
CS 112: Modeling Uncertainty in
Information Systems

Prof. Jenn Wortman Vaughan
April 30, 2012

Lecture 9

Reminders & Announcements

•  The course midterm is this Wednesday in class!

•  The exam will cover all of Chapters 1 and 2, plus 4.2

•  One double-sided sheet of hand-written notes is allowed
and will be collected with your exam

•  You may not use any other notes, books, calculators,
cell phones, laptops, etc.

•  Best way to prep is to practice problems from the book

Reminders & Announcements

•  Since Jacob is traveling, he will not have office hours
tomorrow

•  Prof. Vaughan will move her weekly office hours to
Jacob’s usual slot, tomorrow (Tuesday) 11am–1pm

•  Jacob will also be available over email and on Piazza to
answer questions

Reminders & Announcements

•  Homework 1 was returned on Friday
•  Four problems were graded for credit, max score is 55
•  Mean was 40.1 (73%), median was 42 (76%)

Reminders & Announcements

•  Homework 1 was returned on Friday
•  Four problems were graded for credit, max score is 55
•  Mean was 40.1 (73%), median was 42 (76%)

•  If you believe that a grading error was made, you may
submit a regrade request within 7 days (so by Friday) by:
•  Dropping your assignment and your written regrade

request in the class locker in the TA room
•  Sending an email to Jacob and the graders to let them

know to look for your request and which problem it’s for

Today

•  Symbol codes for encoding text
•  Data compression using Huffman coding
•  Relationship to entropy

Encoding Data

•  Suppose we would like to encode strings of characters in
binary. If our strings contain capital letters A, B, C, …, Z
and spaces only, what encoding might be choose?

Encoding Data

•  Suppose we would like to encode strings of characters in
binary. If our strings contain capital letters A, B, C, …, Z
and spaces only, what encoding might be choose?

•  26 letters + spaces = 27 symbols to encode, so need 5 bits

Encoding Data

•  Suppose we would like to encode strings of characters in
binary. If our strings contain capital letters A, B, C, …, Z
and spaces only, what encoding might be choose?

•  26 letters + spaces = 27 symbols to encode, so need 5 bits

 A = 00000 X = 10111
 B = 00001 … Y = 11000
 C = 00010 Z = 11001
 D = 00011 space = 11010

Encoding Data

•  Suppose we would like to encode strings of characters in
binary. If our strings contain capital letters A, B, C, …, Z
and spaces only, what encoding might be choose?

•  26 letters + spaces = 27 symbols to encode, so need 5 bits

 A = 00000 X = 10111
 B = 00001 … Y = 11000
 C = 00010 Z = 11001
 D = 00011 space = 11010

•  This is essentially how ASCII works

What if we wanted to use fewer bits?

What if we wanted to use fewer bits?

•  Could drop leading zeroes…

 A = 00000 X = 10111
 B = 00001 … Y = 11000
 C = 00010 Z = 11001
 D = 00011 space = 11010

What if we wanted to use fewer bits?

•  Could drop leading zeroes…

 A = 00000 X = 10111
 B = 00001 … Y = 11000
 C = 00010 Z = 11001
 D = 00011 space = 11010

•  What is the problem with this encoding?

Prefix Codes

•  A symbol code is called a prefix code if no codeword is a
prefix of any other codeword

•  Prefix code: A = 00 B = 101 C = 111
•  Not a prefix code: A = 0 B = 01 C = 001

Prefix Codes

•  A symbol code is called a prefix code if no codeword is a
prefix of any other codeword

•  Prefix code: A = 00 B = 101 C = 111
•  Not a prefix code: A = 0 B = 01 C = 001

•  Any fixed length code is a prefix code

Prefix Codes

•  A symbol code is called a prefix code if no codeword is a
prefix of any other codeword

•  Prefix code: A = 00 B = 101 C = 111
•  Not a prefix code: A = 0 B = 01 C = 001

•  Any fixed length code is a prefix code

•  Any prefix code can be represented as a binary tree, and
any code that can be represented this way is a prefix code

Designing Optimal Prefix Codes

•  What if we would like to design a prefix code to minimize
the expected length of an encoded message?

Designing Optimal Prefix Codes

•  What if we would like to design a prefix code to minimize
the expected length of an encoded message?

•  We can start by writing down the frequency of each
character, which we can view as a probability

Designing Optimal Prefix Codes

•  What if we would like to design a prefix code to minimize
the expected length of an encoded message?

•  We can start by writing down the frequency of each
character, which we can view as a probability

 P(A) = 1/2, P(B) = 1/4, P(C) = 1/8, P(D) = 1/8

Designing Optimal Prefix Codes

•  What if we would like to design a prefix code to minimize
the expected length of an encoded message?

•  We can start by writing down the frequency of each
character, which we can view as a probability

 P(A) = 1/2, P(B) = 1/4, P(C) = 1/8, P(D) = 1/8

•  Where have we seen this problem before?

Designing Optimal Prefix Codes

•  What if we would like to design a prefix code to minimize
the expected length of an encoded message?

•  We can start by writing down the frequency of each
character, which we can view as a probability

 P(A) = 1/2, P(B) = 1/4, P(C) = 1/8, P(D) = 1/8

•  Where have we seen this problem before?

•  What properties did the optimal solution satisfy?

Top-Down Approach

•  We could try to build a tree from the root node down,
making near-equiprobable splits…

Top-Down Approach

•  We could try to build a tree from the root node down,
making near-equiprobable splits…

 P(A) = 0.01 P(E) = 0.47
 P(B) = 0.24 P(F) = 0.01
 P(C) = 0.05 P(G) = 0.02
 P(D) = 0.20

Top-Down Approach

•  We could try to build a tree from the root node down,
making near-equiprobable splits…

 P(A) = 0.01 P(E) = 0.47
 P(B) = 0.24 P(F) = 0.01
 P(C) = 0.05 P(G) = 0.02
 P(D) = 0.20

•  What is the average (expected) number of bits needed to
encode a character using this scheme?

Bottom-Up Approach

•  Alternatively, we could try to cleverly build a tree from the
leaves up…

Bottom-Up Approach

•  Alternatively, we could try to cleverly build a tree from the
leaves up…

 P(A) = 0.01 P(E) = 0.47
 P(B) = 0.24 P(F) = 0.01
 P(C) = 0.05 P(G) = 0.02
 P(D) = 0.20

Bottom-Up Approach

•  Alternatively, we could try to cleverly build a tree from the
leaves up…

 P(A) = 0.01 P(E) = 0.47
 P(B) = 0.24 P(F) = 0.01
 P(C) = 0.05 P(G) = 0.02
 P(D) = 0.20

•  What is the average (expected) number of bits needed to
encode a character using this scheme?

Bottom-Up Approach

•  This bottom up approach is known as Huffman coding

Bottom-Up Approach

•  This bottom up approach is known as Huffman coding

•  Huffman coding produces a provably optimal symbol code
in terms of expected number of bits per character, R

Bottom-Up Approach

•  This bottom up approach is known as Huffman coding

•  Huffman coding produces a provably optimal symbol code
in terms of expected number of bits per character, R

•  The expected number of bits per character achieved by
Huffman coding can be bounded in terms of the entropy

 H(A1, A2, …, An) ≤ R(A1, A2, …, An)
 ≤ H(A1, A2, …, An) + 1

Bound on Information Rate

•  Recall that the entropy is the average information content
of a set of events A1,...,An that partition Ω

€

H(A1,...,An) = P(Ai)I(Ai)
i=1

n

∑ = P(Ai)log2
1

P(Ai)
⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑

Bound on Information Rate

•  Recall that the entropy is the average information content
of a set of events A1,...,An that partition Ω

•  In the previous example, the entropy is about 1.93 (verify
this on your own!) so 1.97 is pretty close

€

H(A1,...,An) = P(Ai)I(Ai)
i=1

n

∑ = P(Ai)log2
1

P(Ai)
⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑

Examples of Huffman Coding

•  Consider a uniform character frequency distribution
 P(A) = 0.25 P(C) = 0.25
 P(B) = 0.25 P(D) = 0.25

•  How could we generate a Huffman code?

Examples of Huffman Coding

•  Consider a uniform character frequency distribution
 P(A) = 0.25 P(C) = 0.25
 P(B) = 0.25 P(D) = 0.25

•  How could we generate a Huffman code?
•  What is the entropy?

Examples of Huffman Coding

•  Consider a uniform character frequency distribution
 P(A) = 0.25 P(C) = 0.25
 P(B) = 0.25 P(D) = 0.25

•  How could we generate a Huffman code?
•  What is the entropy?
•  How does this compare to the expected number of bits per

character?

Examples of Huffman Coding

•  Consider a uniform character frequency distribution
 P(A) = 0.25 P(C) = 0.25
 P(B) = 0.25 P(D) = 0.25

•  How could we generate a Huffman code?
•  What is the entropy?
•  How does this compare to the expected number of bits per

character? (Nice powers of 2 again…)

Exercise

•  Consider the following character frequency distribution
 P(A) = 0.45 P(D) = 0.05
 P(B) = 0.15 P(E) = 0.10
 P(C) = 0.20 P(F) = 0.05

•  Derive the following symbol codes and calculate the
expected bits per character of each

 a) An optimal fixed length code
 b) A prefix code derived using the top-down approach
 c) A prefix code derived using Huffman coding

