CS 112: Modeling Uncertainty in Information Systems

Prof. Jenn Wortman Vaughan April 30, 2012 Lecture 9

- The course midterm is this Wednesday in class!
- The exam will cover all of Chapters 1 and 2, plus 4.2
- One double-sided sheet of hand-written notes is allowed and will be collected with your exam
- You may not use any other notes, books, calculators, cell phones, laptops, etc.
- Best way to prep is to practice problems from the book

- Since Jacob is traveling, he will not have office hours tomorrow
- Prof. Vaughan will move her weekly office hours to Jacob's usual slot, tomorrow (Tuesday) 11am–1pm
- Jacob will also be available over email and on Piazza to answer questions

- Homework 1 was returned on Friday
- Four problems were graded for credit, max score is 55
- Mean was 40.1 (73%), median was 42 (76%)

- Homework 1 was returned on Friday
- Four problems were graded for credit, max score is 55
- Mean was 40.1 (73%), median was 42 (76%)
- If you believe that a grading error was made, you may submit a regrade request within 7 days (so by Friday) by:
 - Dropping your assignment and your written regrade request in the class locker in the TA room
 - Sending an email to Jacob and the graders to let them know to look for your request and which problem it's for

Today

- Symbol codes for encoding text
- Data compression using Huffman coding
- Relationship to entropy

• Suppose we would like to encode strings of characters in binary. If our strings contain capital letters A, B, C, ..., Z and spaces only, what encoding might be choose?

- Suppose we would like to encode strings of characters in binary. If our strings contain capital letters A, B, C, ..., Z and spaces only, what encoding might be choose?
- 26 letters + spaces = 27 symbols to encode, so need 5 bits

- Suppose we would like to encode strings of characters in binary. If our strings contain capital letters A, B, C, ..., Z and spaces only, what encoding might be choose?
- 26 letters + spaces = 27 symbols to encode, so need 5 bits

A = 00000		X = 10111
B = 00001	•••	Y = 11000
C = 00010		Z = 11001
D = 00011		space = 11010

- Suppose we would like to encode strings of characters in binary. If our strings contain capital letters A, B, C, ..., Z and spaces only, what encoding might be choose?
- 26 letters + spaces = 27 symbols to encode, so need 5 bits

A = 00000		X = 10111
B = 00001	•••	Y = 11000
C = 00010		Z = 11001
D = 00011		space = 11010

• This is essentially how ASCII works

What if we wanted to use fewer bits?

What if we wanted to use fewer bits?

• Could drop leading zeroes...

$$A =$$
0 $X = 10111$ $B =$ 1... $Y = 11000$ $C =$ 10 $Z = 11001$ $D =$ 11space = 11010

What if we wanted to use fewer bits?

• Could drop leading zeroes...

A =0X = 10111B =1...Y = 11000C =10Z = 11001D =11space = 11010

• What is the problem with this encoding?

Prefix Codes

- A symbol code is called a prefix code if no codeword is a prefix of any other codeword
 - Prefix code: A = 00 B = 101 C = 111
 - Not a prefix code: A = 0 B = 01 C = 001

Prefix Codes

- A symbol code is called a prefix code if no codeword is a prefix of any other codeword
 - Prefix code: A = 00 B = 101 C = 111
 - Not a prefix code: A = 0 B = 01 C = 001
- Any fixed length code is a prefix code

Prefix Codes

- A symbol code is called a prefix code if no codeword is a prefix of any other codeword
 - Prefix code: A = 00 B = 101 C = 111
 - Not a prefix code: A = 0 B = 01 C = 001
- Any fixed length code is a prefix code
- Any prefix code can be represented as a binary tree, and any code that can be represented this way is a prefix code

• What if we would like to design a prefix code to minimize the expected length of an encoded message?

- What if we would like to design a prefix code to minimize the expected length of an encoded message?
- We can start by writing down the frequency of each character, which we can view as a probability

- What if we would like to design a prefix code to minimize the expected length of an encoded message?
- We can start by writing down the frequency of each character, which we can view as a probability

P(A) = 1/2, P(B) = 1/4, P(C) = 1/8, P(D) = 1/8

- What if we would like to design a prefix code to minimize the expected length of an encoded message?
- We can start by writing down the frequency of each character, which we can view as a probability

P(A) = 1/2, P(B) = 1/4, P(C) = 1/8, P(D) = 1/8

• Where have we seen this problem before?

- What if we would like to design a prefix code to minimize the expected length of an encoded message?
- We can start by writing down the frequency of each character, which we can view as a probability

P(A) = 1/2, P(B) = 1/4, P(C) = 1/8, P(D) = 1/8

- Where have we seen this problem before?
- What properties did the optimal solution satisfy?

Top-Down Approach

• We could try to build a tree from the root node down, making near-equiprobable splits...

Top-Down Approach

• We could try to build a tree from the root node down, making near-equiprobable splits...

P(A) = 0.01	P(E) = 0.47
P(B) = 0.24	P(F) = 0.01
P(C) = 0.05	P(G) = 0.02
P(D) = 0.20	

Top-Down Approach

• We could try to build a tree from the root node down, making near-equiprobable splits...

P(A) = 0.01	P(E) = 0.47
P(B) = 0.24	P(F) = 0.01
P(C) = 0.05	P(G) = 0.02
P(D) = 0.20	

• What is the average (expected) number of bits needed to encode a character using this scheme?

• Alternatively, we could try to cleverly build a tree from the leaves up...

• Alternatively, we could try to cleverly build a tree from the leaves up...

P(A) = 0.01	P(E) = 0.47
P(B) = 0.24	P(F) = 0.01
P(C) = 0.05	P(G) = 0.02
P(D) = 0.20	

• Alternatively, we could try to cleverly build a tree from the leaves up...

P(A) = 0.01	P(E) = 0.47
P(B) = 0.24	P(F) = 0.01
P(C) = 0.05	P(G) = 0.02
P(D) = 0.20	

• What is the average (expected) number of bits needed to encode a character using this scheme?

• This bottom up approach is known as Huffman coding

- This bottom up approach is known as Huffman coding
- Huffman coding produces a provably optimal symbol code in terms of expected number of bits per character, R

- This bottom up approach is known as Huffman coding
- Huffman coding produces a provably optimal symbol code in terms of expected number of bits per character, R
- The expected number of bits per character achieved by Huffman coding can be bounded in terms of the entropy

$$\begin{aligned} H(A_1, A_2, ..., A_n) &\leq R(A_1, A_2, ..., A_n) \\ &\leq H(A_1, A_2, ..., A_n) + 1 \end{aligned}$$

Bound on Information Rate

• Recall that the entropy is the average information content of a set of events $A_1, ..., A_n$ that partition Ω

$$H(A_1,...,A_n) = \sum_{i=1}^n P(A_i)I(A_i) = \sum_{i=1}^n P(A_i)\log_2\left(\frac{1}{P(A_i)}\right)$$

Bound on Information Rate

• Recall that the entropy is the average information content of a set of events $A_1, ..., A_n$ that partition Ω

$$H(A_1, \dots, A_n) = \sum_{i=1}^n P(A_i) I(A_i) = \sum_{i=1}^n P(A_i) \log_2\left(\frac{1}{P(A_i)}\right)$$

• In the previous example, the entropy is about 1.93 (verify this on your own!) so 1.97 is pretty close

• Consider a uniform character frequency distribution

P(A) = 0.25P(C) = 0.25P(B) = 0.25P(D) = 0.25

• How could we generate a Huffman code?

• Consider a uniform character frequency distribution

P(A) = 0.25P(C) = 0.25P(B) = 0.25P(D) = 0.25

- How could we generate a Huffman code?
- What is the entropy?

• Consider a uniform character frequency distribution

P(A) = 0.25P(C) = 0.25P(B) = 0.25P(D) = 0.25

- How could we generate a Huffman code?
- What is the entropy?
- How does this compare to the expected number of bits per character?

• Consider a uniform character frequency distribution

P(A) = 0.25P(C) = 0.25P(B) = 0.25P(D) = 0.25

- How could we generate a Huffman code?
- What is the entropy?
- How does this compare to the expected number of bits per character? (Nice powers of 2 again...)

Exercise

• Consider the following character frequency distribution

P(A) = 0.45	P(D) = 0.05
P(B) = 0.15	P(E) = 0.10
P(C) = 0.20	P(F) = 0.05

- Derive the following symbol codes and calculate the expected bits per character of each
 - a) An optimal fixed length code
 - b) A prefix code derived using the top-down approach
 - c) A prefix code derived using Huffman coding