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Intfroduction



What's Crowdsourcing

Image classification Large number of small and
simple tasks
Transcription
Difficult for computers
Proof reading
Easy for human

building | tree ship person

http://labelme.csail.mit.edu/mt_instructions.html



Characteristics of Crowdsourcing

System

Errors are common
O Some workers are not reliable

Workers are unidentifiable

O Worker crowd is large

O No prior knowledge of the worker’s reliability
O Tasks are distributed through open call

No gold standard
O Cannot condition payment on correctness of responses



Crowdsourcing Systems

Batches of tasks are distributed to unidentified group of people

through open call.
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Source: S. Oh “lterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011




Crowdsourcing Systems

User give their possibly inaccurate answers.
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Source: S. Oh “lterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011



Crowdsourcing Systems

A task may be assigned to multiple workers to overcome the possible

errors.
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Source: S. Oh “lterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011



Crowdsourcing Systems

Users make random error based on their own quality.
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Source: S. Oh “lterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011



Crowdsourcing Systems

Final results are aggregation of multiple workers' response for each
task. Estimation is performed after all the answers are obtained.
Amount of the payment is according to the number of responses.
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Source: S. Oh “lterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011



Core Opftimization Problem

Achieve a certain reliability in answers with minimum cost
(i.e. asking fewest possible questions)



Core Opftimization Problem

Achieve a certain reliability in answers with minimum cost
(i.e. asking fewest possible questions)

Challenges
O Task assignment
O Inference problem

Solutions proposed by the paper

O Task assignment: Random regular bipartite graph

O Inference problem: Iterative inference algorithm

O Proved to be optimal given certain amount of budget



Previous Related Work

Focus on inference problem

Learning from mulfiple responses
O Maijority Voting
Vulnerable to spammers
O EM approach to learn reliability
Local optimal
No theoretical performance guarantee



Crowdsourcing Model



Crowd Sourcing Model

A set of m Tasks {¢,},i=1,2,....m

Each task associated with an unobserved ‘correct’
answer s; € {=1}

Tasks are assigned to n workers {w;},j=1..n

Answer on task ¢, from worker w; : A; €E{=1}



Crowd Sourcing Model (cont.)

Each worker has a reliability p; €10,1]

O The worker jrandomly make errors according to
O P, does not depends on specific task p;

O ;r.j=l.n qgreiid.random variables of a given

distribution
For task i answered by user |, the answer is defined as
s,  W.p. D,
A =1
’ -s, w.p. l-p,

O Ifiis not assigned Td4}j =0

Crowd quality
q=E[2p,-1)"]



Proposed Algorithms



Task Allocation Scheme

Task allocation = Designing a bipartite graph

Tasks

EEEf

Workers

Source: S. Oh “lterative Learning for Reliable
Crowdsourcing Systems” NIPS 2011



Random (l,r)-regular bipartite graph

Generate an (l,r)-regular random bipartite graph

CECECHCNCNE)

4 r
Random bipartite graph has good properties
O Proved to be sufficient to achieve order-optimal performance



lterative Inference Algorithm

[terative Algorithm

Input: E, {A¢;}s.5)eks Fmax
Output: Estimation §({A})
1: Forall(i,j) € Edo
Initialize y ) with random Z,; ~ N (1,1) ;
2: Fork=1,..., Lmu do
Forall (i,j) € Edo ("), « Y 1cpn Ay
Forall (z,5) € E do yJ_Z, — D veon A,,Jr,,k_)” ;
3: Foralli € fmldo =z« ¥, 5 Ayyir "
4:  Output estimate vector ({ Ay, }) = [sign(zy)] .

(k 1).




lterative Inference Algorithm

Message passing
O Task message: X Yajer

O Worker message: O itanes
J—r2 )



lterative Inference Algorithm

Message passing

O Task message: X Yajer

O Worker message: i

Final estimate

§i = Slgn(z Aijyjei)

JE9;
Neiborhood of i

}(i,j)EE

Worker |'s reliability on
item i

A weighted sum of
answers weighted by
each worker’s reliability.




lterative algorithm for inference

Update Process
O Compute the item likelihood to be positive

k (k—1)
'5—23 — Zg '€0i\j AZ] yj —>1

Tasks are more likely to
be positive if reliable
workers say it is positive

O Compute the reliability of users

k k
y“g—)m — Zz '€aj\i Air ]SB,E l)j

Workers are reliable if their
labels consistent with the
likelihood of tasks




Performance Guarantee and Optimality



Performance Guarantee

Define:
p=E[2p;—1] ¢=E[2p; -1)%.
leti=l—1andf=7r—1.



Performance Guarantee

Define:
p=E[2p;—1] ¢=E[2p; -1)%.
leti=l—1andf=7r—1.

2
,0%. = c +(3+

1 ) 1 — (1/¢%l7)k1
p2(q2l)k |

qr/ 1 —(1/q27)




Performance Guarantee

Define:
p=E[2p;—1] ¢=E[2p; -1)%.
leti=l—1andf=7r—1.

2q 11— (1/q2%l7)k1
Pk = 2 Q“AA_1+(3+ ) / 2[7)
p(glr) qr/ 1 —(1/¢%lr)
1 27
P2 (3+ A) (
qr/ ¢2lr — 1



Performance Guarantee

Define:
p=E[2p;—1] ¢=E[2p; -1)%.
leti=l—1andf=7r—1.

2
P2 = L+ (3+

1 ) 1 — (1/¢%l7)k1
p2(q?lr)E! |

qr/ 1 —(1/q27)

For qQZAfF > 1, let pgo = limg_ o pi such that

1
2 (3+ ) T
Poc qr/ @2l — 1

2]y




Performance Guarantee

Theorem 2.1. For fized | > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l,r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy p = E[2p; — 1] > 0 and ¢*> > 1/(I#), then for any s € {£1}™, the
estimates from k iterations of the iterative algorithm achieve

1l . 1o/(20?
n%gnooagp(si#Si({Aij}(’iaj)EE)> < e/, (1)



Performance Guarantee

Theorem 2.1. For fized | > 1 and r > 1, assume that m tasks are assigned to n = ml/r workers
according to a random (l,r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfy p = E[2p; — 1] > 0 and ¢*> > 1/(I#), then for any s € {£1}™, the
estimates from k iterations of the iterative algorithm achieve

1l . 1o/(20?
n%gnooagp(si#Si({Aij}(’iaj)EE)> < e/, (1)

Corollary 2.2. Under the hypotheses of Theorem 2.1,

m

: .1 R _
Jm  lim ;P<Si 7 Si({Az'j}@,j)EE)) < eTla/Cr) (2)



Remarks on the Performance

This iterative algorithm could converge quickly.
O computationally efficient as majority voting.

Lemma 2.3. Under the hypotheses of Theorem 2.1, the total computational cost sufficient to A
achieve the bound in Corollary 2.2 up to any constant factor in the exponent is O(mllog(q/p?)/ log(¢?I7)).



Remarks on the Performance

It’s necessary to assume (> 0

O Knowing the overall quality of the crowd

O either most of people make a correct label

O or most of people make a wrong label (flip the results)



Remarks on the Performance

Do not require more information on the reliability
distribution Pj.

O EM algorithm is sensitive to initialization.

O This iterative algorithm does not depend on initialization and
could get to converge to the solution.



Remarks on the Performance

Transition phase at [fg? = 1.

O when [7¢%2 > 1, we show that this algorithm is order-optimal
and significantly improve majority voting.

O when [7¢? < 1, we observe from experiments that the error
rate increases with k increases. It’s better to select k =1,
which essentially become the majority voting.

O recall that if [fg> < 1, p; does not have a limitation.

Same transition phase observed in EM.



Experimental Evaluation

Majority Voting
O decide the result on what the majority of workers agree on.
O in formula:

Si = Sign(Zjeaz‘ Aij)a



Experimental Evaluation

Oracle Estimator
O Assume “oracle” know the exact reliability of each worker.

5i = Slgn( Z

\/ v )
reliability response

O where

VVij — Iog( 1fjpj

O oracle fully trust workers with reliability 1, throw out answers
from workers with reliability O.



Experimental Evaluation

Evaluation Metrics 1o

O Error rate P_error = — E P(s; # 3;) .
m
i=1



Experimental Evaluation

Simulation Data (10 iteration, | =r, q = 0.3)
O transition phase: =1+ 1/ 0.3 = 4.33

Probability of error

1

0.1

0.01

0.001

0.0001

le-05

Majority Voting
Expectation Maximization —@—
Iterative Algorithm —=&—

, Oracle Estimator

5 10 15 20 25 30
Number of assignments per task (1)




Experimental Evaluation

Real crowd Amazon 0.5 -

: Majority Voting —&—
MeChanlcaI Tu rk Expectation ;J/I(;r;i?nizgtigﬁ —
O color Comparison, 50 04k Iterative Algorithm —&—

tasks, 28 workers. 2
O ground truth = color 5 %[
space distance =
B 02F
O g=0.175, transition E
phase = 5 o1l
0_ 1 1 1 1 1 1 ]

4 8 12 16 20 24
Number of assignments per task (1)



Optimality

One-shot scenario
O all task assignments are done simultaneously.

O then an estimation is performed after all the answers are
obtained.

Given a target accuracy € € (0,1/2), how many
assignments per task we need to achieve this goal?

Order-optimal
O better than majority voting
O unavoidable



Optimality

Notations:

O distribution f is chosen from a set of all distributions on [0,1]
which satisfy E;[(2p; — 1)?] = ¢. we use F(q) to donate this set.

-

O let G(m,l) denote the set of all bipartite graphs, including
irregular graphs, having m task nodes and ml total edges.

O Arp is minimum cost per task necessary to achieve a target
accuracy € using any graph and the best possible algorithm
on that graph.



Optimality

Min. error rate for all possible assignments and all
possible inference algorithm: (using oracle estimator)

Lemma 2.4. The minimaz error rate achieved by the best possible graph G € G(m,l) using the
best possible inference algorithm is at least

1
inf sup  dm(S, S Aleo) > —1—ql,
Algo,GeG(myl) 5 re F(q) ! Aee) ( )

(\)

when ¢ < C; for some numerical constant C; < 1.

1
inf sup  dpm (s, 8G.Algo) > ~ e~ (lg+Calg®)
Algo,GeG(m,l) s,fEF(q) 2

sun (b (1)



Optimality

Majority voting

Lemma 2.5. In the regime where where ¢ < Co < 1, there exists a numerical constant Cs such
that

] a —C3(1g%+1
inf Sup dm<375G,Majority) > e 3(lg”+1) .

GeG(m,l) s,fEF(q)

AMajority = Q(qiz log (%)) .



Optimality

Iterative inference algorithm with random regular (I,r)-
bipartite graph.

For lAq > (CYy, rq > Cs and CyCs > 1

lim  sup dp(s,Ster) < e~ Cola

Mm—00 5 feF(q)

Then minimum coast per task sufficient to achieve target
error rate is:

o)



Density Evolution Analysis Technique (Proof of Thm. 2.1)



More Discussion

Relations to low-rank matrix approximation
O Gap between first singular value and the second

1 1

Gap
— High Signal-to-Noise Ratio

O Use SVD to approximate the adjacency matrix



More Discussion

Low-rank matrix approximation

A E[Als, p] Random Perturbation
TR =] EscE
1 -
d;?a Iow-ra;E signal n;ge

Power iteration

for all i, U; = Z Aij'Uj; and for all j, v = Z Awuz
jedi i€
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More Discussion

Not strong enough bound:

Theorem Il1.1. For fixed | and r which are independent of
m, assume that m tasks are assigned to n = ml/r workers
under the spammer-hammer model according to a random
(I,r)-regular graph drawn from the configuration model.
Then, for any s € {£1}™, with probability 1 — m_Q(\/Z),
the low-rank approximation algorithm achieves

iss(a) = 2 @

where q is the probability that a randomly chosen worker
is a hammer and C(p) is a constant that only depends on

p=1/r.

source: D.R.Karger, S. Oh, and D. Shah, Budget-optimal crowdsourcing using low-rank matrix approximation, 2011



More Discussion

Assessing quality of the workers (gold standard units)
O Using ‘seed gold units’?

no help due to order-optimal
O Using ‘pilot gold unites’?

only change the distribution of participating workers.

27



More Discussion

Workers with different reliabilities and their prices
O K classes of workers: 1, ..., k
O reliability distribution parameter g_k and payment c_k

O if only one class of workers is used:
per-task cost scales as cx/qxlog(1/€)

O if a mix of workers from different classes
Qk is the fraction with Zk ap =1 i _
optimal per-task cost scales as (Zk akck)/(Zk aqr) log(1/e€)
implies only select workers with minimal ratio of ck/qgk

27



More Discussion

What if we don’t know about g in selecting the degree?

[ =©(1/qlog(1/e))
O incremental design in which at step a the system is designed
assuming q = 274
O design two replicas of the task allocation.

O compare the estimates obtained by these two replicas for all
m tasks, if they agree amongst m(1 — 2¢) tasks, then stop
and declare the final answer. Or else, increase a to a+1.

24
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