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“Arrow-Debreu Security”: Contract pays $10 if X happens, 
$0 otherwise. If I think that Pr(X) > p then I should: 
•  Buy this security at any price less than $10p  
•  Sell this security at any price greater than $10p 

 Current price measures the population’s collective beliefs 

Prediction Markets 



Example: Intrade 



Example: Iowa Electronic Market 
 
Popular vote in 2008 presidential election 



Example: Inkling Markets 
Internal prediction markets used within companies 
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Markets in Practice 



Market Prices as a Forecaster 
•  The market price for Arrow-Debreu security is essentially 

a “consensus estimate” of the probability of an event 
•  Are these estimates accurate? 
•  We can check this on historical data! 
•  Questions: 
•  Prices are changing, which do we use? 
•  Accurate in which metric? 
•  Accurate compared to what? 



Market Prediction vs. True Vote Share 

Berg et al., 2008: “Results From a Dozen Years of 
Election Futures Markets Research” 



Average Polls vs. Market Prices 

Berg et al., 2008: “Results From a Dozen Years of 
Election Futures Markets Research” 

Poll Error: 
(multi poll avg) 

1.91% 

Market Error: 
(election eve) 

1.49% 

Market Error: 
(week average) 
 

1.58% 



The Basics: Proper Scoring Rules 



1950: Brier on Weather Forecasting 







Brier’s Question: 
How Should We Pay a Forecaster? 

•  What is the right “payment scheme” to reward/punish a 
forecaster who makes a sequence of probability 
predictions for events that we observe?  

•  The sequence of outcomes: 

•  The sequence of forecasts: 

•  The forecaster’s payment:  

y1, y2, y3, ...∈ {0,1}

p1, p2, p3, ...∈ [0,1]

1
T

S(yt, pt )t=1

T
∑



Brier Score ó Quadratic Scoring Rule 

•  For the n-outcome case: 

S(y, p) = −(y− p)2

y∈ {1,...,n} p∈ Δn

S(y,p) = − (1y=i − pi )
2

i=1

n

∑



What’s Special About This Function? 

•  Assume y is random: 

p∈[0,1]
argmaxΕ −(y− p)2$% &'

=
p∈[0,1]
argmax q(1− p)2 + (1− q)(0− p)2$% &'

=
p∈[0,1]
argmax (p− q)2 + q− q2$% &'= q

Pr(y =1) = q

S(y, p) = −(y− p)2



Proper Scoring Rules 
•  What we have just introduced is the notion of a proper 

scoring rule, which is any func. S(,) satisfying 

•  The scoring rule is said to be strictly proper if the above 
inequality is strict unless p = q 

y~q
Ε S(y,q)[ ] ≥

y~q
Ε S(y,p)[ ] ∀p,q ∈ Δn



Another Strictly Proper Scoring Rule 

•  This is known as the logarithmic scoring rule. For 
predicting 0/1, it can be written as: 

•  EXERCISE: check that this is proper! 
 

S(y,p) = logp(y)

S(y, p) =
log p y =1

log(1− p) y = 0

"
#
$

%$



Scoring Rules == -Loss Functions?? 
Basically, yes. 

•  Effectively, a scoring rule is just a type of loss function 
•  Scoring rules measure the performance (not loss) of a 

predicted distribution given a final outcome 
•  One often sees the use of the term proper loss function 

which is equivalent to proper scoring rule  
•  Research on scoring rules is focused more heavily on the 

incentives of the associated payment mechanism 



Savage 1973  



Digression: Bregman Divergences 
•  Bregman Divergence: Measuring dist using convex 

func’s 



Bregman Divergences II 

•  Def’n: let f be convex + diff’able, then 

•  Properties: 

Df (x, y) = f (x)− f (y)−∇f (y) ⋅ (x − y)

Df (x, y) ≥ 0 ∀x, y

Df (x, y) ≠ Df (y, x) (not nec.)

Df (x, x) = 0 ∀x



Bregman Divergences III 

•  Example 1, quadratic: 

•  Example 2, entropic: 

Df (x, y) := f (x)− f (y)−∇f (y) ⋅ (x − y)

f (x) =|| x ||2 ⇒ Df (x, y) =|| x − y ||
2

f (p) = pi log pi
i
∑ ⇒ Df (p,q) = pi log

pi
qii

∑



Bregman Diverg.ó Scoring Rule?? 
•  Let f be any convex function 
•  Define: i  indicator vector 
•  Let p,q be any two distributions, then for some g(): 

•  Then: 

•  This is the scoring rule property!! 
 

ei := 0,..., 0,1, 0...

i~q
Ε Df (ei,p)"# $% = Df (q,p)+ g(q)

argmaxp
i~q
Ε −Df (ei,p)#$ %& = q



Bregman Diverg.ó Scoring Rule!! 
•  We now have a recipe for constructing scoring rules! 
•  Let f be any convex function, h be arbitrary 
•  We can now let: 

•  Quadratic Scoring Rule: 

•  Log Scoring Rule: 

S(i,p) = −Df (ei,p)+ h(i)

f (p) =||p ||2
2

f (p) = pi log pii∑



Brief Literature Review 



3D Plot of Logarithmic Scoring Rule 

From Reid+Williamson, “Composite Binary Losses” 



Market Scoring Rules 



Learning a Consensus? 
•  Scoring rules are useful for incentivizing ONE individual 

to state his beliefs about a probability 
•  How can we learn “from the crowd”? 
•  Proposal: pay every individual according to a scoring 

rule! 
•  Problems: 
•  This is very expensive! 
•  How to combine estimates? 
•  How to weed out noise traders? 
•  How to weed out copycats? 



Hanson: Market Scoring Rule 
•  Robin Hanson proposed following idea to create a 

prediction market based on an automated market 
maker (MM) – an agent always willing to bet for/against 

•  Imagine we have an uncertain event X which will take 
one of n values {1,2,…,n} 

•  The MM publishes a scoring rule S(,) for everyone to see 
•  The MM posts an initial distribution (prior) p0 

•  Traders arrive, one-by-one, giving updates pt-1 à pt 

•  Eventually, outcome X is revealed, and trader t earns: 

•  Payment could be negative! 
S(X,pt )− S(X,pt−1)



Market Scoring Rule 

B C

A

p0 

pt 
p2 

p1 



Incentives and Costs 
•  Assume trader t has belief distribution p in outcome X.  
•  Note: p can (should) depend on previous prices! 
•  He wants to maximize his payment: 

•  Opt value nonnegative due to scoring rule property! 
 
•  The MM must make all payments, which totals 

•  This is bounded! This is like MM’s subsidy to market. 

argmaxpt ΕX~p[S(X,pt )− S(X,pt−1)]

S(X,pt )− S(X,pt−1)[ ]
t=1

T
∑ = S(X,pT )− S(X,p0 )

= p= argmaxpt ΕX~p[S(X,pt )]



LMSR: Log Market Scoring Rule 
•  Initial hypothesis is p0 uniform distribution 
•  Trader t posts an update pt-1 à pt  
•  After X is revealed, trader t earns log(pt(X)/pt-1(X)) 
•  Hanson: the LMSR is an important special case, only 

MSR for which “betting on conditional probabilities does 
not affect marginal probabilities” 

•  The market maker’s worst case loss is bounded by log n, 
where n is the number of possible outcomes of X 



BREAK TIME! 
1.  Introduction 
2.  Prediction Markets in Practice: Work Well? 
3.  Proper Scoring Rules and Eliciting Beliefs 
4.  Bregman Divergences + Proper Scoring Rules 
5.  Hanson’s Market Scoring Rule 
6.  BREAK!!!!!!!!!!!! 
7.  Automated Market Makers 
8.  Beyond Complete Markets 
9.  Duality &  Connection to Online Learning 
10. Some Additional Topics 



Automated Market Makers 



How do we arrive at the current price? 
•  Traditional stock market style pricing (continuous double 

auction) – low liquidity, huge spreads 
•  Automated market maker – willing to risk a (bounded) 

loss in order to encourage trades 

Back to Arrow–Debreu Securities 



•  In a complete market, a security is offered for each of a 
set of mutually exclusive and exhaustive events 

•  An automated market maker is always willing to buy and 
sell these securities at some price 

 

Market Makers for Complete Markets 

Worth 
$1 iff          

Worth 
$1 iff          



Cost of purchase: 
  C(q + r) – C(q) 
 

 
Already purchased:  q1 shares   q2 shares 
Want to purchase:   r1 shares   r2 shares 
 

Instantaneous prices:  p1 = ∂C / ∂q1  p2 = ∂C / ∂q2 

 

Cost Functions 

Worth 
$1 iff          

Worth 
$1 iff          

“predictions” 



The logarithmic market scoring rule can be implemented as 
a cost function based market with cost function 

 
  

 

  and instantaneous prices 
 
 
 
Notice that pi is increasing in qi and the prices sum to 1 
 
 
 
 

 
 

Back to the LMSR 

pi = exp(qi /b) 
Σj exp(qj /b) 

€ 

C(q1,...,qN) = b log exp(qi/b)
i = 1

N
∑



Equivalence 

 For all p, p', q, q', such that ∇C(q) = p and ∇C(q') = p', 
for all outcomes i, a trader who changed the market state 
from p to p' in the MSR would receive the same payoff as 
a trader who changed the market state from q to q' in the 
cost function based market. 

 
 [Hanson 03; Chen & Pennock 07] 



A Proof in One Slide 
cost function payoff   

€ 

= q'i −qi( ) − C(q') −C(q)( )

€ 

= log
eq ' i

eq ' j
j
∑

− log
eqi

eq j

j
∑

= scoring rule payoff   

€ 

= log p'i −log pi
€ 

= logeq' i − logeqi( ) − log eq ' j
j
∑ − log eq j

j
∑

$ 

% 
& & 

' 

( 
) ) 



More Generally 

•  Any market scoring rule can be implemented as a cost 
function based market [Chen & Pennock 07; Chen & 
Vaughan 11; Abernethy & Frongillo 11; …] 

•  Advantages: 
•  Retains the good incentive properties of the MSR 
•  Arguably more “natural” for traders 
•  Exposure to risk is more transparent 



Beyond Complete Markets 



•  Cannot simply run a standard market like LMSR 
•  Calculating prices is intractable [Chen et al., 2008] 
•  Reasoning about probabilities is too hard for traders 

•  Can run separate, independent markets (e.g., horses to 
win, place, or show) but this ignores logical dependences 

Complex Outcome Spaces 

n! 2n Infinite 



Complex Outcome Spaces 
  

 
 

 Given a small set of securities over a very large (or 
infinite) state space, how can we design a consistent 
market that can be operated efficiently? 

 
 [Abernethy et al., 2011] 



Menu of Securities 
We would like to offer a menu of securities{1, …, K} 

specified by a payoff function ρ 
 

10 0 5.5 0 17 0 
.9 .9 .9 0 .9 .9 
0 42 0 10 10 10 
0 0 11.5 8 0 0 
1 0 0 0 0 1 

securities 

outcomes 

payoff 



Example: Pair Betting 
 

$1 if and only if horse i finishes ahead of horse j 

A<B B<A A<C C<A B<C C<B 
ABC 1 0 1 0 1 0 
ACB 1 0 1 0 0 1 
BAC 0 1 1 0 1 0 
BCA 0 1 0 1 1 0 
CAB 1 0 0 1 0 1 
CBA 0 1 0 1 0 1 



What are “reasonable” prices? 

For complete markets…  

For pair betting… 

In general… 

€ 

pi =1
i
∑

€ 

pi< j + p j< i =1

€ 

1≤ pi< j + p j<k + pk< i ≤ 2

what else? 

??? 



An Axiomatic Approach 
 
Path independence: The cost of acquiring a bundle r of 

securities must be the same no matter how the trader splits 
up the purchase.  Formally,  

 Cost(r + r’ | r1, r2, …, rt)  
 = Cost(r | r1, r2, …, rt) + Cost(r’ | r1, r2, …, rt, r)    

 
 
 

This alone implies the existence of a cost potential function! 
  

 Cost(r | r1, r2, …, rt)  
 = C(r1 + r2 + … + rt + r) – C(r1 + r2 + … + rt)  



An Axiomatic Approach 
•  Existence of instantaneous prices: C must be continuous 

and differentiable 

•  Information incorporation: The purchase of a bundle r 
should never cause the price of r to decrease 

•  No arbitrage: It is never possible to purchase a bundle r 
with a guaranteed positive profit regardless of outcome 

•  Expressiveness: A trader must always be able to set the 
market prices to reflect his beliefs  



An Axiomatic Approach 
Theorem: Under these five conditions, costs must be 

determined by a convex cost function C such that 

{∇C(q) : q ∈ RK} = Hull(ρ) 

 [ 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

outcomes 

securities 

reachable 
price vectors 



Cost Functions Via Duality & 
The Connection to Online Learning 



•  Fact: A closed, differentiable function C is convex if and 
only if it can be written in the form 

 

C(q) =   sup  x⋅q – R(x) 
 

 for a strictly convex function R called the conjugate. 

 Furthermore, ∇C(q) = arg max x⋅q – R(x) 
 
 

To generate a convex cost function C, we just have to 
choose an appropriate conjugate function and domain!  

How do we find these cost functions? 

x ∈ dom(R)   

x ∈ dom(R)   



But how do we choose R? 
  

 
 We can borrow ideas from online linear optimization (or 
the simpler expert advice setting) and in particular, 
Follow the Regularized Leader algorithms 
•  Market’s conjugate function ≈ regularizer 



Learning from Expert Advice 
Suppose we would like to choose actions based on the 

advice of n “experts” (people, algorithms, features…) 

At each round t, 
•  Algorithm selects weights 

•  Experts suffer a loss 

•  Algorithm suffers a loss 

wt,1 

lt,1 

wt,2 

lt,2 

wt,3 

lt,3 

wt ⋅lt 



What is the goal? 
•  Ideally, we’d like to bound the cumulative loss 
 
•  Instead, we look at the algorithm’s regret 

€ 

wt ⋅ l t
t=1

T

∑

€ 

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

algorithm’s 
loss 

loss of the best fixed 
weight vector in hindsight 

cumulative 
loss vector 



What is the goal? 
•  Ideally, we’d like to bound the cumulative loss 
 
•  Instead, we look at the algorithm’s regret 

•  Can achieve optimal (O(T½)) regret with Follow the 
Regularized Leader  

€ 

wt ⋅ l t
t=1

T

∑

€ 

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

cumulative loss regularizer 
€ 

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)



Online Linear Opt. 

•  Learner maintains weights 
wt ∈ K over n items/experts 

•  Items have loss vector lt, 
cumulatively Lt+1 = Lt + lt+1 

•  FTRL selects weights 

•  Learner suffers regret 

€ 

wt+1 = argmin
w∈K

w ⋅ Lt +
1
η
R(w)

€ 

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

Market Making 

•  Market maker maintains 
prices pt∈Π over n contracts 

•  Contracts are purchased in 
bundles rt, and qt+1 = qt + rt+1 

•  Market maker selects prices 

•  MM has worst-case loss 

€ 

pt+1 = argmax
p∈Π

p ⋅ qt − R(p)

€ 

max
p∈Π

p ⋅ qT − C(qt ) −C(qt−1)( )
t=1

T

∑



More on Choosing R 
•  Interesting market properties can be described in terms of 

the conjugate… 

•  Worst-case market maker loss can be bounded by 
sup  R(x) – inf  R(x) 

 
 

•  Information loss (or the bid-ask spread, or the speed at 
which prices change) can be bounded too 

 
Gives us a way to optimize trade-offs in market design! 
 

x ∈ Hull(ρ)  x ∈ Hull(ρ)  



Example: Permutations 
•  Suppose our state space is all permutations of n items 

(e.g., candidates in an election, or horses in a race) 

•  Pair bets: Bets on events of the form “horse i finishes 
ahead of horse j” for any i, j 

•  Subset bets: Bets on events of the form “horse i 
finishes in position j” for any i, j 

•  Both known to be #P-hard to price  
 using LMSR [Chen et al., 2008] 

 

•  The complex market framework handles both 
 

 



Example: Permutations 
 
 

 Subset bets (“horse i finishes in position j”) 
•  Hull(ρ) can be described by a small number of 

constraints: 

•  Easily handled 

€ 

price(
j
∑ i in slot j) =1

€ 

price(
i
∑ i in slot j) =1



Example: Permutations 

 
 Pair bets (“horse i finishes ahead of horse j”) 
•  Hull(ρ) is a bit uglier… 
•  Solution: Relax the no-arbitrage axiom 
• Allows us to to work with a larger, efficiently 

specified price space 
• But does it increase worst case loss?  No! 



Some Additional Topics 



Markets & Variational Inference 
•  The math behind these markets also parallels the math 

behind variational inference 

  mean parameter  ↔  prices 
  natural parameter  ↔  quantity vector 
  sufficient statistics ↔  payoff function 

 
•  This connection can be used to design new scoring rules 

[Lahaie et al., working paper, 2012] 



Making a Profit 
•  We have assumed that the market maker is willing to take 

a potential (bounded) loss in order to obtain information 

•  The ideas presented here can be modified to yield market 
makers guaranteed to earn a profit if the volume of trades 
is sufficiently high [e.g., Othman & Sandholm, 2011] 

•  In the complete market setting, this requires that prices 
sum to something more than one – adds some ambiguity 
when backing out probability estimates 



Convergence of Prices 
•  Under what circumstances do security prices converge 

and reflect the private information of the traders? 

•  A bad example for convergence: 
•  We flip two fair coins 
•  Trader 1 learns the result of the first flip, and trader 2 

learns the result of the second 
•  Suppose that our security pays off $1 if the flips are the 

same (HH, TT) and $0 otherwise (HT, TH) 
•  If the price starts at $0.5, neither trader will trade 



Convergence of Prices 
•  Ostrovsky [2012] characterized separable securities for 

which prices can never get “stuck” 

•  Separability is a property of both the security and the 
information structure of the traders 

•  If a security is separable with respect to the traders’ 
information structure, then at equilibrium, the final price 
of the security will reflect all traders’ private information  



Also at ICML/COLT 
 
•  COLT talk: A Characterization of Scoring Rules for 

Linear Properties by Rafael Frongillo and Jake in the 
Appleton Tower at 3:05pm (RIGHT NOW!) 

•  ICML workshop: Markets, Mechanisms, and Multi-Agent 
Models, all day Sunday 



Questions? 

http://icmlmarketstutorial.pbworks.com 
 
 

Reminder: Your coffee break is in the Informatics 
Forum across the street, starting now 

 


