CS 112: Modeling Uncertainty in Information Systems

Prof. Jenn Wortman Vaughan
April 30, 2012
Lecture 9
Reminders & Announcements

• The course midterm is this Wednesday in class!

• The exam will cover all of Chapters 1 and 2, plus 4.2

• One double-sided sheet of hand-written notes is allowed and will be collected with your exam

• You may not use any other notes, books, calculators, cell phones, laptops, etc.

• Best way to prep is to practice problems from the book
Reminders & Announcements

• Since Jacob is traveling, he will not have office hours tomorrow

• Prof. Vaughan will move her weekly office hours to Jacob’s usual slot, tomorrow (Tuesday) 11am–1pm

• Jacob will also be available over email and on Piazza to answer questions
Reminders & Announcements

• Homework 1 was returned on Friday
• Four problems were graded for credit, max score is 55
• Mean was 40.1 (73%), median was 42 (76%)
Reminders & Announcements

• Homework 1 was returned on Friday
• Four problems were graded for credit, max score is 55
• Mean was 40.1 (73%), median was 42 (76%)

• If you believe that a grading error was made, you may submit a regrade request within 7 days (so by Friday) by:
 • Dropping your assignment and your written regrade request in the class locker in the TA room
 • Sending an email to Jacob and the graders to let them know to look for your request and which problem it’s for
Today

• Symbol codes for encoding text
• Data compression using Huffman coding
• Relationship to entropy
Encoding Data

• Suppose we would like to encode strings of characters in binary. If our strings contain capital letters A, B, C, …, Z and spaces only, what encoding might be choose?
Encoding Data

• Suppose we would like to encode strings of characters in binary. If our strings contain capital letters A, B, C, ..., Z and spaces only, what encoding might be choose?

• 26 letters + spaces = 27 symbols to encode, so need 5 bits
Encoding Data

• Suppose we would like to encode strings of characters in binary. If our strings contain capital letters A, B, C, …, Z and spaces only, what encoding might be chosen?

• 26 letters + spaces = 27 symbols to encode, so need 5 bits

\[
\begin{align*}
A &= 00000 & X &= 10111 \\
B &= 00001 & \cdots & Y &= 11000 \\
C &= 00010 & Z &= 11001 \\
D &= 00011 & \text{space} &= 11010
\end{align*}
\]
Encoding Data

• Suppose we would like to encode strings of characters in binary. If our strings contain capital letters A, B, C, …, Z and spaces only, what encoding might be chosen?

• 26 letters + spaces = 27 symbols to encode, so need 5 bits

<table>
<thead>
<tr>
<th>Letter</th>
<th>Binary Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00000</td>
</tr>
<tr>
<td>B</td>
<td>00001</td>
</tr>
<tr>
<td>C</td>
<td>00010</td>
</tr>
<tr>
<td>D</td>
<td>00011</td>
</tr>
<tr>
<td>X</td>
<td>10111</td>
</tr>
<tr>
<td>Y</td>
<td>11000</td>
</tr>
<tr>
<td>Z</td>
<td>11001</td>
</tr>
<tr>
<td>space</td>
<td>11010</td>
</tr>
</tbody>
</table>

• This is essentially how ASCII works
What if we wanted to use fewer bits?
What if we wanted to use fewer bits?

• Could drop leading zeroes…

\[
\begin{align*}
A &= 0 & X &= 10111 \\
B &= 1 & \ldots & Y &= 11000 \\
C &= 10 & Z &= 11001 \\
D &= 11 & \text{space} &= 11010
\end{align*}
\]
What if we wanted to use fewer bits?

- Could drop leading zeroes…

 A = 0
 B = 1
 C = 10
 D = 11

 X = 10111
 Y = 11000
 Z = 11001
 space = 11010

- What is the problem with this encoding?
Prefix Codes

• A symbol code is called a **prefix code** if no codeword is a prefix of any other codeword

 • Prefix code: A = 00 B = 101 C = 111
 • Not a prefix code: A = 0 B = 01 C = 001
Prefix Codes

- A symbol code is called a **prefix code** if no codeword is a prefix of any other codeword
 - Prefix code: $A = 00$ $B = 101$ $C = 111$
 - Not a prefix code: $A = 0$ $B = 01$ $C = 001$
- Any **fixed length code** is a prefix code
Prefix Codes

• A symbol code is called a **prefix code** if no codeword is a prefix of any other codeword

 • Prefix code: A = 00 B = 101 C = 111
 • Not a prefix code: A = 0 B = 01 C = 001

• Any **fixed length code** is a prefix code

• Any prefix code can be represented as a **binary tree**, and any code that can be represented this way is a prefix code
Designing Optimal Prefix Codes

• What if we would like to design a prefix code to minimize the expected length of an encoded message?
Designing Optimal Prefix Codes

• What if we would like to design a prefix code to minimize the expected length of an encoded message?

• We can start by writing down the frequency of each character, which we can view as a probability
Designing Optimal Prefix Codes

• What if we would like to design a prefix code to minimize the expected length of an encoded message?

• We can start by writing down the frequency of each character, which we can view as a probability

\[
P(A) = 1/2, \ P(B) = 1/4, \ P(C) = 1/8, \ P(D) = 1/8
\]
Designing Optimal Prefix Codes

• What if we would like to design a prefix code to minimize the expected length of an encoded message?

• We can start by writing down the frequency of each character, which we can view as a probability

\[P(A) = 1/2, P(B) = 1/4, P(C) = 1/8, P(D) = 1/8 \]

• Where have we seen this problem before?
Designing Optimal Prefix Codes

• What if we would like to design a prefix code to minimize the expected length of an encoded message?

• We can start by writing down the frequency of each character, which we can view as a probability

\[P(A) = \frac{1}{2}, \quad P(B) = \frac{1}{4}, \quad P(C) = \frac{1}{8}, \quad P(D) = \frac{1}{8} \]

• Where have we seen this problem before?

• What properties did the optimal solution satisfy?
Top-Down Approach

• We could try to build a tree from the root node down, making near-equiprobable splits…
Top-Down Approach

• We could try to build a tree from the root node down, making near-equiprobable splits…

\[
\begin{align*}
P(A) &= 0.01 & P(E) &= 0.47 \\
P(B) &= 0.24 & P(F) &= 0.01 \\
P(C) &= 0.05 & P(G) &= 0.02 \\
P(D) &= 0.20
\end{align*}
\]
Top-Down Approach

• We could try to build a tree from the root node down, making near-equiprobable splits…

\[
\begin{align*}
P(A) &= 0.01 & P(E) &= 0.47 \\
P(B) &= 0.24 & P(F) &= 0.01 \\
P(C) &= 0.05 & P(G) &= 0.02 \\
P(D) &= 0.20 &
\end{align*}
\]

• What is the average (expected) number of bits needed to encode a character using this scheme?
Bottom-Up Approach

- Alternatively, we could try to cleverly build a tree from the leaves up...
Bottom-Up Approach

• Alternatively, we could try to cleverly build a tree from the leaves up…

\[
\begin{align*}
P(A) &= 0.01 & P(E) &= 0.47 \\
P(B) &= 0.24 & P(F) &= 0.01 \\
P(C) &= 0.05 & P(G) &= 0.02 \\
P(D) &= 0.20
\end{align*}
\]
Bottom-Up Approach

• Alternatively, we could try to cleverly build a tree from the leaves up…

\[
\begin{align*}
P(A) &= 0.01 & P(E) &= 0.47 \\
P(B) &= 0.24 & P(F) &= 0.01 \\
P(C) &= 0.05 & P(G) &= 0.02 \\
P(D) &= 0.20
\end{align*}
\]

• What is the average (expected) number of bits needed to encode a character using this scheme?
Bottom-Up Approach

• This bottom up approach is known as **Huffman coding**
Bottom-Up Approach

- This bottom up approach is known as Huffman coding

- Huffman coding produces a provably optimal symbol code in terms of expected number of bits per character, R
Bottom-Up Approach

- This bottom up approach is known as Huffman coding.

- Huffman coding produces a provably optimal symbol code in terms of expected number of bits per character, \(R \).

- The expected number of bits per character achieved by Huffman coding can be bounded in terms of the entropy:

\[
H(A_1, A_2, \ldots, A_n) \leq R(A_1, A_2, \ldots, A_n) \leq H(A_1, A_2, \ldots, A_n) + 1
\]
Bound on Information Rate

- Recall that the entropy is the average information content of a set of events A_1, \ldots, A_n that partition Ω

$$H(A_1, \ldots, A_n) = \sum_{i=1}^{n} P(A_i)I(A_i) = \sum_{i=1}^{n} P(A_i) \log_2 \left(\frac{1}{P(A_i)} \right)$$
Bound on Information Rate

• Recall that the entropy is the average information content of a set of events A_1, \ldots, A_n that partition Ω

$$H(A_1, \ldots, A_n) = \sum_{i=1}^{n} P(A_i) I(A_i) = \sum_{i=1}^{n} P(A_i) \log_2 \left(\frac{1}{P(A_i)} \right)$$

• In the previous example, the entropy is about 1.93 (verify this on your own!) so 1.97 is pretty close
Examples of Huffman Coding

• Consider a uniform character frequency distribution
 \[P(A) = 0.25 \quad P(C) = 0.25 \]
 \[P(B) = 0.25 \quad P(D) = 0.25 \]

• How could we generate a Huffman code?
Examples of Huffman Coding

- Consider a uniform character frequency distribution
 \[P(A) = 0.25 \quad P(C) = 0.25 \]
 \[P(B) = 0.25 \quad P(D) = 0.25 \]

- How could we generate a Huffman code?
- What is the entropy?
Examples of Huffman Coding

• Consider a uniform character frequency distribution

 \[
 \begin{align*}
 P(A) &= 0.25 \\
 P(B) &= 0.25 \\
 P(C) &= 0.25 \\
 P(D) &= 0.25
 \end{align*}
 \]

• How could we generate a Huffman code?
• What is the entropy?
• How does this compare to the expected number of bits per character?
Examples of Huffman Coding

• Consider a uniform character frequency distribution
 \[P(A) = 0.25 \quad P(C) = 0.25 \]
 \[P(B) = 0.25 \quad P(D) = 0.25 \]

• How could we generate a Huffman code?
• What is the entropy?
• How does this compare to the expected number of bits per character? (Nice powers of 2 again…)}
Exercise

• Consider the following character frequency distribution
 \[
 \begin{align*}
 P(A) &= 0.45 & P(D) &= 0.05 \\
 P(B) &= 0.15 & P(E) &= 0.10 \\
 P(C) &= 0.20 & P(F) &= 0.05
 \end{align*}
 \]

• Derive the following symbol codes and calculate the expected bits per character of each
 a) An optimal fixed length code
 b) A prefix code derived using the top-down approach
 c) A prefix code derived using Huffman coding