
Iterative Learning for Reliable
Crowdsourcing Systems
Bin Bi, Chen Liu, Yuchen Liu

Agenda

!  Introduction

!  Crowdsourcing Model

!  Proposed Algoirthms

!  Performance Guarantee and Optimality

!  Density Evolution Analysis Technique (Proof of Thm. 2.1)

Agenda

!  Introduction

!  Crowdsourcing Model

!  Proposed Algoirthms

!  Performance Guarantee and Optimality

!  Density Evolution Analysis Technique (Proof of Thm. 2.1)

What’s Crowdsourcing

!  Image classification

!  Transcription

!  Proof reading

!  Large number of small and
simple tasks

!  Difficult for computers

!  Easy for human

http://labelme.csail.mit.edu/mt_instructions.html

Characteristics of Crowdsourcing
System

!  Errors are common
!  Some workers are not reliable

!  Workers are unidentifiable
!  Worker crowd is large

!  No prior knowledge of the worker’s reliability

!  Tasks are distributed through open call

!  No gold standard
!  Cannot condition payment on correctness of responses

Crowdsourcing Systems

Batches of tasks are distributed to unidentified group of people
through open call.

Source: S. Oh “Iterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011

Crowdsourcing Systems

User give their possibly inaccurate answers.

Source: S. Oh “Iterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011

Crowdsourcing Systems

A task may be assigned to multiple workers to overcome the possible
errors.

Source: S. Oh “Iterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011

Crowdsourcing Systems

Users make random error based on their own quality.

Source: S. Oh “Iterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011

Crowdsourcing Systems

Final results are aggregation of multiple workers’ response for each
task. Estimation is performed after all the answers are obtained.
Amount of the payment is according to the number of responses.

Source: S. Oh “Iterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011

Core Optimization Problem

!  Achieve a certain reliability in answers with minimum cost
(i.e. asking fewest possible questions)

Core Optimization Problem

!  Achieve a certain reliability in answers with minimum cost
(i.e. asking fewest possible questions)

!  Challenges
!  Task assignment

!  Inference problem

!  Solutions proposed by the paper
!  Task assignment: Random regular bipartite graph

!  Inference problem: Iterative inference algorithm

!  Proved to be optimal given certain amount of budget

Previous Related Work

!  Focus on inference problem

!  Learning from multiple responses
!  Majority Voting

!  Vulnerable to spammers

!  EM approach to learn reliability

!  Local optimal

!  No theoretical performance guarantee

Agenda

!  Introduction

!  Crowdsourcing Model

!  Proposed Algorithms

!  Performance Guarantee and Optimality

!  Density Evolution Analysis Technique (Proof of Thm. 2.1)

Crowd Sourcing Model

!  A set of m Tasks

!  Each task associated with an unobserved ‘correct’
answer

!  Tasks are assigned to n workers

!  Answer on task from worker :

{ti}, i =1,2,...,m

si ! {±1}

{wj}, j =1,...n

ti wj Aij ! {±1}

Crowd Sourcing Model (cont.)

!  Each worker has a reliability
!  The worker j randomly make errors according to
!  does not depends on specific task
!  are i.i.d. random variables of a given

distribution

!  For task i answered by user j, the answer is defined as

!  If i is not assigned to j,

!  Crowd quality

Aij =
si
!si

"
#
$

%$

w.p. pj
w.p. 1! pj

Aij = 0

q ! "[(2pj #1)
2]

pj ! [0,1]

pjpj
{pj}, j =1...n

Agenda

!  Introduction

!  Crowdsourcing Model

!  Proposed Algorithms

!  Performance Guarantee and Optimality

!  Density Evolution Analysis Technique (Proof of Thm. 2.1)

Task Allocation Scheme

!  Task allocation = Designing a bipartite graph

Source: S. Oh “Iterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011

Tasks

Workers

Random (l,r)-regular bipartite graph

!  Generate an (l,r)-regular random bipartite graph

!  Random bipartite graph has good properties
!  Proved to be sufficient to achieve order-optimal performance

Iterative Inference Algorithm

Iterative Inference Algorithm

!  Message passing
!  Task message:

!  Worker message:

{xi! j}(i, j)"E
{yj!i}(i, j)"E

Iterative Inference Algorithm

!  Message passing
!  Task message:

!  Worker message:

!  Final estimate

ŝi = sign(Aijyj!i)
j"#i

$

{xi! j}(i, j)"E
{yj!i}(i, j)"E

Neiborhood of i

A weighted sum of
answers weighted by
each worker’s reliability.

Worker j’s reliability on
item i

Iterative algorithm for inference

!  Update Process
!  Compute the item likelihood to be positive

!  Compute the reliability of users

Tasks are more likely to
be positive if reliable
workers say it is positive

Workers are reliable if their
labels consistent with the
likelihood of tasks

Agenda

! Introduction

! Crowdsourcing Model

! Proposed Algorithms

! Performance Guarantee and Optimality

! Density Evolution Analysis Technique (Proof of Thm. 2.1)

Performance Guarantee

! Define:

2

Performance Guarantee

! Define:

2

Performance Guarantee

! Define:

2

that we establish suggests that such an error dependence on lq is unavoidable. Hence, in terms of

the total budget, our algorithm is order-optimal. The precise statements follow next.

Define a parameter µ ≡ E[2pj − 1] and recall that q = E[(2pj − 1)
2
]. To lighten the notation,

let l̂ ≡ l − 1 and r̂ ≡ r − 1. Define

ρ2k ≡ 2q

µ2(q2 l̂r̂)k−1
+

�
3 +

1

qr̂

�
1− (1/q2 l̂r̂)k−1

1− (1/q2 l̂r̂)
.

For q2 l̂r̂ > 1, let ρ2∞ ≡ limk→∞ ρ2k such that

ρ2∞ =

�
3 +

1

qr̂

�
q2 l̂r̂

q2 l̂r̂ − 1
.

Then we can show the following bound on the probability of making an error.

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy µ ≡ E[2pj − 1] > 0 and q2 > 1/(l̂r̂), then for any s ∈ {±1}m, the
estimates from k iterations of the iterative algorithm achieve

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2k) . (1)

As we increase k, the above bound converges to a non-trivial limit.

Corollary 2.2. Under the hypotheses of Theorem 2.1,

lim
k→∞

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2∞)
. (2)

Even if we fix the value of q = E[(2pj − 1)
2
], different distributions of pj can have different

values of µ in the range of [q,
√
q]. Surprisingly, the asymptotic bound on the error rate does not

depend on µ. Instead, as long as q is fixed, µ only affects how fast the algorithm converges (cf.

Lemma 2.3).

Next, we make a few remarks on the performance guarantee.

First, the iterative algorithm is efficient with run-time comparable to that of majority voting

which requires O(ml) operations. Each iteration of the iterative algorithm requires O(ml) oper-

ations, and we need O(log(q/µ2
)/ log(q2 l̂r̂)) iterations to ensure an error bound which scales as

(2).

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(ml log(q/µ2

)/ log(q2 l̂r̂)).

By definition, we have q ≤ µ ≤ √
q. The runtime is the worst when µ = q, which happens

under the spammer-hammer model, and it is the best when µ =
√
q which happens if pj =

(1+
√
q)/2 deterministically. There exists a (non-iterative) polynomial time algorithm with runtime

independent of q for computing the estimate which achieves (2), but in practice we expect that

8

Performance Guarantee

! Define:

2

that we establish suggests that such an error dependence on lq is unavoidable. Hence, in terms of

the total budget, our algorithm is order-optimal. The precise statements follow next.

Define a parameter µ ≡ E[2pj − 1] and recall that q = E[(2pj − 1)
2
]. To lighten the notation,

let l̂ ≡ l − 1 and r̂ ≡ r − 1. Define

ρ2k ≡ 2q

µ2(q2 l̂r̂)k−1
+

�
3 +

1

qr̂

�
1− (1/q2 l̂r̂)k−1

1− (1/q2 l̂r̂)
.

For q2 l̂r̂ > 1, let ρ2∞ ≡ limk→∞ ρ2k such that

ρ2∞ =

�
3 +

1

qr̂

�
q2 l̂r̂

q2 l̂r̂ − 1
.

Then we can show the following bound on the probability of making an error.

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy µ ≡ E[2pj − 1] > 0 and q2 > 1/(l̂r̂), then for any s ∈ {±1}m, the
estimates from k iterations of the iterative algorithm achieve

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2k) . (1)

As we increase k, the above bound converges to a non-trivial limit.

Corollary 2.2. Under the hypotheses of Theorem 2.1,

lim
k→∞

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2∞)
. (2)

Even if we fix the value of q = E[(2pj − 1)
2
], different distributions of pj can have different

values of µ in the range of [q,
√
q]. Surprisingly, the asymptotic bound on the error rate does not

depend on µ. Instead, as long as q is fixed, µ only affects how fast the algorithm converges (cf.

Lemma 2.3).

Next, we make a few remarks on the performance guarantee.

First, the iterative algorithm is efficient with run-time comparable to that of majority voting

which requires O(ml) operations. Each iteration of the iterative algorithm requires O(ml) oper-

ations, and we need O(log(q/µ2
)/ log(q2 l̂r̂)) iterations to ensure an error bound which scales as

(2).

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(ml log(q/µ2

)/ log(q2 l̂r̂)).

By definition, we have q ≤ µ ≤ √
q. The runtime is the worst when µ = q, which happens

under the spammer-hammer model, and it is the best when µ =
√
q which happens if pj =

(1+
√
q)/2 deterministically. There exists a (non-iterative) polynomial time algorithm with runtime

independent of q for computing the estimate which achieves (2), but in practice we expect that

8

that we establish suggests that such an error dependence on lq is unavoidable. Hence, in terms of

the total budget, our algorithm is order-optimal. The precise statements follow next.

Define a parameter µ ≡ E[2pj − 1] and recall that q = E[(2pj − 1)
2
]. To lighten the notation,

let l̂ ≡ l − 1 and r̂ ≡ r − 1. Define

ρ2k ≡ 2q

µ2(q2 l̂r̂)k−1
+

�
3 +

1

qr̂

�
1− (1/q2 l̂r̂)k−1

1− (1/q2 l̂r̂)
.

For q2 l̂r̂ > 1, let ρ2∞ ≡ limk→∞ ρ2k such that

ρ2∞ =

�
3 +

1

qr̂

�
q2 l̂r̂

q2 l̂r̂ − 1
.

Then we can show the following bound on the probability of making an error.

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy µ ≡ E[2pj − 1] > 0 and q2 > 1/(l̂r̂), then for any s ∈ {±1}m, the
estimates from k iterations of the iterative algorithm achieve

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2k) . (1)

As we increase k, the above bound converges to a non-trivial limit.

Corollary 2.2. Under the hypotheses of Theorem 2.1,

lim
k→∞

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2∞)
. (2)

Even if we fix the value of q = E[(2pj − 1)
2
], different distributions of pj can have different

values of µ in the range of [q,
√
q]. Surprisingly, the asymptotic bound on the error rate does not

depend on µ. Instead, as long as q is fixed, µ only affects how fast the algorithm converges (cf.

Lemma 2.3).

Next, we make a few remarks on the performance guarantee.

First, the iterative algorithm is efficient with run-time comparable to that of majority voting

which requires O(ml) operations. Each iteration of the iterative algorithm requires O(ml) oper-

ations, and we need O(log(q/µ2
)/ log(q2 l̂r̂)) iterations to ensure an error bound which scales as

(2).

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(ml log(q/µ2

)/ log(q2 l̂r̂)).

By definition, we have q ≤ µ ≤ √
q. The runtime is the worst when µ = q, which happens

under the spammer-hammer model, and it is the best when µ =
√
q which happens if pj =

(1+
√
q)/2 deterministically. There exists a (non-iterative) polynomial time algorithm with runtime

independent of q for computing the estimate which achieves (2), but in practice we expect that

8

Performance Guarantee

3

that we establish suggests that such an error dependence on lq is unavoidable. Hence, in terms of

the total budget, our algorithm is order-optimal. The precise statements follow next.

Define a parameter µ ≡ E[2pj − 1] and recall that q = E[(2pj − 1)
2
]. To lighten the notation,

let l̂ ≡ l − 1 and r̂ ≡ r − 1. Define

ρ2k ≡ 2q

µ2(q2 l̂r̂)k−1
+

�
3 +

1

qr̂

�
1− (1/q2 l̂r̂)k−1

1− (1/q2 l̂r̂)
.

For q2 l̂r̂ > 1, let ρ2∞ ≡ limk→∞ ρ2k such that

ρ2∞ =

�
3 +

1

qr̂

�
q2 l̂r̂

q2 l̂r̂ − 1
.

Then we can show the following bound on the probability of making an error.

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy µ ≡ E[2pj − 1] > 0 and q2 > 1/(l̂r̂), then for any s ∈ {±1}m, the
estimates from k iterations of the iterative algorithm achieve

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2k) . (1)

As we increase k, the above bound converges to a non-trivial limit.

Corollary 2.2. Under the hypotheses of Theorem 2.1,

lim
k→∞

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2∞)
. (2)

Even if we fix the value of q = E[(2pj − 1)
2
], different distributions of pj can have different

values of µ in the range of [q,
√
q]. Surprisingly, the asymptotic bound on the error rate does not

depend on µ. Instead, as long as q is fixed, µ only affects how fast the algorithm converges (cf.

Lemma 2.3).

Next, we make a few remarks on the performance guarantee.

First, the iterative algorithm is efficient with run-time comparable to that of majority voting

which requires O(ml) operations. Each iteration of the iterative algorithm requires O(ml) oper-

ations, and we need O(log(q/µ2
)/ log(q2 l̂r̂)) iterations to ensure an error bound which scales as

(2).

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(ml log(q/µ2

)/ log(q2 l̂r̂)).

By definition, we have q ≤ µ ≤ √
q. The runtime is the worst when µ = q, which happens

under the spammer-hammer model, and it is the best when µ =
√
q which happens if pj =

(1+
√
q)/2 deterministically. There exists a (non-iterative) polynomial time algorithm with runtime

independent of q for computing the estimate which achieves (2), but in practice we expect that

8

Performance Guarantee

3

that we establish suggests that such an error dependence on lq is unavoidable. Hence, in terms of

the total budget, our algorithm is order-optimal. The precise statements follow next.

Define a parameter µ ≡ E[2pj − 1] and recall that q = E[(2pj − 1)
2
]. To lighten the notation,

let l̂ ≡ l − 1 and r̂ ≡ r − 1. Define

ρ2k ≡ 2q

µ2(q2 l̂r̂)k−1
+

�
3 +

1

qr̂

�
1− (1/q2 l̂r̂)k−1

1− (1/q2 l̂r̂)
.

For q2 l̂r̂ > 1, let ρ2∞ ≡ limk→∞ ρ2k such that

ρ2∞ =

�
3 +

1

qr̂

�
q2 l̂r̂

q2 l̂r̂ − 1
.

Then we can show the following bound on the probability of making an error.

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy µ ≡ E[2pj − 1] > 0 and q2 > 1/(l̂r̂), then for any s ∈ {±1}m, the
estimates from k iterations of the iterative algorithm achieve

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2k) . (1)

As we increase k, the above bound converges to a non-trivial limit.

Corollary 2.2. Under the hypotheses of Theorem 2.1,

lim
k→∞

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2∞)
. (2)

Even if we fix the value of q = E[(2pj − 1)
2
], different distributions of pj can have different

values of µ in the range of [q,
√
q]. Surprisingly, the asymptotic bound on the error rate does not

depend on µ. Instead, as long as q is fixed, µ only affects how fast the algorithm converges (cf.

Lemma 2.3).

Next, we make a few remarks on the performance guarantee.

First, the iterative algorithm is efficient with run-time comparable to that of majority voting

which requires O(ml) operations. Each iteration of the iterative algorithm requires O(ml) oper-

ations, and we need O(log(q/µ2
)/ log(q2 l̂r̂)) iterations to ensure an error bound which scales as

(2).

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(ml log(q/µ2

)/ log(q2 l̂r̂)).

By definition, we have q ≤ µ ≤ √
q. The runtime is the worst when µ = q, which happens

under the spammer-hammer model, and it is the best when µ =
√
q which happens if pj =

(1+
√
q)/2 deterministically. There exists a (non-iterative) polynomial time algorithm with runtime

independent of q for computing the estimate which achieves (2), but in practice we expect that

8

that we establish suggests that such an error dependence on lq is unavoidable. Hence, in terms of

the total budget, our algorithm is order-optimal. The precise statements follow next.

Define a parameter µ ≡ E[2pj − 1] and recall that q = E[(2pj − 1)
2
]. To lighten the notation,

let l̂ ≡ l − 1 and r̂ ≡ r − 1. Define

ρ2k ≡ 2q

µ2(q2 l̂r̂)k−1
+

�
3 +

1

qr̂

�
1− (1/q2 l̂r̂)k−1

1− (1/q2 l̂r̂)
.

For q2 l̂r̂ > 1, let ρ2∞ ≡ limk→∞ ρ2k such that

ρ2∞ =

�
3 +

1

qr̂

�
q2 l̂r̂

q2 l̂r̂ − 1
.

Then we can show the following bound on the probability of making an error.

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy µ ≡ E[2pj − 1] > 0 and q2 > 1/(l̂r̂), then for any s ∈ {±1}m, the
estimates from k iterations of the iterative algorithm achieve

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2k) . (1)

As we increase k, the above bound converges to a non-trivial limit.

Corollary 2.2. Under the hypotheses of Theorem 2.1,

lim
k→∞

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2∞)
. (2)

Even if we fix the value of q = E[(2pj − 1)
2
], different distributions of pj can have different

values of µ in the range of [q,
√
q]. Surprisingly, the asymptotic bound on the error rate does not

depend on µ. Instead, as long as q is fixed, µ only affects how fast the algorithm converges (cf.

Lemma 2.3).

Next, we make a few remarks on the performance guarantee.

First, the iterative algorithm is efficient with run-time comparable to that of majority voting

which requires O(ml) operations. Each iteration of the iterative algorithm requires O(ml) oper-

ations, and we need O(log(q/µ2
)/ log(q2 l̂r̂)) iterations to ensure an error bound which scales as

(2).

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(ml log(q/µ2

)/ log(q2 l̂r̂)).

By definition, we have q ≤ µ ≤ √
q. The runtime is the worst when µ = q, which happens

under the spammer-hammer model, and it is the best when µ =
√
q which happens if pj =

(1+
√
q)/2 deterministically. There exists a (non-iterative) polynomial time algorithm with runtime

independent of q for computing the estimate which achieves (2), but in practice we expect that

8

Remarks on the Performance

! This iterative algorithm could converge quickly.
! computationally efficient as majority voting.

4

that we establish suggests that such an error dependence on lq is unavoidable. Hence, in terms of

the total budget, our algorithm is order-optimal. The precise statements follow next.

Define a parameter µ ≡ E[2pj − 1] and recall that q = E[(2pj − 1)
2
]. To lighten the notation,

let l̂ ≡ l − 1 and r̂ ≡ r − 1. Define

ρ2k ≡ 2q

µ2(q2 l̂r̂)k−1
+

�
3 +

1

qr̂

�
1− (1/q2 l̂r̂)k−1

1− (1/q2 l̂r̂)
.

For q2 l̂r̂ > 1, let ρ2∞ ≡ limk→∞ ρ2k such that

ρ2∞ =

�
3 +

1

qr̂

�
q2 l̂r̂

q2 l̂r̂ − 1
.

Then we can show the following bound on the probability of making an error.

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy µ ≡ E[2pj − 1] > 0 and q2 > 1/(l̂r̂), then for any s ∈ {±1}m, the
estimates from k iterations of the iterative algorithm achieve

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2k) . (1)

As we increase k, the above bound converges to a non-trivial limit.

Corollary 2.2. Under the hypotheses of Theorem 2.1,

lim
k→∞

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2∞)
. (2)

Even if we fix the value of q = E[(2pj − 1)
2
], different distributions of pj can have different

values of µ in the range of [q,
√
q]. Surprisingly, the asymptotic bound on the error rate does not

depend on µ. Instead, as long as q is fixed, µ only affects how fast the algorithm converges (cf.

Lemma 2.3).

Next, we make a few remarks on the performance guarantee.

First, the iterative algorithm is efficient with run-time comparable to that of majority voting

which requires O(ml) operations. Each iteration of the iterative algorithm requires O(ml) oper-

ations, and we need O(log(q/µ2
)/ log(q2 l̂r̂)) iterations to ensure an error bound which scales as

(2).

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(ml log(q/µ2

)/ log(q2 l̂r̂)).

By definition, we have q ≤ µ ≤ √
q. The runtime is the worst when µ = q, which happens

under the spammer-hammer model, and it is the best when µ =
√
q which happens if pj =

(1+
√
q)/2 deterministically. There exists a (non-iterative) polynomial time algorithm with runtime

independent of q for computing the estimate which achieves (2), but in practice we expect that

8

Remarks on the Performance

! It’s necessary to assume
! Knowing the overall quality of the crowd
! either most of people make a correct label
! or most of people make a wrong label (flip the results)

5

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of assignments per task (l)

Majority Voting
Expectation Maximization

Iterative Algorithm
Oracle Estimator

Figure 1: The iterative algorithm improves over majority voting and EM algorithm [SPI08].

the number of iterations needed is small enough that the iterative algorithm will outperform this

non-iterative algorithm.

Second, the assumption that µ > 0 is necessary. If there is no assumption on µ, then we cannot

distinguish if the responses came from tasks with {si}i∈[m] and workers with {pj}j∈[n] or tasks with
{−si}i∈[m] and workers with {1 − pj}j∈[n]. Statistically, both of them give the same output. The

hypothesis on µ allows us to distinguish which of the two is the correct solution. In the case when

we know that µ < 0, we can use the same algorithm changing the sign of the final output and get

the same performance guarantee.

Third, our algorithm does not require any information on the distribution of pj . Further,

unlike previous approaches based on Expectation Maximization (EM), the iterative algorithm is

not sensitive to initialization and converges to a unique solution from a random initialization with

high probability. This follows from the fact that the algorithm is essentially computing a leading

eigenvector of a particular linear operator.

Finally, we observe a phase transition at l̂r̂q2 = 1. Above this phase transition, when l̂r̂q2 > 1,

we will show that our algorithm is order-optimal and the probability of error is significantly smaller

than majority voting. However, perhaps surprisingly, when we are below the threshold, when

l̂r̂q2 < 1, we empirically observe that our algorithm exhibit a fundamentally different behavior.

The error we get after k iterations of our algorithm increases with k. In this regime, we are better

off stopping the algorithm after 1 iteration, in which case the estimate we get is essentially the

same as the simple majority voting, and we cannot do better than majority voting. This phase

transition is universal and we observe similar behavior with other inference algorithms including

expectation maximization approaches.

This is illustrated in Figure. 1. We ran 10 iterations of expectation maximization and our

iterative algorithm, and compare the performance to majority voting and the oracle estimator. For

this numerical simulation, we chose l = r and a distribution of the workers such that q = 0.3.
Hence, we observe the phase transition around l = 1 + 1/0.3 = 4.3333.

We also ran experiments with real crowd using Amazon Mechanical Turk. In our experiment

9

Remarks on the Performance

! Do not require more information on the reliability
distribution Pj.
! EM algorithm is sensitive to initialization.
! This iterative algorithm does not depend on initialization and

could get to converge to the solution.

6

Remarks on the Performance

! Transition phase at
! when , we show that this algorithm is order-optimal

and significantly improve majority voting.
! when , we observe from experiments that the error

rate increases with k increases. It’s better to select k =1,
which essentially become the majority voting.

! recall that if , does not have a limitation.

! Same transition phase observed in EM.

7

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of assignments per task (l)

Majority Voting
Expectation Maximization

Iterative Algorithm
Oracle Estimator

Figure 1: The iterative algorithm improves over majority voting and EM algorithm [SPI08].

the number of iterations needed is small enough that the iterative algorithm will outperform this

non-iterative algorithm.

Second, the assumption that µ > 0 is necessary. If there is no assumption on µ, then we cannot

distinguish if the responses came from tasks with {si}i∈[m] and workers with {pj}j∈[n] or tasks with
{−si}i∈[m] and workers with {1 − pj}j∈[n]. Statistically, both of them give the same output. The

hypothesis on µ allows us to distinguish which of the two is the correct solution. In the case when

we know that µ < 0, we can use the same algorithm changing the sign of the final output and get

the same performance guarantee.

Third, our algorithm does not require any information on the distribution of pj . Further,

unlike previous approaches based on Expectation Maximization (EM), the iterative algorithm is

not sensitive to initialization and converges to a unique solution from a random initialization with

high probability. This follows from the fact that the algorithm is essentially computing a leading

eigenvector of a particular linear operator.

Finally, we observe a phase transition at l̂r̂q2 = 1. Above this phase transition, when l̂r̂q2 > 1,

we will show that our algorithm is order-optimal and the probability of error is significantly smaller

than majority voting. However, perhaps surprisingly, when we are below the threshold, when

l̂r̂q2 < 1, we empirically observe that our algorithm exhibit a fundamentally different behavior.

The error we get after k iterations of our algorithm increases with k. In this regime, we are better

off stopping the algorithm after 1 iteration, in which case the estimate we get is essentially the

same as the simple majority voting, and we cannot do better than majority voting. This phase

transition is universal and we observe similar behavior with other inference algorithms including

expectation maximization approaches.

This is illustrated in Figure. 1. We ran 10 iterations of expectation maximization and our

iterative algorithm, and compare the performance to majority voting and the oracle estimator. For

this numerical simulation, we chose l = r and a distribution of the workers such that q = 0.3.
Hence, we observe the phase transition around l = 1 + 1/0.3 = 4.3333.

We also ran experiments with real crowd using Amazon Mechanical Turk. In our experiment

9

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of assignments per task (l)

Majority Voting
Expectation Maximization

Iterative Algorithm
Oracle Estimator

Figure 1: The iterative algorithm improves over majority voting and EM algorithm [SPI08].

the number of iterations needed is small enough that the iterative algorithm will outperform this

non-iterative algorithm.

Second, the assumption that µ > 0 is necessary. If there is no assumption on µ, then we cannot

distinguish if the responses came from tasks with {si}i∈[m] and workers with {pj}j∈[n] or tasks with
{−si}i∈[m] and workers with {1 − pj}j∈[n]. Statistically, both of them give the same output. The

hypothesis on µ allows us to distinguish which of the two is the correct solution. In the case when

we know that µ < 0, we can use the same algorithm changing the sign of the final output and get

the same performance guarantee.

Third, our algorithm does not require any information on the distribution of pj . Further,

unlike previous approaches based on Expectation Maximization (EM), the iterative algorithm is

not sensitive to initialization and converges to a unique solution from a random initialization with

high probability. This follows from the fact that the algorithm is essentially computing a leading

eigenvector of a particular linear operator.

Finally, we observe a phase transition at l̂r̂q2 = 1. Above this phase transition, when l̂r̂q2 > 1,

we will show that our algorithm is order-optimal and the probability of error is significantly smaller

than majority voting. However, perhaps surprisingly, when we are below the threshold, when

l̂r̂q2 < 1, we empirically observe that our algorithm exhibit a fundamentally different behavior.

The error we get after k iterations of our algorithm increases with k. In this regime, we are better

off stopping the algorithm after 1 iteration, in which case the estimate we get is essentially the

same as the simple majority voting, and we cannot do better than majority voting. This phase

transition is universal and we observe similar behavior with other inference algorithms including

expectation maximization approaches.

This is illustrated in Figure. 1. We ran 10 iterations of expectation maximization and our

iterative algorithm, and compare the performance to majority voting and the oracle estimator. For

this numerical simulation, we chose l = r and a distribution of the workers such that q = 0.3.
Hence, we observe the phase transition around l = 1 + 1/0.3 = 4.3333.

We also ran experiments with real crowd using Amazon Mechanical Turk. In our experiment

9

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of assignments per task (l)

Majority Voting
Expectation Maximization

Iterative Algorithm
Oracle Estimator

Figure 1: The iterative algorithm improves over majority voting and EM algorithm [SPI08].

the number of iterations needed is small enough that the iterative algorithm will outperform this

non-iterative algorithm.

Second, the assumption that µ > 0 is necessary. If there is no assumption on µ, then we cannot

distinguish if the responses came from tasks with {si}i∈[m] and workers with {pj}j∈[n] or tasks with
{−si}i∈[m] and workers with {1 − pj}j∈[n]. Statistically, both of them give the same output. The

hypothesis on µ allows us to distinguish which of the two is the correct solution. In the case when

we know that µ < 0, we can use the same algorithm changing the sign of the final output and get

the same performance guarantee.

Third, our algorithm does not require any information on the distribution of pj . Further,

unlike previous approaches based on Expectation Maximization (EM), the iterative algorithm is

not sensitive to initialization and converges to a unique solution from a random initialization with

high probability. This follows from the fact that the algorithm is essentially computing a leading

eigenvector of a particular linear operator.

Finally, we observe a phase transition at l̂r̂q2 = 1. Above this phase transition, when l̂r̂q2 > 1,

we will show that our algorithm is order-optimal and the probability of error is significantly smaller

than majority voting. However, perhaps surprisingly, when we are below the threshold, when

l̂r̂q2 < 1, we empirically observe that our algorithm exhibit a fundamentally different behavior.

The error we get after k iterations of our algorithm increases with k. In this regime, we are better

off stopping the algorithm after 1 iteration, in which case the estimate we get is essentially the

same as the simple majority voting, and we cannot do better than majority voting. This phase

transition is universal and we observe similar behavior with other inference algorithms including

expectation maximization approaches.

This is illustrated in Figure. 1. We ran 10 iterations of expectation maximization and our

iterative algorithm, and compare the performance to majority voting and the oracle estimator. For

this numerical simulation, we chose l = r and a distribution of the workers such that q = 0.3.
Hence, we observe the phase transition around l = 1 + 1/0.3 = 4.3333.

We also ran experiments with real crowd using Amazon Mechanical Turk. In our experiment

9

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of assignments per task (l)

Majority Voting
Expectation Maximization

Iterative Algorithm
Oracle Estimator

Figure 1: The iterative algorithm improves over majority voting and EM algorithm [SPI08].

the number of iterations needed is small enough that the iterative algorithm will outperform this

non-iterative algorithm.

Second, the assumption that µ > 0 is necessary. If there is no assumption on µ, then we cannot

distinguish if the responses came from tasks with {si}i∈[m] and workers with {pj}j∈[n] or tasks with
{−si}i∈[m] and workers with {1 − pj}j∈[n]. Statistically, both of them give the same output. The

hypothesis on µ allows us to distinguish which of the two is the correct solution. In the case when

we know that µ < 0, we can use the same algorithm changing the sign of the final output and get

the same performance guarantee.

Third, our algorithm does not require any information on the distribution of pj . Further,

unlike previous approaches based on Expectation Maximization (EM), the iterative algorithm is

not sensitive to initialization and converges to a unique solution from a random initialization with

high probability. This follows from the fact that the algorithm is essentially computing a leading

eigenvector of a particular linear operator.

Finally, we observe a phase transition at l̂r̂q2 = 1. Above this phase transition, when l̂r̂q2 > 1,

we will show that our algorithm is order-optimal and the probability of error is significantly smaller

than majority voting. However, perhaps surprisingly, when we are below the threshold, when

l̂r̂q2 < 1, we empirically observe that our algorithm exhibit a fundamentally different behavior.

The error we get after k iterations of our algorithm increases with k. In this regime, we are better

off stopping the algorithm after 1 iteration, in which case the estimate we get is essentially the

same as the simple majority voting, and we cannot do better than majority voting. This phase

transition is universal and we observe similar behavior with other inference algorithms including

expectation maximization approaches.

This is illustrated in Figure. 1. We ran 10 iterations of expectation maximization and our

iterative algorithm, and compare the performance to majority voting and the oracle estimator. For

this numerical simulation, we chose l = r and a distribution of the workers such that q = 0.3.
Hence, we observe the phase transition around l = 1 + 1/0.3 = 4.3333.

We also ran experiments with real crowd using Amazon Mechanical Turk. In our experiment

9

that we establish suggests that such an error dependence on lq is unavoidable. Hence, in terms of

the total budget, our algorithm is order-optimal. The precise statements follow next.

Define a parameter µ ≡ E[2pj − 1] and recall that q = E[(2pj − 1)
2
]. To lighten the notation,

let l̂ ≡ l − 1 and r̂ ≡ r − 1. Define

ρ2k ≡ 2q

µ2(q2 l̂r̂)k−1
+

�
3 +

1

qr̂

�
1− (1/q2 l̂r̂)k−1

1− (1/q2 l̂r̂)
.

For q2 l̂r̂ > 1, let ρ2∞ ≡ limk→∞ ρ2k such that

ρ2∞ =

�
3 +

1

qr̂

�
q2 l̂r̂

q2 l̂r̂ − 1
.

Then we can show the following bound on the probability of making an error.

Theorem 2.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy µ ≡ E[2pj − 1] > 0 and q2 > 1/(l̂r̂), then for any s ∈ {±1}m, the
estimates from k iterations of the iterative algorithm achieve

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2k) . (1)

As we increase k, the above bound converges to a non-trivial limit.

Corollary 2.2. Under the hypotheses of Theorem 2.1,

lim
k→∞

lim
m→∞

1

m

m�

i=1

P
�
si �= ŝi

�
{Aij}(i,j)∈E

��
≤ e

−lq/(2ρ2∞)
. (2)

Even if we fix the value of q = E[(2pj − 1)
2
], different distributions of pj can have different

values of µ in the range of [q,
√
q]. Surprisingly, the asymptotic bound on the error rate does not

depend on µ. Instead, as long as q is fixed, µ only affects how fast the algorithm converges (cf.

Lemma 2.3).

Next, we make a few remarks on the performance guarantee.

First, the iterative algorithm is efficient with run-time comparable to that of majority voting

which requires O(ml) operations. Each iteration of the iterative algorithm requires O(ml) oper-

ations, and we need O(log(q/µ2
)/ log(q2 l̂r̂)) iterations to ensure an error bound which scales as

(2).

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(ml log(q/µ2

)/ log(q2 l̂r̂)).

By definition, we have q ≤ µ ≤ √
q. The runtime is the worst when µ = q, which happens

under the spammer-hammer model, and it is the best when µ =
√
q which happens if pj =

(1+
√
q)/2 deterministically. There exists a (non-iterative) polynomial time algorithm with runtime

independent of q for computing the estimate which achieves (2), but in practice we expect that

8

Experimental Evaluation

! Majority Voting
! decide the result on what the majority of workers agree on.
! in formula:

8

the oracle estimator. Therefore, for any estimate ŝ that is a function of {Aij}(i,j)∈E , we have the
following minimax bound.

inf
ALGO

sup
s∈{±1}m,f∈F(q)

dm(s, ŝG,ALGO) ≥ 1

m

�

i∈[m]

1

2
(1− q)li ,

for any graph G that have m task nodes and degree li for node ti. By convexity, the right-hand
side is always larger than (1/2)(1− q)|E|/m, where |E| =

�
i
li. This proves the desired claim. Let

us emphasize that this minimax lower bound is completely general and holds for any graph, regular
or irregular.

3.5 Proof of Lemma 2.5

Now, consider a naive majority voting algorithm. Majority voting simply follows what the majority
of workers agree on. In formula, ŝi = sign(

�
j∈∂iAij), where ∂i denotes the neighborhood of node

i in the graph. It makes a random choice when there is a tie. When we have many spammers in
the crowd, majority voting is prone to make mistakes since it gives the same weight to both the
estimates provided by spammers and that of diligent workers.

We want to compute a lower bound on P(ŝi �= si). Let xi =
�

j∈∂iAij where ∂i denotes
the neighborhood of task node ti. Assuming si = +1 without loss of generality, the error rate is
lower bounded by P(xi < 0). After rescaling, (1/2)(xi + l) is a standard binomial random variable
Binom(l,α), where l is the number of neighbors of the node i, α = E[pj], and by assumption each
Aij is one with probability α.

It follows that P(xi = −l + 2k) = ((l!)/(l − k)!k!)αk(1 − α)l−k. Further, for k ≤ αl − 1, the
probability distribution function is monotonically increasing. Precisely,

P(xi = −l + 2(k + 1))

P(xi = −l + 2k)
≥ α(l − k)

(1− α)(k + 1)
≥ α(l − αl + 1)

(1− α)αl
> 1 ,

where we used the fact that the above ratio is decreasing in k whence the minimum is achieved at
k = αl − 1 under our assumption.

First, we give an outline of the proof strategy, using simple Gaussian example. In the limit
as l grows large, xi converges in distribution to a Gaussian random variable with mean (2α − 1)l
and variance 4lα(1 − α). Note that the Gaussian pdf g(z) = (1/

�
2πVar(xi)) exp{−(1/2)(z −

E[xi])2/Var(xi)} is monotonically increasing for z ≤ E[xi]. Then, P(xi < 0) can be lower bounded
by

P(xi < 0) ≤
√
l g(−

√
l)

=
1�

8πα(1− α)
exp

�
− ((2α− 1)l +

√
l)2

24lα(1− α)

�

= exp
�
− C1l(2α− 1)2 +O

�
1 +

�
l(2α− 1)2

��
,

for 0 < E[pj] < 1 and some constant C1. This shows that under the Gaussian assumption, we need
l ∼ log(1/�)/(2α− 1)2 to be able to ensure that the probability of error is less than � ∈ (0, 1/2).

Using a similar strategy, we can prove a concrete bound on P(xi < 0) for binomial xi. Let
us assume that l is even, so that xi take even values. When l is odd, the same analysis works,

22

Experimental Evaluation

! Oracle Estimator
! Assume “oracle” know the exact reliability of each worker.

! where

! oracle fully trust workers with reliability 1, throw out answers
from workers with reliability 0.

9

Inference Problem

Given: Responses from the crowd {Aij}
Find: Estimate of the answer {ŝi}

ŝi = sign
��

j

Wij����
reliability

Aij����
response

�

−
+

−
−

+

+−
−
+

−

−
−

?

?

?

?

?

?

?

?

?

?

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

Resources

Error rate

Majority Voting

Wij = 1

Oracle Estimator who knows pj ’s
Wij = log(

pj
1−pj

)

Iterative Algorithm learns Wij ’s

7 / 13

Inference Problem

Given: Responses from the crowd {Aij}
Find: Estimate of the answer {ŝi}

ŝi = sign
��

j

Wij����
reliability

Aij����
response

�

−
+

−
−

+

+−
−
+

−

−
−

?

?

?

?

?

?

?

?

?

?

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

Resources

Error rate

Majority Voting

Wij = 1

Oracle Estimator who knows pj ’s
Wij = log(

pj
1−pj

)

Iterative Algorithm learns Wij ’s

7 / 13

Experimental Evaluation

! Evaluation Metrics
! Error rate P_error =

10

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

Experimental Evaluation

! Simulation Data (10 iteration, l = r, q = 0.3)
! transition phase: l = 1 + 1/ 0.3 = 4.33

11

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of assignments per task (l)

Majority Voting
Expectation Maximization

Iterative Algorithm
Oracle Estimator

Figure 1: The iterative algorithm improves over majority voting and EM algorithm [SPI08].

the number of iterations needed is small enough that the iterative algorithm will outperform this

non-iterative algorithm.

Second, the assumption that µ > 0 is necessary. If there is no assumption on µ, then we cannot

distinguish if the responses came from tasks with {si}i∈[m] and workers with {pj}j∈[n] or tasks with
{−si}i∈[m] and workers with {1 − pj}j∈[n]. Statistically, both of them give the same output. The

hypothesis on µ allows us to distinguish which of the two is the correct solution. In the case when

we know that µ < 0, we can use the same algorithm changing the sign of the final output and get

the same performance guarantee.

Third, our algorithm does not require any information on the distribution of pj . Further,

unlike previous approaches based on Expectation Maximization (EM), the iterative algorithm is

not sensitive to initialization and converges to a unique solution from a random initialization with

high probability. This follows from the fact that the algorithm is essentially computing a leading

eigenvector of a particular linear operator.

Finally, we observe a phase transition at l̂r̂q2 = 1. Above this phase transition, when l̂r̂q2 > 1,

we will show that our algorithm is order-optimal and the probability of error is significantly smaller

than majority voting. However, perhaps surprisingly, when we are below the threshold, when

l̂r̂q2 < 1, we empirically observe that our algorithm exhibit a fundamentally different behavior.

The error we get after k iterations of our algorithm increases with k. In this regime, we are better

off stopping the algorithm after 1 iteration, in which case the estimate we get is essentially the

same as the simple majority voting, and we cannot do better than majority voting. This phase

transition is universal and we observe similar behavior with other inference algorithms including

expectation maximization approaches.

This is illustrated in Figure. 1. We ran 10 iterations of expectation maximization and our

iterative algorithm, and compare the performance to majority voting and the oracle estimator. For

this numerical simulation, we chose l = r and a distribution of the workers such that q = 0.3.
Hence, we observe the phase transition around l = 1 + 1/0.3 = 4.3333.

We also ran experiments with real crowd using Amazon Mechanical Turk. In our experiment

9

Experimental Evaluation

! Real crowd Amazon
Mechanical Turk
! color comparison, 50

tasks, 28 workers.
! ground truth = color

space distance
! q = 0.175, transition

phase = 5

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4 8 12 16 20 24 28

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of assignments per task (l)

Majority Voting
Expectation Maximization

Iterative Algorithm

Figure 2: Real experimental results on color comparison using Amazon Mechanical Turk.

with colors, we created tasks for comparing colors, each task showing three colors, one on the top

and two on the bottom. We asked the crowd to indicate “if the color on the top is more similar

to the color on the left or on the right”. We created 50 such tasks and recruited 28 workers to

answer all the questions. The ground truth, in this case, is chosen based on the distances in the

Lab color space between the two pairs of colors, which is a good measure of the perceived distance

between a pair of colors [WS67]. Once we have this data, we can subsample the data to simulate

what would have happened if we collected smaller number of responses per task, while keeping

the number of tasks and number of workers fixed. The resulting average probability of error is

illustrated in Figure. 2. For this crowd, we can estimate the collective quality from the data,

which is about q � 0.175. Theoretically, this indicates that phase transition should happen when

(l − 1)((50/28)l − 1)q2 = 1, since we set r = (50/28)l. With this, we expect phase transition to

happen around l � 5. In Figure. 2, we see that the phase transition happens around l = 8.

2.3 Optimality under the one-shot scenario

As a taskmaster, the natural core optimization problem of our concern is how to achieve a certain

reliability in our answers with minimum cost. The cost is proportional to the total number of

assignments which is the number of edges of the graph G. We show that our algorithm is asymp-

totically order-optimal for a broad range of the problem parameters l, r and q. For a given target

error rate �, the total budget sufficient to achieve this target error rate using our algorithm is within

a constant factor from what is necessary using any graph and the oracle estimator. In this section,

we compare our approach to an oracle estimator that operates under the one-shot scenario. The

optimality of our approach under the iterative scenario is discussed in the next section.

Formally, consider a scenario where there are m tasks to complete and a target accuracy � ∈

10

Optimality

! One-shot scenario
! all task assignments are done simultaneously.
! then an estimation is performed after all the answers are

obtained.

! Given a target accuracy , how many
assignments per task we need to achieve this goal?

! Order-optimal
! better than majority voting
! unavoidable

13

answers. We can compute it using power iteration: for u ∈ Rm
and v ∈ Rn

, starting with a

randomly initialized v, power iteration iteratively updates u and v according to

for all i, ui =
�

j∈∂i

Aijvj , and for all j, vj =
�

i∈∂j

Aijui .

It is known that normalized u converges exponentially to the leading left singular vector. This update

rule is very similar to that of our iterative algorithm. But there is one difference that is crucial in the

analysis: in our algorithm we follow the framework of the celebrated belief propagation algorithm

[10, 11] and exclude the incoming message from node j when computing an outgoing message

to j. This extrinsic nature of our algorithm and the locally tree-like structure of sparse random

graphs [8, 12] allow us to perform asymptotic analysis on the average error rate. In particular, if we

use the leading singular vector of A to estimate s, such that si = sign(ui), then existing analysis

techniques from random matrix theory does not give the strong performance guarantee we have.

These techniques typically focus on understanding how the subspace spanned by the top singular

vector behaves. To get a sharp bound, we need to analyze how each entry of the leading singular

vector is distributed. We introduce the iterative algorithm in order to precisely characterize how

each of the decision variable xi is distributed. Since the iterative algorithm introduced in this paper

is quite similar to power iteration used to compute the leading singular vectors, this suggests that

our analysis may shed light on how to analyze the top singular vectors of a sparse random matrix.

2.4 Optimality of our algorithm

As a taskmaster, the natural core optimization problem of our concern is how to achieve a certain

reliability in our answers with minimum cost. Since we pay equal amount for all the task assign-

ments, the cost is proportional to the total number of edges of the graph G. Here we compute the

total budget sufficient to achieve a target error rate using our algorithm and show that this is within a

constant factor from the necessary budget to achieve the given target error rate using any graph and

the best possible inference algorithm. The order-optimality is established with respect to all algo-

rithms that operate in one-shot, i.e. all task assignments are done simultaneously, then an estimation

is performed after all the answers are obtained. The proofs of the claims in this section are skipped

here due to space limitations.

Formally, consider a scenario where there are m tasks to complete and a target accuracy � ∈ (0, 1/2).
To measure accuracy, we use the average probability of error per task denoted by dm(s, ŝ) ≡
(1/m)

�
i∈[m] P(si �= ŝi). We will show that Ω

�
(1/q) log(1/�)

�
assignments per task is neces-

sary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �. To establish this fundamental limit,

we use the following minimax bound on error rate. Consider the case where nature chooses a set of

correct answers s ∈ {±1}m and a distribution of the worker reliability pj ∼ f . The distribution f

is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)2] = q. We use F(q) to

denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs, including irregular

graphs, that have m task nodes and ml total number of edges. Then the minimax error rate achieved

by the best possible graph G ∈ G(m, l) using the best possible inference algorithm is at least

inf
ALGO,G∈G(m,l)

sup
s,f∈F(q)

dm(s, ŝG,ALGO) ≥ (1/2)e−(lq+O(lq2))
, (4)

where ŝG,ALGO denotes the estimate we get using graph G for task allocation and algorithm ALGO

for inference. This minimax bound is established by computing the error rate of an oracle esitimator,

which makes an optimal decision based on the information provided by an oracle who knows how

reliable each worker is. Next, we show that the error rate of majority voting decays significantly

slower: the leading term in the error exponent scales like −lq2. Let ŝMV be the estimate produced

by majority voting. Then, for q ∈ (0, 1), there exists a numerical constant C1 such that

inf
G∈G(m,l)

sup
s,f∈F(q)

dm(s, ŝMV) = e
−(C1lq

2+O(lq4+1))
. (5)

The lower bound in (4) does not depend on how many tasks are assigned to each worker. However,

our main result depends on the value of r. We show that for a broad range of parameters l, r, and q

our algorithm achieves optimality. Let ŝIter be the estimate given by random regular graphs and the

iterative algorithm. For l̂q ≥ C2, r̂q ≥ C3 and C2C3 > 1, Corollary 2.2 gives

lim
m→∞

sup
s,f∈F(q)

dm(s, ŝIter) ≤ e
−C4lq . (6)

6

Optimality

! Notations:
! distribution f is chosen from a set of all distributions on [0,1]

which satisfy we use to donate this set.
! let denote the set of all bipartite graphs, including

irregular graphs, having m task nodes and ml total edges.

! is minimum cost per task necessary to achieve a target
accuracy using any graph and the best possible algorithm
on that graph.

14

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

Optimality

! Min. error rate for all possible assignments and all
possible inference algorithm: (using oracle estimator)

! when

15

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

Optimality

! Majority voting

16

(0, 1/2). To measure accuracy, we use the average probability of error per task denoted by

dm(s, ŝ) ≡ 1

m

m�

i=1

P(si �= ŝi) .

Here the probability is taken over all realizations of the random graph (if using a random graph), in-

stances of woke responses, and realizations of worker reliability. We will show that Ω
�
(1/q) log(1/�)

�

assignments per task is necessary and sufficient to achieve the target error rate: dm(s, ŝ) ≤ �.
We first prove the following minimax bound on error rate. Consider the case where nature

chooses a set of correct answers s ∈ {±1}m and a distribution f of the worker reliability pj . The

distribution f is chosen from a set of all distributions on [0, 1] which satisfy Ef [(2pj − 1)
2
] = q.

We use F(q) to denote this set of distributions. Let G(m, l) denote the set of all bipartite graphs,

including irregular graphs, that have m task nodes and ml total number of edges.

Lemma 2.4. The minimax error rate achieved by the best possible graph G ∈ G(m, l) using the
best possible inference algorithm is at least

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
(1− q)l ,

where ŝG,Algo denotes the estimate we get using graph G for task allocation and algorithm Algo for
inference.

This minimax bound is established by computing the error rate of an oracle estimator that makes

an optimal decision given the reliability of every worker. When q is equal to one, the inference is

trivial and we get a trivial lower bound. The inference problem becomes more challenging when

q ≤ C1 for some numerical constant C1 < 1. In this case, the above lemma implies

inf
Algo,G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Algo) ≥ 1

2
e−(lq+C2lq2) , (3)

for some numerical constant C2. Let ∆LB the minimum cost per task necessary to achieve a target

accuracy � using any graph and the best possible algorithm on that graph. Then, in the case of the

minimax scenario where the nature chooses the worst distribution f ,

∆LB = Θ
�
1

q
log

�
1

�

��
. (4)

Next, we show that the error rate of majority voting decays significantly slower. Let ŝG,Majority

be the estimate produced by majority voting on graph G.

Lemma 2.5. In the regime where where q ≤ C2 < 1, there exists a numerical constant C3 such
that

inf
G∈G(m,l)

sup

s,f∈F(q)
dm(s, ŝG,Majority) ≥ e−C3(lq2+1) .

11

Let ∆Majority be the minimum cost per task necessary to achieve a target accuracy � using
the majority voting scheme on any graph. Then, in the case where the nature chooses the worst
distribution f ,

∆Majority = Ω
� 1

q2
log

�1
�

��
. (5)

The lower bound in (3) holds regardless of how many tasks are assigned to each worker. However,
error rate of our algorithm depends on the value of r. We show that for a broad range of parameters
l, r, and q, our algorithm achieves optimality. Let ŝIter be the estimate given by random regular
graphs and the iterative algorithm. For l̂q ≥ C4, r̂q ≥ C5 and C4C5 > 1, Corollary 2.2 gives

lim
m→∞

sup
s,f∈F(q)

dm(s, ŝIter) ≤ e
−C6lq .

Let ∆Iter be the minimum cost per task sufficient to achieve a target accuracy � using our
proposed algorithm. Then we get

∆Iter = Θ
�1
q
log

�1
�

��
.

Comparing it to the necessary budget in (4), this establishes the order-optimality of our algorithm.
Further, from (5) we see that majority voting is significantly more costly than the optimal scaling of
(1/q) log(1/�) of our algorithm. Finally, we emphasize that the low-rank approximation algorithm
is quite efficient. Simple majority voting requires O

�
(1/q2) log(1/�)

�
operations per task to achieve

target error rate �, and our approach requires O((1/q) log(m) log(1/�)) operations per task.

2.4 Optimality under the iterative scenario

We show in this section that, surprisingly, there is no significant gain in switching from our approach
to an adaptive strategy, which can assign tasks adaptively based on the responses from the workers.
The order-optimality of our approach, in terms of budget required to achieve a given target accuracy,
still holds even if we include a more general class of algorithms that can adaptively choose how to
assign tasks to new batches.

Under the one-shot scenario, all task allocations has to be done simultaneously. In particular,
we cannot create new batches adaptively based on what we learned from the responses thus far
(e.g. which workers are more reliable or which tasks we have less confidence in). Alternatively, we
can consider a more general class of algorithms which operate under an iterative scenario, where
one can adaptively assign tasks. One might be tempted to first identify which workers are more
reliable and then assign all the tasks to those workers in an explore/exploit manner. However, with
crowdsourcing, it is unrealistic to assume that we can identify and reuse any particular worker,
including the reliable ones, since typical workers are neither persistent nor identifiable and batches
are distributed through an open-call. Hence, under an iterative scenario in crowdsourcing, although
we cannot reuse any of the workers, we can adaptively assign more workers to those tasks that we
have less confidence in, by assigning those tasks to the new batches that we create adaptively. These
new batches are then distributed to unidentified workers through an open-call using a crowdsourcing
platform.

For example, in the first round we can choose a graph and run inference as in the one-shot
scenario. Then, in the second round, we might choose to assign additional workers to those tasks

12

Optimality

! Iterative inference algorithm with random regular (l,r)-
bipartite graph.

! Then minimum coast per task sufficient to achieve target
error rate is:

17

Let ∆Majority be the minimum cost per task necessary to achieve a target accuracy � using
the majority voting scheme on any graph. Then, in the case where the nature chooses the worst
distribution f ,

∆Majority = Ω
� 1

q2
log

�1
�

��
. (5)

The lower bound in (3) holds regardless of how many tasks are assigned to each worker. However,
error rate of our algorithm depends on the value of r. We show that for a broad range of parameters
l, r, and q, our algorithm achieves optimality. Let ŝIter be the estimate given by random regular
graphs and the iterative algorithm. For l̂q ≥ C4, r̂q ≥ C5 and C4C5 > 1, Corollary 2.2 gives

lim
m→∞

sup
s,f∈F(q)

dm(s, ŝIter) ≤ e
−C6lq .

Let ∆Iter be the minimum cost per task sufficient to achieve a target accuracy � using our
proposed algorithm. Then we get

∆Iter = Θ
�1
q
log

�1
�

��
.

Comparing it to the necessary budget in (4), this establishes the order-optimality of our algorithm.
Further, from (5) we see that majority voting is significantly more costly than the optimal scaling of
(1/q) log(1/�) of our algorithm. Finally, we emphasize that the low-rank approximation algorithm
is quite efficient. Simple majority voting requires O

�
(1/q2) log(1/�)

�
operations per task to achieve

target error rate �, and our approach requires O((1/q) log(m) log(1/�)) operations per task.

2.4 Optimality under the iterative scenario

We show in this section that, surprisingly, there is no significant gain in switching from our approach
to an adaptive strategy, which can assign tasks adaptively based on the responses from the workers.
The order-optimality of our approach, in terms of budget required to achieve a given target accuracy,
still holds even if we include a more general class of algorithms that can adaptively choose how to
assign tasks to new batches.

Under the one-shot scenario, all task allocations has to be done simultaneously. In particular,
we cannot create new batches adaptively based on what we learned from the responses thus far
(e.g. which workers are more reliable or which tasks we have less confidence in). Alternatively, we
can consider a more general class of algorithms which operate under an iterative scenario, where
one can adaptively assign tasks. One might be tempted to first identify which workers are more
reliable and then assign all the tasks to those workers in an explore/exploit manner. However, with
crowdsourcing, it is unrealistic to assume that we can identify and reuse any particular worker,
including the reliable ones, since typical workers are neither persistent nor identifiable and batches
are distributed through an open-call. Hence, under an iterative scenario in crowdsourcing, although
we cannot reuse any of the workers, we can adaptively assign more workers to those tasks that we
have less confidence in, by assigning those tasks to the new batches that we create adaptively. These
new batches are then distributed to unidentified workers through an open-call using a crowdsourcing
platform.

For example, in the first round we can choose a graph and run inference as in the one-shot
scenario. Then, in the second round, we might choose to assign additional workers to those tasks

12

Let ∆Majority be the minimum cost per task necessary to achieve a target accuracy � using
the majority voting scheme on any graph. Then, in the case where the nature chooses the worst
distribution f ,

∆Majority = Ω
� 1

q2
log

�1
�

��
. (5)

The lower bound in (3) holds regardless of how many tasks are assigned to each worker. However,
error rate of our algorithm depends on the value of r. We show that for a broad range of parameters
l, r, and q, our algorithm achieves optimality. Let ŝIter be the estimate given by random regular
graphs and the iterative algorithm. For l̂q ≥ C4, r̂q ≥ C5 and C4C5 > 1, Corollary 2.2 gives

lim
m→∞

sup
s,f∈F(q)

dm(s, ŝIter) ≤ e
−C6lq .

Let ∆Iter be the minimum cost per task sufficient to achieve a target accuracy � using our
proposed algorithm. Then we get

∆Iter = Θ
�1
q
log

�1
�

��
.

Comparing it to the necessary budget in (4), this establishes the order-optimality of our algorithm.
Further, from (5) we see that majority voting is significantly more costly than the optimal scaling of
(1/q) log(1/�) of our algorithm. Finally, we emphasize that the low-rank approximation algorithm
is quite efficient. Simple majority voting requires O

�
(1/q2) log(1/�)

�
operations per task to achieve

target error rate �, and our approach requires O((1/q) log(m) log(1/�)) operations per task.

2.4 Optimality under the iterative scenario

We show in this section that, surprisingly, there is no significant gain in switching from our approach
to an adaptive strategy, which can assign tasks adaptively based on the responses from the workers.
The order-optimality of our approach, in terms of budget required to achieve a given target accuracy,
still holds even if we include a more general class of algorithms that can adaptively choose how to
assign tasks to new batches.

Under the one-shot scenario, all task allocations has to be done simultaneously. In particular,
we cannot create new batches adaptively based on what we learned from the responses thus far
(e.g. which workers are more reliable or which tasks we have less confidence in). Alternatively, we
can consider a more general class of algorithms which operate under an iterative scenario, where
one can adaptively assign tasks. One might be tempted to first identify which workers are more
reliable and then assign all the tasks to those workers in an explore/exploit manner. However, with
crowdsourcing, it is unrealistic to assume that we can identify and reuse any particular worker,
including the reliable ones, since typical workers are neither persistent nor identifiable and batches
are distributed through an open-call. Hence, under an iterative scenario in crowdsourcing, although
we cannot reuse any of the workers, we can adaptively assign more workers to those tasks that we
have less confidence in, by assigning those tasks to the new batches that we create adaptively. These
new batches are then distributed to unidentified workers through an open-call using a crowdsourcing
platform.

For example, in the first round we can choose a graph and run inference as in the one-shot
scenario. Then, in the second round, we might choose to assign additional workers to those tasks

12

Let ∆Majority be the minimum cost per task necessary to achieve a target accuracy � using
the majority voting scheme on any graph. Then, in the case where the nature chooses the worst
distribution f ,

∆Majority = Ω
� 1

q2
log

�1
�

��
. (5)

The lower bound in (3) holds regardless of how many tasks are assigned to each worker. However,
error rate of our algorithm depends on the value of r. We show that for a broad range of parameters
l, r, and q, our algorithm achieves optimality. Let ŝIter be the estimate given by random regular
graphs and the iterative algorithm. For l̂q ≥ C4, r̂q ≥ C5 and C4C5 > 1, Corollary 2.2 gives

lim
m→∞

sup
s,f∈F(q)

dm(s, ŝIter) ≤ e
−C6lq .

Let ∆Iter be the minimum cost per task sufficient to achieve a target accuracy � using our
proposed algorithm. Then we get

∆Iter = Θ
�1
q
log

�1
�

��
.

Comparing it to the necessary budget in (4), this establishes the order-optimality of our algorithm.
Further, from (5) we see that majority voting is significantly more costly than the optimal scaling of
(1/q) log(1/�) of our algorithm. Finally, we emphasize that the low-rank approximation algorithm
is quite efficient. Simple majority voting requires O

�
(1/q2) log(1/�)

�
operations per task to achieve

target error rate �, and our approach requires O((1/q) log(m) log(1/�)) operations per task.

2.4 Optimality under the iterative scenario

We show in this section that, surprisingly, there is no significant gain in switching from our approach
to an adaptive strategy, which can assign tasks adaptively based on the responses from the workers.
The order-optimality of our approach, in terms of budget required to achieve a given target accuracy,
still holds even if we include a more general class of algorithms that can adaptively choose how to
assign tasks to new batches.

Under the one-shot scenario, all task allocations has to be done simultaneously. In particular,
we cannot create new batches adaptively based on what we learned from the responses thus far
(e.g. which workers are more reliable or which tasks we have less confidence in). Alternatively, we
can consider a more general class of algorithms which operate under an iterative scenario, where
one can adaptively assign tasks. One might be tempted to first identify which workers are more
reliable and then assign all the tasks to those workers in an explore/exploit manner. However, with
crowdsourcing, it is unrealistic to assume that we can identify and reuse any particular worker,
including the reliable ones, since typical workers are neither persistent nor identifiable and batches
are distributed through an open-call. Hence, under an iterative scenario in crowdsourcing, although
we cannot reuse any of the workers, we can adaptively assign more workers to those tasks that we
have less confidence in, by assigning those tasks to the new batches that we create adaptively. These
new batches are then distributed to unidentified workers through an open-call using a crowdsourcing
platform.

For example, in the first round we can choose a graph and run inference as in the one-shot
scenario. Then, in the second round, we might choose to assign additional workers to those tasks

12

Agenda

! Introduction

! Crowdsourcing Model

! Proposed Algorithms

! Performance Guarantee and Optimality

! Density Evolution Analysis Technique (Proof of Thm. 2.1)

More Discussion

! Relations to low-rank matrix approximation
! Gap between first singular value and the second

! Use SVD to approximate the adjacency matrix

19

Task Allocation
Microtasks Batches

� r

Random (�, r)-regular bipartite graphs have good properties

� Locally Tree-like

→ Sharpen Analysis

� Good Expander

 0

 5

 10

 15

 20

 25

 30

� �� �
Gap

→ High Signal-to-Noise Ratio

5 / 13

More Discussion

! Low-rank matrix approximation

! Power iteration

20

Iterative Algorithm as Singular Vector Computation

A E[A|s, p] Random Perturbation

+=

� �� �
data

� �� �
low-rank signal

� �� �
noise

−
+−

−

+

+

−

−+
−

−

−

−
+
−
−

1. Why are the singular vectors good for inference?
→ Good expanders have high SNR

2. Why not use the singular vectors directly?
→ Exploit tree-like structure to prove a sharp bound

8 / 13

all tasks incorrectly, and αj = 0 means that the worker gives random answers independent of what

the correct answer is. Further, βj = ∞ or −∞ means that the worker always answers positive or

negative respectively, and βj = 0 means that the worker is unbiased and makes error equally likely

whether the correct answer is positive or negative. In formula, a worker j’s response to a binary

task i can be modeled as

Aij = sign(Zi,j) ,

where Zi,j is a Gaussian random variable distributed as Zi,j ∼ N (αjsi+βj , ri), and it is understood

that sign(Z) is an unbiased binary random variable for Z ∼ N (1,∞), and sign(Z) = 1 almost surely

for Z ∼ N (∞, 1). Except for the fact that we consider a random variable Zi,j instead of a random

vector, this is equivalent to the model studied in [WBBP10].

Most of the models studied in the crowdsourcing literature can be reduced to a special case of

this model. For example, the early crowdsourcing model introduced by Dawid and Skene [DS79]

is equivalent to the above Gaussian model with ri = 1. More recently, Whitehill et al. [WRW+09]

introduced another model where P(Aij = si|ai, bj) = 1/(1 + e−aibj), with worker reliability ai and
task difficulty bj . This is again a special case of the above Gaussian model if we set βj = 0. The

model we study in this paper has an underlying assumption that all the tasks share an equal level

of difficulty and the workers are unbiased. It is equivalent to the above Gaussian model with βj = 0

and ri = 1. In this case, there is a one-to-one relation between the worker reliability pj and αj :

pj = Q(αj), where Q(·) is the tail probability of the standard Gaussian distribution.

The role of the bias of the workers is also important in correctly identifying the quality of the

workers, in order to selectively pay the workers based on their performance. Ipeirotis, Provost,

and Wang studied how to separate the true error rate from the biases that some workers exhibit in

order to obtain better evaluation of the workers’ quality in [IPW10].

2.6 Relations to low-rank matrix approximation

The leading singular vectors are often used to capture the important aspects of datasets in matrix

form. In our case, the leading left singular vector of A can be used to estimate the correct answers,

where A ∈ {0,±1}m×n is the m × n adjacency matrix of the graph G weighted by the submitted

answers. One way to compute the leading singular vector is through power iteration: for two vectors

u ∈ Rm and v ∈ Rn, starting with a randomly initialized v, power iteration iteratively updates u
and v according to

for all i, ui =
�

j∈∂i
Aijvj , and for all j, vj =

�

i∈∂j
Aijui .

It is known that normalized u (and v) converges linearly to the leading left (and right) singular

vector. This update rule is very similar to that of our iterative algorithm. But there is one

difference that is crucial in the analysis: in our algorithm we follow the framework of the celebrated

belief propagation algorithm [Pea88, YFW03] and exclude the incoming message from node j when

computing an outgoing message to j. This extrinsic nature of our algorithm and the locally tree-

like structure of sparse random graphs [RU08, MM09] allow us to perform sharp analysis on the

average error rate. In particular, if we use the leading singular vector of A to estimate s, such
that si = sign(ui), then existing analysis techniques from random matrix theory does not give the

strong performance guarantee we have (cf. [KOS11, Theorem II.1]). These techniques typically

16

More Discussion

! Not strong enough bound:

21

study both aspects of crowdsourcing together and, more
importantly, establish optimality.

II. MAIN RESULTS

In the crowdsourcing model introduced, we are interested
in designing algorithms for two related problems: (i) how
should the tasks be assigned to workers, i.e. the selection
of the bipartite graph G; and (ii) given the responses from
the workers, how should one estimate the correct answers.
In what follows, we first address these two problems. For
(i), we propose to utilize random regular bipartite graphs
and for (ii), we propose to utilize certain low-rank matrix
approximation based estimation procedure. We subsequently
describe how we can integrate these two procedures into
a single Budget-optimal Crowdsourcing system to achieve
optimal performance.

A. Graph Generation

Assigning tasks to workers amounts to designing a bipar-
tite graph G. Given m tasks to complete, the taskmaster first
makes a choice of the left degree l (how many workers to
assign to each task) and the right degree r (how many tasks
to assign to each worker). The number of required workers
n is then determined such that the total number of edges
is consistent, that is ml = nr. To generate an (l, r)-regular
bipartite graph we use a random graph generation scheme
known as the configuration model in random graph litera-
ture [RU08], [Bol01]. In principle, one could use arbitrary
bipartite graph G for task allocation. However, as we shall
show in Section II-C, random regular graphs are sufficient
to achieve order-optimal performance.

B. Inference Algorithm

Given G, let A = [Aij] ∈ {0, 1,−1}m×n denote the
answers provided by the workers. In this section, we shall
introduce a low-rank approximation based algorithm that
takes A as input and produces an estimate for the unobserved
solution vector s = [si] ∈ {−1, 1}m. We then provide the
performance guarantee of this algorithm. Surprisingly, as we
will show in a later section, this simple inference algorithm
can be used as a subroutine to achieve optimal performance.

Low-rank Approximation
Input: A.
Output: Estimation ŝ(A).
1: Compute a pair of left and right singular vectors

(u, v) of A corresponding to the top singular value;
2: If

�
j:vj≥0 v

2
j < 1/2, then output ŝ(A) = sign(−u);

3: Otherwise, output ŝ(A) = sign(u);

In any case, the leading singular vector of A is not
uniquely determined. Both (u, v) and (−u,−v) are valid
pairs of left and right singular vectors. To resolve this issue,
our strategy is to choose the pair (u, v) if v has more
‘mass’ on the positive orthant than −v, that is

�
j:vj≥0 v

2
j ≥�

j:vj<0 v
2
j .

Let (u, v) be the pair of singular vectors after we resolve
the ambiguity in the sign. The j-th entry of v represents
our belief on how reliable worker j is, and our estimate
is a weighted sum of the submitted answers weighted by
workers’ reliabilities:

ŝi = sign
� �

j∈∂i

Aijvj

�
, (2)

where ∂i ⊆ [n] denotes the set of workers that are assigned
task i. This follows from the fact that ui =

�
j∈∂i Aijvj .

In Section III-A, we give in detail the intuition behind why
the top left singular vector of A reveals the structure of the
underlying unobserved answers.

With this estimate, we can show the following bound
on the average number of error defined as the normalized
Hamming distance:

d(s, ŝ) ≡ 1

m

m�

i=1

I(si �= ŝi) , (3)

where I(·) denotes the indicator function. The proof of this
result is given in Section III-A.

Theorem II.1. For fixed l and r which are independent of
m, assume that m tasks are assigned to n = ml/r workers
under the spammer-hammer model according to a random
(l, r)-regular graph drawn from the configuration model.
Then, for any s ∈ {±1}m, with probability 1 − m−Ω(

√
l),

the low-rank approximation algorithm achieves

d(s, ŝ(A)) ≤ C(ρ)

lq
, (4)

where q is the probability that a randomly chosen worker
is a hammer and C(ρ) is a constant that only depends on
ρ ≡ l/r.

Remarks about Theorem II.1. Now few remarks are in
order. First, observe that this result is non-asymptotic and
provides a concrete bound for any m. Second, the constant
C(ρ) depends continuously on ρ and is uniformly bounded
over any closed interval [α,β] for 0 < α ≤ β < ∞ (with
bound dependent on α,β). To achieve optimal performance,
we shall use the algorithm with l = r = Θ(1/q). Therefore,
ρ = 1 and hence the constant C(ρ) = C(1) can be treated
as a universal constant independent of other problem param-
eters. Third, the choice of l (and r) depend on q to achieve
average error less than 1/2 (specifically, l must scale as
1/q). Such an instance of algorithm (with l = r = Θ(1/q))
will be used to design optimal crowdsourcing system. Thus,
our system design requires (approximate) knowledge of q to
achieve optimal performance to decide on the number of task
replication, l. But beyond that, neither the graph selection
nor the inference algorithm require the knowledge of q. A
simple procedure is suggested that overcomes even this need
of knowing q in Section II-D.

Run-time of Low-rank Approximation. We next show that
O(ml log(m)/ log(lq)) operations are sufficient to ensure
that the performance guarantee in Theorem II.1 is achieved.

source: D.R.Karger, S. Oh, and D. Shah, Budget-optimal crowdsourcing using low-rank matrix approximation, 2011

More Discussion

! Assessing quality of the workers (gold standard units)
! Using ‘seed gold units’?

! no help due to order-optimal
! Using ‘pilot gold unites’?

! only change the distribution of participating workers.

22

More Discussion

! Workers with different reliabilities and their prices
! K classes of workers: 1, ..., k
! reliability distribution parameter q_k and payment c_k

! if only one class of workers is used:
! per-task cost scales as

! if a mix of workers from different classes
! is the fraction with
! optimal per-task cost scales as
! implies only select workers with minimal ratio of ck/qk

23

i.e. the oracle has a lot more information than what can be gained by such qualifying questions.
Therefore, clearly ‘seed gold units’ do not help the oracle estimator, and hence the order optimality
of our approach still holds even if we include all the strategies that can utilize these ‘seed gold
units’.

Second, we can use ‘pilot gold units’ as qualifying or pilot questions that the workers must
complete to qualify to participate. Typically a taskmaster do not have to pay for these qualifying
questions and this provides an effective way to increase the quality of the participating workers.
Our approach can benefit from such ‘pilot gold units’, which has the effect of increasing the effective
collective quality of the crowd q. Further, if we can ‘measure’ how the distribution of workers change
when using pilot questions, then our main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the distribution of participating workers,
and the order-optimality of our approach still holds even if we compare all the schemes that use
the same pilot questions.

Next, we consider workers with different reliabilities and their prices or payments. Specifically,
suppose there are K classes of worker: workers of class k, 1 ≤ k ≤ K, have their reliability
distribution parameter qk and each of them requires payment of ck to perform a task. Now our
optimality result suggests that the per-task cost scales as ck/qk log(1/�) if we only used workers
of class k. More generally, if we use a mix of these workers, say αk fraction of workers from class
k, with

�
k αk = 1, then the effective parameter q =

�
k αkqk. And subject to this, the optimal

per task cost scales as (
�

k αkck)/(
�

k αkqk) log(1/�). This immediately suggests that the optimal
choice of fraction αk must be such that αk > 0 only if ck/qk = min� c�/q�. That is, optimal choice
is to select workers only from the classes that have minimal ratio of ck/qk over 1 ≤ k ≤ K.

We now discuss the assumed knowledge of q in selecting the degree l = Θ(1/q log(1/�)) in the
design of the regular bipartite graph that achieve a given target error rate. Here is a simple way
to overcome this limitation at the loss of only additional constant factor, i.e. scaling of cost per
task still remains Θ(1/q log(1/�)). To that end, consider an incremental design in which at step a
the system is designed assuming q = 2−a for a ≥ 1. At step a, we design two replicas of the task
allocation for q = 2−a. Now compare the estimates obtained by these two replicas for all m tasks.
If they agree amongst m(1− 2�) tasks, then we stop and declare that as the final answer. Or else,
we increase a to a + 1 and repeat. Note that by our optimality result, it follows that if 2−a is
less than the actual q then the iteration must stop with high probability. Therefore, the total cost
paid is Θ(1/q log(1/�)) with high probability. Thus, even lack of knowledge of q does not affect the
optimality of our algorithm.

Finally, we consider possible generalization of our model. The model assumed in this paper
does not capture several factors: tasks with different level of difficulties or workers who always
answer positive or negative. It is desirable to characterize how our algorithm works under such a
more general model.

In general, the responses of a worker j to a binary question i may depend on several factors:
(i) the correct answer to the task; (ii) the difficulty of the task; (iii) the expertise or the reliability
of the worker; (iv) the bias of the worker towards positive or negative answers. Let si ∈ {+1,−1}
represent the correct answer and ri ∈ [0,∞] represents the level of difficulty of task i. Here ri = 0
means that the task is so easy that any worker can find the correct answer, and ri = ∞ means that
the task is so difficult that even the most diligent worker cannot resolve which is the correct answer.
Let αj ∈ [−∞,∞] represent the reliability and βj ∈ (−∞,∞) represent the bias of worker j. Here,
αj = ∞ means that the worker answers all tasks correctly, αj = −∞ means that the worker answers

15

i.e. the oracle has a lot more information than what can be gained by such qualifying questions.
Therefore, clearly ‘seed gold units’ do not help the oracle estimator, and hence the order optimality
of our approach still holds even if we include all the strategies that can utilize these ‘seed gold
units’.

Second, we can use ‘pilot gold units’ as qualifying or pilot questions that the workers must
complete to qualify to participate. Typically a taskmaster do not have to pay for these qualifying
questions and this provides an effective way to increase the quality of the participating workers.
Our approach can benefit from such ‘pilot gold units’, which has the effect of increasing the effective
collective quality of the crowd q. Further, if we can ‘measure’ how the distribution of workers change
when using pilot questions, then our main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the distribution of participating workers,
and the order-optimality of our approach still holds even if we compare all the schemes that use
the same pilot questions.

Next, we consider workers with different reliabilities and their prices or payments. Specifically,
suppose there are K classes of worker: workers of class k, 1 ≤ k ≤ K, have their reliability
distribution parameter qk and each of them requires payment of ck to perform a task. Now our
optimality result suggests that the per-task cost scales as ck/qk log(1/�) if we only used workers
of class k. More generally, if we use a mix of these workers, say αk fraction of workers from class
k, with

�
k αk = 1, then the effective parameter q =

�
k αkqk. And subject to this, the optimal

per task cost scales as (
�

k αkck)/(
�

k αkqk) log(1/�). This immediately suggests that the optimal
choice of fraction αk must be such that αk > 0 only if ck/qk = min� c�/q�. That is, optimal choice
is to select workers only from the classes that have minimal ratio of ck/qk over 1 ≤ k ≤ K.

We now discuss the assumed knowledge of q in selecting the degree l = Θ(1/q log(1/�)) in the
design of the regular bipartite graph that achieve a given target error rate. Here is a simple way
to overcome this limitation at the loss of only additional constant factor, i.e. scaling of cost per
task still remains Θ(1/q log(1/�)). To that end, consider an incremental design in which at step a
the system is designed assuming q = 2−a for a ≥ 1. At step a, we design two replicas of the task
allocation for q = 2−a. Now compare the estimates obtained by these two replicas for all m tasks.
If they agree amongst m(1− 2�) tasks, then we stop and declare that as the final answer. Or else,
we increase a to a + 1 and repeat. Note that by our optimality result, it follows that if 2−a is
less than the actual q then the iteration must stop with high probability. Therefore, the total cost
paid is Θ(1/q log(1/�)) with high probability. Thus, even lack of knowledge of q does not affect the
optimality of our algorithm.

Finally, we consider possible generalization of our model. The model assumed in this paper
does not capture several factors: tasks with different level of difficulties or workers who always
answer positive or negative. It is desirable to characterize how our algorithm works under such a
more general model.

In general, the responses of a worker j to a binary question i may depend on several factors:
(i) the correct answer to the task; (ii) the difficulty of the task; (iii) the expertise or the reliability
of the worker; (iv) the bias of the worker towards positive or negative answers. Let si ∈ {+1,−1}
represent the correct answer and ri ∈ [0,∞] represents the level of difficulty of task i. Here ri = 0
means that the task is so easy that any worker can find the correct answer, and ri = ∞ means that
the task is so difficult that even the most diligent worker cannot resolve which is the correct answer.
Let αj ∈ [−∞,∞] represent the reliability and βj ∈ (−∞,∞) represent the bias of worker j. Here,
αj = ∞ means that the worker answers all tasks correctly, αj = −∞ means that the worker answers

15

i.e. the oracle has a lot more information than what can be gained by such qualifying questions.
Therefore, clearly ‘seed gold units’ do not help the oracle estimator, and hence the order optimality
of our approach still holds even if we include all the strategies that can utilize these ‘seed gold
units’.

Second, we can use ‘pilot gold units’ as qualifying or pilot questions that the workers must
complete to qualify to participate. Typically a taskmaster do not have to pay for these qualifying
questions and this provides an effective way to increase the quality of the participating workers.
Our approach can benefit from such ‘pilot gold units’, which has the effect of increasing the effective
collective quality of the crowd q. Further, if we can ‘measure’ how the distribution of workers change
when using pilot questions, then our main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the distribution of participating workers,
and the order-optimality of our approach still holds even if we compare all the schemes that use
the same pilot questions.

Next, we consider workers with different reliabilities and their prices or payments. Specifically,
suppose there are K classes of worker: workers of class k, 1 ≤ k ≤ K, have their reliability
distribution parameter qk and each of them requires payment of ck to perform a task. Now our
optimality result suggests that the per-task cost scales as ck/qk log(1/�) if we only used workers
of class k. More generally, if we use a mix of these workers, say αk fraction of workers from class
k, with

�
k αk = 1, then the effective parameter q =

�
k αkqk. And subject to this, the optimal

per task cost scales as (
�

k αkck)/(
�

k αkqk) log(1/�). This immediately suggests that the optimal
choice of fraction αk must be such that αk > 0 only if ck/qk = min� c�/q�. That is, optimal choice
is to select workers only from the classes that have minimal ratio of ck/qk over 1 ≤ k ≤ K.

We now discuss the assumed knowledge of q in selecting the degree l = Θ(1/q log(1/�)) in the
design of the regular bipartite graph that achieve a given target error rate. Here is a simple way
to overcome this limitation at the loss of only additional constant factor, i.e. scaling of cost per
task still remains Θ(1/q log(1/�)). To that end, consider an incremental design in which at step a
the system is designed assuming q = 2−a for a ≥ 1. At step a, we design two replicas of the task
allocation for q = 2−a. Now compare the estimates obtained by these two replicas for all m tasks.
If they agree amongst m(1− 2�) tasks, then we stop and declare that as the final answer. Or else,
we increase a to a + 1 and repeat. Note that by our optimality result, it follows that if 2−a is
less than the actual q then the iteration must stop with high probability. Therefore, the total cost
paid is Θ(1/q log(1/�)) with high probability. Thus, even lack of knowledge of q does not affect the
optimality of our algorithm.

Finally, we consider possible generalization of our model. The model assumed in this paper
does not capture several factors: tasks with different level of difficulties or workers who always
answer positive or negative. It is desirable to characterize how our algorithm works under such a
more general model.

In general, the responses of a worker j to a binary question i may depend on several factors:
(i) the correct answer to the task; (ii) the difficulty of the task; (iii) the expertise or the reliability
of the worker; (iv) the bias of the worker towards positive or negative answers. Let si ∈ {+1,−1}
represent the correct answer and ri ∈ [0,∞] represents the level of difficulty of task i. Here ri = 0
means that the task is so easy that any worker can find the correct answer, and ri = ∞ means that
the task is so difficult that even the most diligent worker cannot resolve which is the correct answer.
Let αj ∈ [−∞,∞] represent the reliability and βj ∈ (−∞,∞) represent the bias of worker j. Here,
αj = ∞ means that the worker answers all tasks correctly, αj = −∞ means that the worker answers

15

i.e. the oracle has a lot more information than what can be gained by such qualifying questions.
Therefore, clearly ‘seed gold units’ do not help the oracle estimator, and hence the order optimality
of our approach still holds even if we include all the strategies that can utilize these ‘seed gold
units’.

Second, we can use ‘pilot gold units’ as qualifying or pilot questions that the workers must
complete to qualify to participate. Typically a taskmaster do not have to pay for these qualifying
questions and this provides an effective way to increase the quality of the participating workers.
Our approach can benefit from such ‘pilot gold units’, which has the effect of increasing the effective
collective quality of the crowd q. Further, if we can ‘measure’ how the distribution of workers change
when using pilot questions, then our main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the distribution of participating workers,
and the order-optimality of our approach still holds even if we compare all the schemes that use
the same pilot questions.

Next, we consider workers with different reliabilities and their prices or payments. Specifically,
suppose there are K classes of worker: workers of class k, 1 ≤ k ≤ K, have their reliability
distribution parameter qk and each of them requires payment of ck to perform a task. Now our
optimality result suggests that the per-task cost scales as ck/qk log(1/�) if we only used workers
of class k. More generally, if we use a mix of these workers, say αk fraction of workers from class
k, with

�
k αk = 1, then the effective parameter q =

�
k αkqk. And subject to this, the optimal

per task cost scales as (
�

k αkck)/(
�

k αkqk) log(1/�). This immediately suggests that the optimal
choice of fraction αk must be such that αk > 0 only if ck/qk = min� c�/q�. That is, optimal choice
is to select workers only from the classes that have minimal ratio of ck/qk over 1 ≤ k ≤ K.

We now discuss the assumed knowledge of q in selecting the degree l = Θ(1/q log(1/�)) in the
design of the regular bipartite graph that achieve a given target error rate. Here is a simple way
to overcome this limitation at the loss of only additional constant factor, i.e. scaling of cost per
task still remains Θ(1/q log(1/�)). To that end, consider an incremental design in which at step a
the system is designed assuming q = 2−a for a ≥ 1. At step a, we design two replicas of the task
allocation for q = 2−a. Now compare the estimates obtained by these two replicas for all m tasks.
If they agree amongst m(1− 2�) tasks, then we stop and declare that as the final answer. Or else,
we increase a to a + 1 and repeat. Note that by our optimality result, it follows that if 2−a is
less than the actual q then the iteration must stop with high probability. Therefore, the total cost
paid is Θ(1/q log(1/�)) with high probability. Thus, even lack of knowledge of q does not affect the
optimality of our algorithm.

Finally, we consider possible generalization of our model. The model assumed in this paper
does not capture several factors: tasks with different level of difficulties or workers who always
answer positive or negative. It is desirable to characterize how our algorithm works under such a
more general model.

In general, the responses of a worker j to a binary question i may depend on several factors:
(i) the correct answer to the task; (ii) the difficulty of the task; (iii) the expertise or the reliability
of the worker; (iv) the bias of the worker towards positive or negative answers. Let si ∈ {+1,−1}
represent the correct answer and ri ∈ [0,∞] represents the level of difficulty of task i. Here ri = 0
means that the task is so easy that any worker can find the correct answer, and ri = ∞ means that
the task is so difficult that even the most diligent worker cannot resolve which is the correct answer.
Let αj ∈ [−∞,∞] represent the reliability and βj ∈ (−∞,∞) represent the bias of worker j. Here,
αj = ∞ means that the worker answers all tasks correctly, αj = −∞ means that the worker answers

15

More Discussion

! What if we don’t know about q in selecting the degree?

! incremental design in which at step a the system is designed
assuming .

! design two replicas of the task allocation.
! compare the estimates obtained by these two replicas for all

m tasks, if they agree amongst tasks, then stop
and declare the final answer. Or else, increase a to a+1.

24

i.e. the oracle has a lot more information than what can be gained by such qualifying questions.
Therefore, clearly ‘seed gold units’ do not help the oracle estimator, and hence the order optimality
of our approach still holds even if we include all the strategies that can utilize these ‘seed gold
units’.

Second, we can use ‘pilot gold units’ as qualifying or pilot questions that the workers must
complete to qualify to participate. Typically a taskmaster do not have to pay for these qualifying
questions and this provides an effective way to increase the quality of the participating workers.
Our approach can benefit from such ‘pilot gold units’, which has the effect of increasing the effective
collective quality of the crowd q. Further, if we can ‘measure’ how the distribution of workers change
when using pilot questions, then our main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the distribution of participating workers,
and the order-optimality of our approach still holds even if we compare all the schemes that use
the same pilot questions.

Next, we consider workers with different reliabilities and their prices or payments. Specifically,
suppose there are K classes of worker: workers of class k, 1 ≤ k ≤ K, have their reliability
distribution parameter qk and each of them requires payment of ck to perform a task. Now our
optimality result suggests that the per-task cost scales as ck/qk log(1/�) if we only used workers
of class k. More generally, if we use a mix of these workers, say αk fraction of workers from class
k, with

�
k αk = 1, then the effective parameter q =

�
k αkqk. And subject to this, the optimal

per task cost scales as (
�

k αkck)/(
�

k αkqk) log(1/�). This immediately suggests that the optimal
choice of fraction αk must be such that αk > 0 only if ck/qk = min� c�/q�. That is, optimal choice
is to select workers only from the classes that have minimal ratio of ck/qk over 1 ≤ k ≤ K.

We now discuss the assumed knowledge of q in selecting the degree l = Θ(1/q log(1/�)) in the
design of the regular bipartite graph that achieve a given target error rate. Here is a simple way
to overcome this limitation at the loss of only additional constant factor, i.e. scaling of cost per
task still remains Θ(1/q log(1/�)). To that end, consider an incremental design in which at step a
the system is designed assuming q = 2−a for a ≥ 1. At step a, we design two replicas of the task
allocation for q = 2−a. Now compare the estimates obtained by these two replicas for all m tasks.
If they agree amongst m(1− 2�) tasks, then we stop and declare that as the final answer. Or else,
we increase a to a + 1 and repeat. Note that by our optimality result, it follows that if 2−a is
less than the actual q then the iteration must stop with high probability. Therefore, the total cost
paid is Θ(1/q log(1/�)) with high probability. Thus, even lack of knowledge of q does not affect the
optimality of our algorithm.

Finally, we consider possible generalization of our model. The model assumed in this paper
does not capture several factors: tasks with different level of difficulties or workers who always
answer positive or negative. It is desirable to characterize how our algorithm works under such a
more general model.

In general, the responses of a worker j to a binary question i may depend on several factors:
(i) the correct answer to the task; (ii) the difficulty of the task; (iii) the expertise or the reliability
of the worker; (iv) the bias of the worker towards positive or negative answers. Let si ∈ {+1,−1}
represent the correct answer and ri ∈ [0,∞] represents the level of difficulty of task i. Here ri = 0
means that the task is so easy that any worker can find the correct answer, and ri = ∞ means that
the task is so difficult that even the most diligent worker cannot resolve which is the correct answer.
Let αj ∈ [−∞,∞] represent the reliability and βj ∈ (−∞,∞) represent the bias of worker j. Here,
αj = ∞ means that the worker answers all tasks correctly, αj = −∞ means that the worker answers

15

i.e. the oracle has a lot more information than what can be gained by such qualifying questions.
Therefore, clearly ‘seed gold units’ do not help the oracle estimator, and hence the order optimality
of our approach still holds even if we include all the strategies that can utilize these ‘seed gold
units’.

Second, we can use ‘pilot gold units’ as qualifying or pilot questions that the workers must
complete to qualify to participate. Typically a taskmaster do not have to pay for these qualifying
questions and this provides an effective way to increase the quality of the participating workers.
Our approach can benefit from such ‘pilot gold units’, which has the effect of increasing the effective
collective quality of the crowd q. Further, if we can ‘measure’ how the distribution of workers change
when using pilot questions, then our main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the distribution of participating workers,
and the order-optimality of our approach still holds even if we compare all the schemes that use
the same pilot questions.

Next, we consider workers with different reliabilities and their prices or payments. Specifically,
suppose there are K classes of worker: workers of class k, 1 ≤ k ≤ K, have their reliability
distribution parameter qk and each of them requires payment of ck to perform a task. Now our
optimality result suggests that the per-task cost scales as ck/qk log(1/�) if we only used workers
of class k. More generally, if we use a mix of these workers, say αk fraction of workers from class
k, with

�
k αk = 1, then the effective parameter q =

�
k αkqk. And subject to this, the optimal

per task cost scales as (
�

k αkck)/(
�

k αkqk) log(1/�). This immediately suggests that the optimal
choice of fraction αk must be such that αk > 0 only if ck/qk = min� c�/q�. That is, optimal choice
is to select workers only from the classes that have minimal ratio of ck/qk over 1 ≤ k ≤ K.

We now discuss the assumed knowledge of q in selecting the degree l = Θ(1/q log(1/�)) in the
design of the regular bipartite graph that achieve a given target error rate. Here is a simple way
to overcome this limitation at the loss of only additional constant factor, i.e. scaling of cost per
task still remains Θ(1/q log(1/�)). To that end, consider an incremental design in which at step a
the system is designed assuming q = 2−a for a ≥ 1. At step a, we design two replicas of the task
allocation for q = 2−a. Now compare the estimates obtained by these two replicas for all m tasks.
If they agree amongst m(1− 2�) tasks, then we stop and declare that as the final answer. Or else,
we increase a to a + 1 and repeat. Note that by our optimality result, it follows that if 2−a is
less than the actual q then the iteration must stop with high probability. Therefore, the total cost
paid is Θ(1/q log(1/�)) with high probability. Thus, even lack of knowledge of q does not affect the
optimality of our algorithm.

Finally, we consider possible generalization of our model. The model assumed in this paper
does not capture several factors: tasks with different level of difficulties or workers who always
answer positive or negative. It is desirable to characterize how our algorithm works under such a
more general model.

In general, the responses of a worker j to a binary question i may depend on several factors:
(i) the correct answer to the task; (ii) the difficulty of the task; (iii) the expertise or the reliability
of the worker; (iv) the bias of the worker towards positive or negative answers. Let si ∈ {+1,−1}
represent the correct answer and ri ∈ [0,∞] represents the level of difficulty of task i. Here ri = 0
means that the task is so easy that any worker can find the correct answer, and ri = ∞ means that
the task is so difficult that even the most diligent worker cannot resolve which is the correct answer.
Let αj ∈ [−∞,∞] represent the reliability and βj ∈ (−∞,∞) represent the bias of worker j. Here,
αj = ∞ means that the worker answers all tasks correctly, αj = −∞ means that the worker answers

15

i.e. the oracle has a lot more information than what can be gained by such qualifying questions.
Therefore, clearly ‘seed gold units’ do not help the oracle estimator, and hence the order optimality
of our approach still holds even if we include all the strategies that can utilize these ‘seed gold
units’.

Second, we can use ‘pilot gold units’ as qualifying or pilot questions that the workers must
complete to qualify to participate. Typically a taskmaster do not have to pay for these qualifying
questions and this provides an effective way to increase the quality of the participating workers.
Our approach can benefit from such ‘pilot gold units’, which has the effect of increasing the effective
collective quality of the crowd q. Further, if we can ‘measure’ how the distribution of workers change
when using pilot questions, then our main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the distribution of participating workers,
and the order-optimality of our approach still holds even if we compare all the schemes that use
the same pilot questions.

Next, we consider workers with different reliabilities and their prices or payments. Specifically,
suppose there are K classes of worker: workers of class k, 1 ≤ k ≤ K, have their reliability
distribution parameter qk and each of them requires payment of ck to perform a task. Now our
optimality result suggests that the per-task cost scales as ck/qk log(1/�) if we only used workers
of class k. More generally, if we use a mix of these workers, say αk fraction of workers from class
k, with

�
k αk = 1, then the effective parameter q =

�
k αkqk. And subject to this, the optimal

per task cost scales as (
�

k αkck)/(
�

k αkqk) log(1/�). This immediately suggests that the optimal
choice of fraction αk must be such that αk > 0 only if ck/qk = min� c�/q�. That is, optimal choice
is to select workers only from the classes that have minimal ratio of ck/qk over 1 ≤ k ≤ K.

We now discuss the assumed knowledge of q in selecting the degree l = Θ(1/q log(1/�)) in the
design of the regular bipartite graph that achieve a given target error rate. Here is a simple way
to overcome this limitation at the loss of only additional constant factor, i.e. scaling of cost per
task still remains Θ(1/q log(1/�)). To that end, consider an incremental design in which at step a
the system is designed assuming q = 2−a for a ≥ 1. At step a, we design two replicas of the task
allocation for q = 2−a. Now compare the estimates obtained by these two replicas for all m tasks.
If they agree amongst m(1− 2�) tasks, then we stop and declare that as the final answer. Or else,
we increase a to a + 1 and repeat. Note that by our optimality result, it follows that if 2−a is
less than the actual q then the iteration must stop with high probability. Therefore, the total cost
paid is Θ(1/q log(1/�)) with high probability. Thus, even lack of knowledge of q does not affect the
optimality of our algorithm.

Finally, we consider possible generalization of our model. The model assumed in this paper
does not capture several factors: tasks with different level of difficulties or workers who always
answer positive or negative. It is desirable to characterize how our algorithm works under such a
more general model.

In general, the responses of a worker j to a binary question i may depend on several factors:
(i) the correct answer to the task; (ii) the difficulty of the task; (iii) the expertise or the reliability
of the worker; (iv) the bias of the worker towards positive or negative answers. Let si ∈ {+1,−1}
represent the correct answer and ri ∈ [0,∞] represents the level of difficulty of task i. Here ri = 0
means that the task is so easy that any worker can find the correct answer, and ri = ∞ means that
the task is so difficult that even the most diligent worker cannot resolve which is the correct answer.
Let αj ∈ [−∞,∞] represent the reliability and βj ∈ (−∞,∞) represent the bias of worker j. Here,
αj = ∞ means that the worker answers all tasks correctly, αj = −∞ means that the worker answers

15

References

!  D. R. Karger, S. Oh, D. Shah. Iterative Learning for Reliable
Crowdsourcing Systems. NIPS 2011

!  D. R. Karger, S. Oh, D. Shah. Budget-Optimal Task Allocation
for Reliable Crowdsourcing Systems. CoRR, abs/1110.3564,
2011

!  D.R. Karger, S. Oh, D. Shah. Budget-optimal crowdsourcing
using low-rank matrix optimizations. Proc. of Allerton Conf. on
Commun., Control and Computing, 2011

