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Prediction Markets

\-

Barack Obama to be re-elected President in 201 2\

Last prediction wa($5.27 / shar; —> / 52.79
Today's Change: ¥ -$0.12 (-2.2%) CHANCE

Contract Type: 0-100 (2

J

“Arrow-Debreu Security : Contract pays $10 if X happens,

$0 otherwise. If I think that Pr(X) > p then I should:

e Buy this security at any price less than $10p

o Sell this security at any price greater than $10p
Current price measures the population’ s collective beliefs



Example: Intrade

\
Mitt Romney to be Republican Presidential Nominee in 2012
Last prediction was: $9.59 / share 95.9% n LSl +
Today's Change: 4 +$0.02 (+0.2%) CHANCE

/

\
NASA to announce discovery of extraterrestrial life before
midnight ET 31 Dec 2012
Last prediction was: $0.21 / share 2.1% n g +1 G

Today's Change: - CHANCE
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Popular vote in 2008 presidential election
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Example: Inkling Markets

Internal prediction markets used within companies

Will we complete testing on time?

Chances are higher than 40%

R —

a Chances are lower than 40%
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Markets 1n Practice



Market Prices as a Forecaster

The market price for Arrow-Debreu security 1s essentially
a “consensus estimate” of the probability of an event

Are these estimates accurate?
We can check this on historical data!
Questions:
e Prices are changing, which do we use?
e Accurate in which metric?
e Accurate compared to what?



Market Prediction vs. True Vote Share
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Mean Absolute Error
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The Basics: Proper Scoring Rules



1950: Brier on Weather Forecasting

MONTHLY WEATHER REVIEW

EDITOR, JAMES E. CASKEY, IR.
.‘L.b.,’n‘ JANUARY 1950 Issued April 13: %

VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY

GLENN W, BRIER

U. 8. Weather Bureaw, Washington, D. C,
[Manuscript received February 10, 1950]

INTRODUCTION numerically have been discussed previously [1, 2, 3, 4] so
that the purpose here will not be to emphasize the en-
hanced usefulness of such forecasts but rather to point out
how some aspects of the verification problem are simplified
or solved.

Verification of weather forecasts has been a controversial
subject for more than a half century. There are a number
of rensons why this problem has been so perplexing to
meteorologists and others but one of the most important
difficulties seems to be in reaching an agreement on the VERIFICATION FORMULA
specification of a scale of goodness for weather forecasts, Suppose that on each of ® oceasions an event can occur
Numerous systems have been proposed but one of the ;. only one of r possible classes or categories and on one
greatest arguments raised against forecast verification is g o o ocon i the forecast probabilities are fa, fa
that forecasts which may be the “best” according to the Sur, that ;be, event will occur in classes 1, 2, . _' ; ,.:

nccepted system of arbitrary scores may not be the most miiiu“lii' The r classes are chosen to be mutu.ui




INTRODUCTION

Verification of weather forecasts has been a controversial
subject for more than a half century. There are a number
of reasons why this problem has been so perplexing to
meteorologists and others but one of the most important
difficulties seems to be in reaching an agreement on the
specification of a scale of goodness for weather forecasts.
Numerous systems have been proposed but one of the
greatest arguments raised against forecast verification is
that forecasts which may be the ‘“best” according to the
accepted system of arbitrary scores may not be the most
useful forecasts. In attempting to resolve this difficulty
the forecaster may often find himself in the position of
choosing to ignore the verification system or to let it do
the forecasting for him by “hedging” or “playing the
system.” This may lead the forecaster to forecast some-
thing other than what he thinks will occur, for it is often
easier to analyze the effect of different possible forecasts
on the verification score than it is to analyze the weather
situation. It is generally agreed that this state of affairs
is unsatisfactory, as one essential criterion for satisfactory
verification is that the verification scheme should influence
the forecaster in no undesirable way. Unfortunately, the
criterion is difficult, if not impossible to satisfy, although
some schemes will be much worse than others in this
respect.



TaBLE 2.—Verification of a series of 85 forecasts expressed in terms
of the probability of rain

Observed Observed
Forecast probability of rain prg})?;ittxlon Forecast probability of rain prgg););itlllon
cases cases
000019 . e 0.07 |} 0.60-0.79_ e 0. 40
0.20-0.39. e 10 | 0.80-1.000 - e e .50
0.40-0.59. - e e .29




Brier’ s Question:
How Should We Pay a Forecaster?

What is the right “payment scheme” to reward/punish a
forecaster who makes a sequence of probability
predictions for events that we observe?

The sequence of outcomes:  y,,¥,,Vs, ...E10,1}

The sequence of forecasts:  p , p,,p,...€[0,1]

, 1 Q7
The f t t: —
e forecaster’ s paymen - EHS y,,Dp,)



Brier Score <> Quadratic Scoring Rule

S(y,p)=-(y-p)

e For the n-outcome case: Y€ {l,..,n} PpPEA,

Sp)=-Y A, -p)



What s Special About This Function?

S(y,p)=-(y-p)

e Assume y 1s random: Pr(y=1)=gq

argmax E -—(y — p)z]

PEI0,1]

= argmax :q(l — p)2 +(1-¢g)(0 - p)z]

PE[0,1]

= argmax|(p-¢)’ +q-¢’ |=¢

p€E[0.1]



Proper Scoring Rules

 What we have just introduced 1s the notion of a proper
scoring rule, which 1s any func. S(,) satisfying

E[SG».q@)]= E[S(y.p)] Vp.q€EA,

y~q y~q

e The scoring rule 1s said to be strictly proper if the above
inequality 1s strict unless p = q



Another Strictly Proper Scoring Rule

S(y,p) =logp(y)

e This 1s known as the logarithmic scoring rule. For
predicting 0/1, 1t can be written as:

logp  y=1

S(y,p) =+
\ logd-p) y=0

e EXERCISE: check that this 1s proper!



Scoring Rules == -Loss Functions??
Basically, yes.

Effectively, a scoring rule 1s just a type of loss function

Scoring rules measure the performance (not loss) of a
predicted distribution given a final outcome

One often sees the use of the term proper loss function
which 1s equivalent to proper scoring rule

Research on scoring rules 1s focused more heavily on the
incentives of the associated payment mechanism



Savage 1973

@© Journal of the American S Associati
December 1971, Volume 66, Number 336
Theory and Methods Section

Elicitation of Personal Probabilities

LEONARD J. SAVAGE*

and Expectations

Proper scoring rules, l.e., devices of a certoin class for eliciting o person's prob-
abilities and other expectations, are studied, mainly theoretically but with some

speculations about application. The relation of proper scoring rules to other eco-
nomic devices and fo the foundations of the per listic theory of probability is
brought out. The implications of various restricti fally sy try restric-

tions, on scoring rules is explored, usvally with @ minimum of regularity hypothesis.

1. INTRODUCTION
1.1 Preface

This article is about a class of devices by means of
which an idealized homo economicus—and therefore, with
some approximation, a real person—can be induced to
reveal his opinions as expressed by the probabilities that
he associates with events or, more generally, his personal
expectations of random quantities. My emphasis here is
theoretical, though some experimental considerations
will be mentioned. The empirical importance of such
studies in many areas is now recognized. It was empha-
sized for the area of economics in an address by Trygve
Haavelmo [28, p. 357]:

pertaining to it has grown up, some of which will be cited
in context and most of which can be found through the
references cited, especially the recent and extensive [52]
and others that I call “key references.”

Bruno de Finetti and I began to write the present
article in the spring of 1960, not yet aware of our predeces-
sors and contemporaries. The impetus was de Finetti’s,
for he had brought us to rediscover McCarthy’s [37]
insight about convex functions. We expected to make
short work of our “little note,” but it grew rapidly in
many directions and became inordinately delayed. Now
we find that the material in the present article is largely
mine and that de Finetti has published on diverse aspects
of the same subject elsewhere [12, 13, 14, 17]. De Finetti
has therefore withdrawn himself from our joint authorship
and encouraged me to publish this article alone, though
it owes so much to him at every stage, including the final
draft.

The article is written for a diverse audience. Conse-
uently, some will find parts of it mathematicallv too




Digression: Bregman Divergences

e Bregman Divergence: Measuring dist using convex
func’ s




Bregman Divergences 11

e Def n: let fbe convex + diff able, then
D (x,y)=f(x)-f(y)=-Vf(y)(x-Yy)
* Properties: D,(x,y)= D.(y,x) (notnec.)

D (x,x)=0 Vx D (x,y)=0 Vx,y



Bregman Divergences 111

D:(x,y)=f(x)-f(»)-Vf(y)(x=-Y)

 Example 1, quadratic:
2 2
F)=llxIP = D, (x,y)=llx-y]

 Example 2, entropic:

f(@)=Y,plogp, = D,(p.q)= Y, log§



Bregman Diverg.<> Scoring Rule??

Let f be any convex function
Define: i indicator vector €, = <O,...,O,1,0...>
Let p,q be any two distributions, then for some g():

E|D,(e.p)] = D,(q.p)+g(q)

I~q

Then: argmax , E [—Df(ei,p)] =(

i~q

This 1s the scoring rule property!!



Bregman Diverg.<~> Scoring Rule!!

We now have a recipe for constructing scoring rules!
Let f be any convex function, / be arbitrary
We can now let:

5(,p)=-D,(e;,p) +h(i)

: : 2
Quadratic Scoring Rule: f(p) =|| P ”2

Log Scoring Rule: f(p) = Eipi lOg P;



Brief Literature Review

Surrogate regret bounds for proper losses
MD Reid, RC Williamson
Proceedings of the 26th Annual International Conference on Machine Leamning ...

Information, divergence and risk for binary experiments
MD Reid, RC Williamson
Journal of Machine Learning Research 12, 731-817

Composite binary losses
MD Reid, RC Williamson
The Journal of Machine Learmning Research 9999, 2387-2422

Composite Multiclass Losses
E Vemnet, ENS Cachan, RC Williamson, MD Reid
Neural Information Processing Systems

Mixability is Bayes Risk Curvature Relative to Log Loss
T van Erven, MD Reid, RC Williamson
Proceedings of the 24th Annual Conference on Leamning Theory (COLT)



3D Plot of Logarithmic Scoring Rule

Point-wise Risk

From Reid+Williamson, “Composite Binary Losses”



Market Scoring Rules



Learning a Consensus?

Scoring rules are useful for incentivizing ONE individual
to state his beliefs about a probability

How can we learn “from the crowd” ?

Proposal: pay every individual according to a scoring
rule!

Problems:
e This 1s very expensive!
e How to combine estimates?
e How to weed out noise traders?

e How to weed out copycats?



Hanson: Market Scoring Rule

Robin Hanson proposed following 1dea to create a
prediction market based on an automated market
maker (MM) — an agent always willing to bet for/against

Imagine we have an uncertain event X which will take
one of n values {1,2,...n}

s

r

I'he MM publishes a scoring rule S(,) for everyone to see

T'he MM posts an initial distribution (prior) p,

Traders arrive, one-by-one, giving updates p,.; = P,

Eventually, outcome X 1s revealed, and trader t earns:

S(X,Pt)—S(XaPH)

Payment could be negative!



Market Scoring Rule




Incentives and Costs

Assume trader t has belief distribution p 1n outcome X.
Note: p can (should) depend on previous prices!

He wants to maximize his payment:
argmaxpt EXNP [S(Xa p; ) _ S(Xa pt—l )]
Opt value nonnegative due to scoring rule property!
=argmax, Ey [S(X,p,)] =P
The MM must make all payments, which totals

211[5(X9pt)_S(X’pt—l)] = S(X’pT)_S(Xapo)

This is bounded! This is like MM’ s subsidy to market.



LMSR: Log Market Scoring Rule

Initial hypothesis 1s po uniform distribution
Trader t posts an update p+1 =2 p
After X 1s revealed, trader t earns log(p«(X)/pt1(X))

Hanson: the LMSR 1s an important special case, only
MSR for which “betting on conditional probabilities does
not affect marginal probabilities”

The market maker’ s worst case loss is bounded by log n,
where n 1s the number of possible outcomes of X



BREAK TIME!

Introduction
Prediction Markets in Practice: Work Well?

Proper Scoring Rules and Eliciting Beliefs

Bregman Divergences + Proper Scoring Rules
Hanson' s Market Scoring Rule

Automated Market Makers
Beyond Complete Markets
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Automated Market Makers



Back to Arrow—Debreu Securities

Barack Obama to be re-elected President in 201 2\

Last prediction was@5.27 / share) —> /52 7%
Today's Change: ¥ -$0.12 (-2.2%) CHANCE

Contract Type: 0-100 ' )

- ' J

How do we arrive at the current price?
e Traditional stock market style pricing (continuous double
auction) — low liquidity, huge spreads

e Automated market maker — willing to risk a (bounded)
loss 1n order to encourage trades



Market Makers for Complete Markets

e In a complete market, a security is offered for each of a
set of mutually exclusive and exhaustive events

e An automated market maker 1s always willing to buy and
sell these securities at some price



Cost Functions

Cost of purchase:
C(q +r) - Uq)

Already purchased: g, shares g, shares
Want to purchase: r, shares r, shares

Instantaneous prices: [ p, =0C/ 0q, p,=0C/0q, ]

“predictions”



Back to the LMSR

The logarithmic market scoring rule can be implemented as
a cost function based market with cost function

N
C(q,....qv) =blog Yexp(qi/b)
=1

and 1nstantaneous prices

exp(q;/b)
2, exp(q;/b)

Pi~

Notice that p, 1s increasing 1n ¢g; and the prices sum to 1



Equivalence

For all p, p', q, q', such that V(C(q) =p and VC(q') = p',
for all outcomes i, a trader who changed the market state
from p to p' in the MSR would receive the same payoff as

a trader who changed the market state from ¢ to ' in the
cost function based market.

[Hanson 03; Chen & Pennock 07]



A Proof in One Shide

cost function payoff

= (q'i _qz') — (C(q') - C(q))

logzeq'f - logzeq" )
j j

(logeq'i —loge ) —

eqi e%‘

=log Eeq'j —log Eeqf

J J

=log p', —logp,
= scoring rule payoff




More Generally

e Any market scoring rule can be implemented as a cost
function based market [Chen & Pennock 07; Chen &
Vaughan 11; Abernethy & Frongillo 11; ...]

e Advantages:
e Retains the good incentive properties of the MSR
e Arguably more “natural” for traders

e Exposure to risk 1s more transparent



Beyond Complete Markets



Complex Outcome Spaces

n! | on Infinite

e Cannot simply run a standard market like LMSR
e Calculating prices is intractable [Chen et al., 2008]
e Reasoning about probabilities is too hard for traders

e Can run separate, independent markets (e.g., horses to
win, place, or show) but this 1ignores logical dependences



Complex Outcome Spaces

Given a small set of securities over a very large (or
infinite) state space, how can we design a consistent

market that can be operated efficiently?

[Abernethy et al., 2011]



Menu of Securities

We would like to offer a menu of securities{l1, ..., K}
specified by a payoff function p
payoff
\ securities
10| oN S5 | 0 | 17 ] 0
9 9|9 | 0o | 9 9
outcomes| 0 42 0 10 10 10
0 0 11.5 8 0 0
1 0 0 0 1




Example: Pair Betting

$1 if and only if horse i finishes ahead of horse j

A<B |B<A |A<C |C<A |B<C |C<B
ABC 1 0 1 0 1 0
ACB 1 0 i 0 0 1
BAC 0 1 1 0 1 0
BCA 0 1 0 1 1 0
CAB 1 0 0 0 1
CBA 0 1 0 0 1




What are “reasonable” prices?

For complete markets... E p;, =1

i

For pair betting. .. PitpP=1
1Spi<j+pj<k+pk<i Sz

what else?

In general... 777



An Axiomatic Approach

Path independence: The cost of acquiring a bundle r of
securities must be the same no matter how the trader splits
up the purchase. Formally,

Cost(r+r |r,ry, ..., T,
= Cost(r | ry, Iy, ..., ) + Cost(r’ |1y, Iy, ..., T, T)

This alone 1implies the existence of a cost potential function!

Cost(r | ry, 1y, ..., I)
=C(rytry,+...+r,+r)—-C(r;+r,+... +r)



An Axiomatic Approach

Existence of instantaneous prices: C must be continuous
and differentiable

Information incorporation: The purchase of a bundle r
should never cause the price of r to decrease

No arbitrage: It 1s never possible to purchase a bundle r
with a guaranteed positive profit regardless of outcome

Expressiveness: A trader must always be able to set the
market prices to reflect his beliefs



An Axiomatic Approach

Theorem: Under these five conditions, costs must be
determined by a convex cost function C such that

VC(q) : R&Y )= Hull
reachable /Q @:q € RY=Hulllp)

price vectors

securities

0

outcomes

o IO OO (=
O NIO O (= O
O =0 O | O
—_—O OO O

0
1
0
0




Cost Functions Via Duality &
The Connection to Online Learning



How do we find these cost functions?

 Fact: A closed, differentiable function C 1s convex if and
only 1f 1t can be written in the form

C(q) = sup x-q—R(x)

x € dom(R)

for a strictly convex function R called the conjugate.

Furthermore, VC(q) = argmax x-q — R(X)

x € dom(R)

4 )
To generate a convex cost function C, we just have to

choose an appropriate conjugate function and domain!
- /




But how do we choose R?

We can borrow 1deas from online linear optimization (or
the simpler expert advice setting) and in particular,
Follow the Regularized Leader algorithms

e Market s conjugate function = regularizer



Learning from Expert Advice

Suppose we would like to choose actions based on the
advice of n “experts” (people, algorithms, features...)

At each round ¢,

e Algorithm selects weights W, W, W3
e Experts suffer a loss lt,l lt,2 lt,3

o Algorithm suffers a loss w, L



What 1s the goal?

T
» Ideally, we’ d like to bound the cumulative loss ) w,"1,
t=1

e Instead, we look at the algorithm’ s regret

i | cumulative
w1l — mnw -

~ weK \ loss vector
algorithm’ s loss of the best fixed

loss weight vector 1in hindsight



What 1s the goal?

T
» Ideally, we’ d like to bound the cumulative loss Y, w1,
r=1

e Instead, we look at the algorithm’ s regret

T

Ewt- ] - minw- L,
t=1

wekK

e Can achieve optimal (O(T")) regret with Follow the
Regularized Leader

w,  =argminw - L + —R(w)

wEK /‘ ] \

cumulative loss  regularizer

t



Online Linear Opt.

. Learner maintains weights
w, € K over n items/experts

- Items have loss vector 1,
cumulatively L., =L, +1_,

- FTRL selects weights
w,,, =argminw - L + —R(w)

4
weEK 77

- Learner suffers regret

minw - L.
weEK

Market Making

« Market maker maintains
prices p, €11 over n contracts

» Contracts are purchased in
bundlesr,and q,., =q,+r,,,

- Market maker selects prices

p,,, =argmaxp - q, — R(p)

pEll

« MM has worst-ca

Y (C@)-Ca,.))

<l

maxp -
naxp - g




More on Choosing R

e Interesting market properties can be described in terms of
the conjugate. ..

 Worst-case market maker loss can be bounded by
sup R(x) —1inf R(Xx)
x € Hull(p) x € Hull(p)
e Information loss (or the bid-ask spread, or the speed at
which prices change) can be bounded too

G1ives us a way to optimize trade-offs in market design!



Example: Permutations

e Suppose our state space 1s all permutations of # 1tems
(e.g., candidates 1n an election, or horses in a race)

e Pair bets: Bets on events of the form “horse i finishes
ahead of horse j~ for any i, j

e Subset bets: Bets on events of the form “horse i

finishes in position j~ for any i, j

e Both known to be #P-hard to price
using LMSR [Chen et al., 2008]

* The complex market framework handles both



Example: Permutations

Subset bets (“horse i finishes in position ;")

e Hull(p) can be described by a small number of
constraints:

Eprioe(i in slotj) =1 Eprice(i in slotj) =1
J i

e Easily handled



Example: Permutations

Pair bets (“horse i finishes ahead of horse ;")
e Hull(p) 1s a bit uglier...
e Solution: Relax the no-arbitrage axiom

e Allows us to to work with a larger, efficiently
specified price space

e But does 1t increase worst case loss? No!



Some Additional Topics



Markets & Variational Inference

e The math behind these markets also parallels the math
behind variational inference

mean parameter <> prices
natural parameter <  quantity vector

sufficient statistics «<»  payoff function

* This connection can be used to design new scoring rules
[Lahaie et al., working paper, 2012]



Making a Profit

 We have assumed that the market maker 1s willing to take
a potential (bounded) loss in order to obtain information

e The 1deas presented here can be modified to yield market
makers guaranteed to earn a profit 1f the volume of trades

1s sufficiently high [e.g., Othman & Sandholm, 2011]

e In the complete market setting, this requires that prices
sum to something more than one — adds some ambiguity
when backing out probability estimates



Convergence of Prices

e Under what circumstances do security prices converge
and reflect the private information of the traders?

e A bad example for convergence:
 We flip two fair coins

e Trader 1 learns the result of the first flip, and trader 2
learns the result of the second

e Suppose that our security pays off $1 if the flips are the
same (HH, TT) and $0 otherwise (HT, TH)

o If the price starts at $0.5, neither trader will trade



Convergence of Prices

e Ostrovsky [2012] characterized separable securities for
which prices can never get “stuck”

e Separability 1s a property of both the security and the
information structure of the traders

e If a security is separable with respect to the traders’
information structure, then at equilibrium, the final price
of the security will reflect all traders’ private information



Also at ICML/COLT

e COLT talk: A Characterization of Scoring Rules for
Linear Properties by Rafael Frongillo and Jake 1n the
Appleton Tower at 3:05pm (RIGHT NOW!)

e ICML workshop: Markets, Mechanisms, and Multi-Agent
Models, all day Sunday



Questions?

http://icmlmarketstutorial.pbworks.com

Reminder: Your coffee break 1s in the Informatics
Forum across the street, starting now



