CS 112: Modeling Uncertainty in Information Systems

Prof. Jenn Wortman Vaughan April 25, 2012 Lecture 8

Reminders & Announcements

- The midterm review sessions will be held on Friday after all, led by guest lecturer Eunice Chen
- Because of the scheduling confusion, you are welcome to attend either section on Friday (check the class website for the section locations)
- There will be no graded in-class exercise in the Friday sections this week, just review for the exam

Reminders & Announcements

- The course midterm is one week from today in class
- The exam will cover all of Chapters 1 and 2, plus 4.2 (so everything through the middle of today's lecture)
- One double-sided sheet of hand-written notes is allowed
- You may not use any other notes, books, **calculators**, cell phones, etc.
- Best way to prep is to practice problems from the book

Reminders & Announcements

- Homework 2 is due on Monday
- Homework 1 will be returned in section on Friday
- Solutions to homework 1 are available on Piazza

Today

A bit more about joint PMFs

- Finishing up our sample mean example
- Covariance and correlation

Information theory

• Measuring information

Independence

- X and Y are independent if and only if for all *k* and *l*, the events {X=*k*} and {Y=*l*} are independent.
- In other words, X and Y are independent if and only if for all *k* and *l*,

$$\mathbf{p}_{\mathbf{X},\mathbf{Y}}(k, l) = \mathbf{p}_{\mathbf{X}}(k) \mathbf{p}_{\mathbf{Y}}(l)$$

• Can be extended to more than two random variables in the natural way

Why is independence useful?

If $X_1, X_2, ..., X_n$ are all independent, then

$$\mathbf{E}[\mathbf{X}_1\mathbf{X}_2...\mathbf{X}_n] = \mathbf{E}[\mathbf{X}_1]\mathbf{E}[\mathbf{X}_2]...\mathbf{E}[\mathbf{X}_n]$$

Why is independence useful?

If $X_1, X_2, ..., X_n$ are all independent, then

$$\mathbf{E}[\mathbf{X}_1\mathbf{X}_2\ldots\mathbf{X}_n] = \mathbf{E}[\mathbf{X}_1]\mathbf{E}[\mathbf{X}_2]\ldots\mathbf{E}[\mathbf{X}_n]$$

(but it is possible for this to hold even if $X_1, X_2, ..., X_n$ are not independent... see the example on Piazza)

Why is independence useful?

If $X_1, X_2, ..., X_n$ are all independent, then

 $var(X_1 + X_2 + ... + X_n) = var(X_1) + var(X_2) + ... + var(X_n)$

The Sample Mean

Suppose we would like to estimate the president's approval rating. We ask *n* random voters whether or not they approve of the president, and use the fraction of voters who say that they approve as our estimate.

How accurate is our estimate as a function of *n*?

The Sample Mean

Suppose we would like to estimate the president's approval rating. We ask *n* random voters whether or not they approve of the president, and use the fraction of voters who say that they approve as our estimate.

How accurate is our estimate as a function of *n*?

We will examine this problem in more detail later in the course...

Covariance and Correlation

Covariance is a notion that measures the strength and direction of the relationship between two variables.

Covariance is a notion that measures the strength and direction of the relationship between two variables.

Experiment: Choose a random UCLA student.

• Let X be his height and Y be his weight. These have positive covariance or are positively correlated.

Covariance is a notion that measures the strength and direction of the relationship between two variables.

Experiment: Choose a random UCLA student.

- Let X be his height and Y be his weight. These have positive covariance or are positively correlated.
- Let X be the number of courses he is taking and Y be the average number of hours he sleeps each night. These have negative covariance or are negatively correlated.

Covariance is a notion that measures the strength and direction of the relationship between two variables.

Experiment: Choose a random UCLA student.

- Let X be his height and Y be his weight. These have positive covariance or are positively correlated.
- Let X be the number of courses he is taking and Y be the average number of hours he sleeps each night. These have negative covariance or are negatively correlated.
- Let X be his height and Y be the last digit of his UID. These have (roughly) zero covariance or are uncorrelated.

Formally, the covariance of two random variables X and Y is defined as

cov(X, Y) = E[(X-E[X])(Y-E[Y])]

Formally, the covariance of two random variables X and Y is defined as

cov(X, Y) = E[(X-E[X])(Y-E[Y])]= E[XY] - E[X]E[Y]

Formally, the covariance of two random variables X and Y is defined as

cov(X, Y) = E[(X-E[X])(Y-E[Y])]= E[XY] - E[X]E[Y]

Convince yourself at home that these are equal!!

Formally, the covariance of two random variables X and Y is defined as

cov(X, Y) = E[(X-E[X])(Y-E[Y])]= E[XY] - E[X]E[Y]

• What is cov(X, X)?

Formally, the covariance of two random variables X and Y is defined as

cov(X, Y) = E[(X-E[X])(Y-E[Y])]= E[XY] - E[X]E[Y]

- What is cov(X, X)?
- Suppose X and Y are independent. What is cov(X, Y)?

Formally, the covariance of two random variables X and Y is defined as

cov(X, Y) = E[(X-E[X])(Y-E[Y])]= E[XY] - E[X]E[Y]

- What is cov(X, X)?
- Suppose X and Y are independent. What is cov(X, Y)?
- Suppose cov(X, Y) = 0. Are X and Y independent?

• Let X be a random variable taking on values 1 and -1 with equal probability, and let Y = -X. What is cov(X,Y)?

- Let X be a random variable taking on values 1 and -1 with equal probability, and let Y = -X. What is cov(X,Y)?
- Let X be a random variable taking on values 100 and -100 with equal probability, and let Y = -X. What is cov(X,Y)?

- Let X be a random variable taking on values 1 and -1 with equal probability, and let Y = -X. What is cov(X,Y)?
- Let X be a random variable taking on values 100 and -100 with equal probability, and let Y = -X. What is cov(X,Y)?
- The correlation coefficient is a normalized version of covariance that is always between -1 and 1:

 $\frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}}$

X = number of ice cream cones sold in a day Y = number of deaths from drowning in a day

X and Y are correlated... therefore ice cream causes drowning? Or drowning causes increased ice cream sales?

X = number of ice cream cones sold in a day Y = number of deaths from drowning in a day

X and Y are correlated... therefore ice cream causes drowning? Or drowning causes increased ice cream sales?

More likely explanation: Both X and Y tend to be higher on summer days.

- X might cause Y
- Y might cause X
- Z might cause X and Y
- Some combination of these

- X might cause Y
- Y might cause X
- Z might cause X and Y
- Some combination of these
- Or maybe the observed "relationship" is a coincidence or very complex and indirect

• Information theory is the math behind communication, i.e., how we represent and transmit information

- Information theory is the math behind communication, i.e., how we represent and transmit information
- Uses of information theory:
 - Measuring information content
 - Compressing data (text, videos, images, etc.)
 - Communicating without errors over noisy communication channels (phone lines, disk drives, etc.)

- Information theory is the math behind communication, i.e., how we represent and transmit information
- Uses of information theory:
 - Measuring information content
 - Compressing data (text, videos, images, etc.)
 - Communicating without errors over noisy communication channels (phone lines, disk drives, etc.)
- We'll start by discussing how to measure information content, and then see how those ideas apply to compression

Probability & Information

- Probability and information are inversely related
- Less probable events have greater information content
Probability & Information

- Probability and information are inversely related
- Less probable events have greater information content
 - > The sun came up this morning.

Probability & Information

- Probability and information are inversely related
- Less probable events have greater information content
 - > The sun came up this morning.
 - There will be a problem about the total expectation theorem on the midterm.

Probability & Information

- Probability and information are inversely related
- Less probable events have greater information content
 - > The sun came up this morning.
 - There will be a problem about the total expectation theorem on the midterm.
 - ➤ The answer to problem 2 is 1024.

Desirable Properties of Information

 Intuitively, if P(A) = 1, the information gained from learning A should be zero, while the information gained from learning A^c should be infinite

Desirable Properties of Information

- Intuitively, if P(A) = 1, the information gained from learning A should be zero, while the information gained from learning A^c should be infinite
- If A and B are independent, then we would like it to be the case that $I(A \cap B) = I(A) + I(B)$

Desirable Properties of Information

- Intuitively, if P(A) = 1, the information gained from learning A should be zero, while the information gained from learning A^c should be infinite
- If A and B are independent, then we would like it to be the case that $I(A \cap B) = I(A) + I(B)$
- These criteria can be satisfied by defining

$$I(A) = \log_2\left(\frac{1}{P(A)}\right)$$

Information Content

• Suppose we flip a fair coin. Let A be the event that the coin is heads. What is I(A)? What is I(A^c)?

Information Content

- Suppose we flip a fair coin. Let A be the event that the coin is heads. What is I(A)? What is I(A^c)?
- Suppose we generate a sequence of *k* bits uniformly at random. What is the information content of the particular sequence that we generate?

Information Content

- Suppose we flip a fair coin. Let A be the event that the coin is heads. What is I(A)? What is I(A^c)?
- Suppose we generate a sequence of *k* bits uniformly at random. What is the information content of the particular sequence that we generate?
- Based on this intuition, a unit of information is often referred to as one bit

Consider four mutually exclusive and exhaustive events, called A, B, C, and D. Suppose I know which one of these events contains the true outcome.

How many yes/no questions would you have to ask me to identify that event?

Consider four mutually exclusive and exhaustive events, called A, B, C, and D. Suppose I know which one of these events contains the true outcome.

How many yes/no questions would you have to ask me to identify that event?

Correction: There was a small typo in what was written on the board here during class! The question at the root node should have asked if the outcome is in $A \cup B$, not $A \cap B$.

Suppose P(A) = 1/2, P(B) = 1/4, and P(C) = P(D) = 1/8.

How many yes/no questions would you have to ask me to identify the event containing the outcome on expectation?

Suppose P(A) = 1/2, P(B) = 1/4, and P(C) = P(D) = 1/8.

How many yes/no questions would you have to ask me to identify the event containing the outcome on expectation?

Information of an event \approx number of questions that we need to ask to determine that the outcome is in that event

Entropy

• The average information content of a set of events $A_1, ..., A_n$ that partition Ω is called the entropy

$$H(A_1,...,A_n) = \sum_{i=1}^n P(A_i) \log_2\left(\frac{1}{P(A_i)}\right)$$

• Entropy ≈ number of questions that we need to ask to determine on expectation