched times, but will gain
with respect to the average on every unmatched time.

The following lemma quantifies the algorithm’s regret to the best expert and
the average of all experts for each pair of matched times.

Lemma 2. For any f-compliant algorithm A and any pair of matched times
t1 and t2 in the m segment, the algorithm’s gain from times t1 and t2 is 1 −
2m−1/(γ

√
T), while the gain of the average and the best expert is 1.

Proof. Let d = dt1 −1. Without loss of generality assume that the leading expert
is expert 1, i.e., d ≥ 0. The gain of the algorithm at time t1 is p1,t1 = F (d), while
the gain at t2 is p2,t2 = 1 − p1,t2 = 1 − F (d + 1) = 1 − (F (d) + f(d)). Thus the

algorithm has a total gain of 1−f(d) = 1−2m−1/(γ
√

T) for these time steps. ⊓⊔
Our next step is to provide an upper bound for the gain of the algorithm

over the average expert from the unmatched times only.

Lemma 3. The gain of any f-compliant algorithm A in only the unmatched
times in the m segment of the algorithm is at most 2m

√
T/(256γα2) larger

than the gain of the average expert in the unmatched times in segment m,i.e.,
∑

t∈UMm
gA,t − 1/2 ≤ 2m

√
T/(256γα2).

Proof. Since the leading expert does not change in the unmatched times (in
retrospect), we can assume w.l.o.g. that it is expert 1. From (2), it follows that

∑

t∈UMm

gA,t − 1/2 ≤

√
T

16α
∑

i=0

(

F (d + i) − 1

2

)

≤ 2m

16γα

√
T

16α
≤ 2m

√
T

256γα2

⊓⊔
Combining lemmas 2 and 3, we can compute the number of matched times

needed in the m segment in order for the loss of the algorithm to the average
from matched times to cancel the gain of the algorithm over the average from
unmatched times.

Lemma 4. For any given x, if there are at least T/(128α2)+x pairs of matched
times in the m segment, then the gain of any f-compliant algorithm A in the m
segment is bounded by the gain of the average expert in the m segment minus
x2m−1/(γ

√
T), i.e.

∑

t∈Tm
gA,t ≤

∑

t∈Tm
(1/2) − 2m−1x/(γ

√
T).

Proof. From Lemma 2, the loss of A with respect to the average for each pair of
matched times is 2m−1/(γ

√
T). From Lemma 3, A could not have gained more

than 2m
√

T/(256α2γ) over the average in the m segment. Since there are at
least 2T/(128α2) + 2x matched times, the total amount the algorithm loses to
the average in the m segment is at least 2m−1x/(γ

√
T). ⊓⊔

The next lemma bounds the number of segments in the sequence using the
fact that A is α

√
T -regret algorithm.

Lemma 5. For any f-compliant algorithm A such that Rbest,A,T < α
√

T and

for γ = 248α2

/α, there are at most 48α2 segments in g = GenerateBadSeq(A, f, γ).

Proof. Once again we assume that leading expert is expert 1. Setting γ =
248α2

/α in (2), ensures that F (d) is bounded by 2/3 as long as m remains below
48α2. Thus F (d) is bounded by 2/3 for all unmatched times until we reach seg-
ment 48α2. This implies that if the sequence reaches segment 48α2, then the re-
gret with respect to the best expert will be at least 48α2

√
T/(16α)(1/3) = α

√
T

which contradicts the fact that A is a α
√

T -regret algorithm, so it cannot be the
case that the sequence has 48α2 or more segments. ⊓⊔

The following observation will be useful in simplifying the main proof, al-
lowing us to further restrict our attention to the class of monotone f -compliant
algorithms, where an algorithm is monotone if it never returns to a segment
m after moving on to segment m + 1. A lower bound on the performance of
monotone algorithms will imply the general lower bound.

Lemma 6. Suppose dt = d > 0, dt+1 = d + 1, dt+2 = d + 2, and dt+3 = d + 1.
The gain of an f-compliant algorithm will not decrease if we instead let dt+2 = d.

We are now ready to prove the main lower bound theorem.

Proof. (Theorem 6) First, consider the case in which the main while loop of
GenerateBadSeq(A, f, γ) terminates before time T . It must be the case that
Gavg,t−1 − GA,t−1 > 0.115

√
T/γ = Ω(

√
T) and there is nothing more to prove.

Throughout the rest of the proof, assume that the main while loop is never
exited while generating the sequence g. From Lemma 4 we know that if there
are at least T/(128α2) pairs of matched times in the ℓ segment, then the loss to
the average from these times will cancel the gain from unmatched times in this
segment. By Lemma 5 there are at most 48α2 segments. If the algorithm has
exactly T/(128α2) pairs of matched times at each segment, it will have at most
a total of T/(128α2)(48α2) = (3/8)T pairs of matched times and will cancel
all of its gain over the average from the unmatched times in all segments. Note
that there are at most 48α2

√
T/(16α) = 3α

√
T unmatched times. Since we have

chosen T such that α <
√

T/150, we can bound this by 0.02T . This implies that
there are at least 0.49T pairs of matched times. We define the following quantity

for algorithm A: xm = |Mm|/2 − T/(128α2). We have that

48α2

∑

m=1

xm =





48α2

∑

m=1

|Mm|
2



− 3T

8
≥ 0.49T − (3/8)T = 0.115T

Let m∗ be the first segment for which we have
∑m

i=1 xi ≥ 0.115T (since we
consider only monotone algorithms we need not worry about timing issues). For

every k, 1 ≤ k ≤ m∗, we have zk =
∑m∗

i=k xi > 0 (otherwise m∗ would not be
the first segment). Note that we can bound the regret to the average as follows.

m∗
∑

i=1

xi
2i−1

γ
√

T
=

1

γ
√

T
x1 +

1

γ
√

T

m∗
∑

i=2

xi



1 +

i−1
∑

j=1

2j−1





=
1

γ
√

T

m∗
∑

i=1

xi +
1

γ
√

T

m∗
∑

i=2

i
∑

j=2

2j−2xi

=
1

γ
√

T
z1 +

1

γ
√

T

m∗
∑

i=2

2i−2zi ≥
0.115T

γ
√

T
=

0.115
√

T

γ

This shows that the regret to the average must be at least 0.115
√

T/γ = β
√

T

where β = 0.115α/248α2

, yielding the first result of the theorem.
If we now let T be large enough that α ≤

√
log T/10, this regret must be at

least (0.115α/2(48/100) log T)
√

T = 0.115αT 1/2−48/100 = O(T 1/50), which proves
the last part of the theorem. ⊓⊔

Acknowledgments

We are grateful to Manfred Warmuth and Andrew Barron for their thought-
provoking remarks on the results presented here.

References

1. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information

and Computation, 108(2):212–261, 1994.
2. Y. Freund. Predicting a binary sequence almost as well as the optimal biased coin.

Information and Computation, 182(2):73–94, 2003.
3. A. Kalai and S. Vempala. Efficient algorithms for on-line optimization. Journal of

Computer and System Sciences, 71(3):291–307, 2005.
4. N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for

prediction with expert advice. In COLT, pages 217–232, 2005.
5. P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learn-

ing algorithms. Journal of Computer and System Sciences, 64:48–75, 2002.
6. V. Vovk. A game of prediction with expert advice. Journal of Computer and System

Sciences, 56(2):153–173, 1998.
7. N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge Uni-

versity Press, 2006.

