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Reminders & Announcements 

•  Homework 2 was posted on the website last week and is 
due in class on Monday, April 30 

•  Solutions to homework 1 are available on Piazza (login 
required) 



Reminders & Announcements 

•  The midterm is coming up on Wednesday, May 2 (one 
week from this Wednesday!) 

•  It will cover everything through the first half of 
Wednesday’s class (including correlation and 
covariance) 

•  We’ll start talking about the application of probability to 
data compression on Wednesday (and homework 3 will 
have a related programming component) but this will 
not be on the exam 



Reminders & Announcements 

•  There will be no discussion section this Friday, but 
Jacob will hold several review sessions for the midterm 
on Wednesday and Thursday 

 If you haven’t emailed Jacob your availability yet, 
do it by the end of the day today!! 



Today... 

•  Conditional PMFs 
•  Conditional expectation 
•  The Total Expectation Theorem (divide & conquer) 

•  Independence of random variables 



Conditioning 

•  The conditional PMF of X given Y is denoted pX|Y.  For 
any values k of X and l of Y, 

pX|Y(k | l) = P({X=k}|{Y=l}) = P(X=k | Y=l) 

•  We can compute this PMF using the definition of 
conditional probability 



Conditioning 

Conditional PMFs frequently give us a convenient method 
of calculating joint PMFs.  Using the multiplication rule, 

pX,Y(k,l) = pX(k)pY|X(l|k) = pY(l)pX|Y(k|l) 



Conditioning 

Conditional PMFs frequently give us a convenient method 
of calculating joint PMFs.  Using the multiplication rule, 

pX,Y(k,l) = pX(k)pY|X(l|k) = pY(l)pX|Y(k|l) 

•  Example: If my computer has a virus, which is true with 
probability 0.2, my anti-virus program detects it with 
probability 0.7.  Otherwise, the program incorrectly 
identifies a virus with probability 0.1. 

 Let X and Y be binary variables that are 1 if my computer 
has a virus and if the program says it has a virus 
respectively.  What is pX,Y? 



Divide & Conquer: Total Probability 

A divide & conquer technique to compute marginals: 

€ 

pY (l) = pX ,Y (k, l)
k
∑ = pX (k)pY |X (l | k)

k
∑



Divide & Conquer: Total Probability 

A divide & conquer technique to compute marginals: 

•  Example: If my computer has a virus, which is true with 
probability 0.2, my anti-virus program detects it with 
probability 0.7.  Otherwise, the program incorrectly 
identifies a virus with probability 0.1. 

 Let X and Y be binary variables that are 1 if my computer 
has a virus and if the program says it has a virus 
respectively.  What is pY? 

€ 

pY (l) = pX ,Y (k, l)
k
∑ = pX (k)pY |X (l | k)

k
∑



Conditioning 

We can condition random variables on events too.  For a 
random variable X and event A associated with the same 
experiment, 

pX|A(k) = P(X=k | A) = P({X=k}| A) 



Conditioning 

We can condition random variables on events too.  For a 
random variable X and event A associated with the same 
experiment, 

pX|A(k) = P(X=k | A) = P({X=k}| A) 

Example: X is “sum of two die rolls”, A = “first roll is 1” 



Conditioning 

We can condition random variables on events too.  For a 
random variable X and event A associated with the same 
experiment, 

pX|A(k) = P(X=k | A) = P({X=k}| A) 

Example: X is “sum of two die rolls”, A = “first roll is 1” 

Nothing fancy here.  All of the same reasoning applies. 



Conditioning 

We can condition random variables on events too.  For a 
random variable X and event A associated with the same 
experiment, 

pX|A(k) = P(X=k | A) = P({X=k}| A) 

Example: X is “sum of two die rolls”, A = “first roll is 1” 

Nothing fancy here.  All of the same reasoning applies. 

Remember: All of this is just notation. When in doubt, think 
about the underlying events. 



Conditional Expectation 

We can define a conditional version of expectation: 

€ 

E[X |Y = l] = ???



Conditional Expectation 

We can define a conditional version of expectation: 

€ 

E[X |Y = l] = kpX |Y (
k
∑ k | l)



Conditional Expectation 

We can define a conditional version of expectation: 

For any function g: 

€ 

E[X |Y = l] = kpX |Y (
k
∑ k | l)

€ 

E[g(X) |Y = l] = ???



Conditional Expectation 

We can define a conditional version of expectation: 

For any function g: 

€ 

E[X |Y = l] = kpX |Y (
k
∑ k | l)

€ 

E[g(X) |Y = l] = g(k)pX |Y (
k
∑ k | l)



Conditional Expectation 

We can define a conditional version of expectation: 

For any function g: 

Expectations can be conditioned on events A too. 

€ 

E[X |Y = l] = kpX |Y (
k
∑ k | l)

€ 

E[g(X) |Y = l] = g(k)pX |Y (
k
∑ k | l)



Divide & Conquer: Total Expectation 

The Total Expectation Theorem says that for any random 
variables X and Y, 

€ 

E[X] = pY (l)
l
∑ E[X |Y = l]



Divide & Conquer: Total Expectation 

The Total Expectation Theorem says that for any random 
variables X and Y, 

More generally, for any disjoint events A1, …, An that form a 
partition of Ω, 

€ 

E[X] = pY (l)
l
∑ E[X |Y = l]

€ 

E[X] = P(Ai)E[X | Ai]
i=1

n

∑



Divide & Conquer: Total Expectation 

The Total Expectation Theorem says that for any random 
variables X and Y, 

More generally, for any disjoint events A1, …, An that form a 
partition of Ω, 

We could prove this using the multiplication rule and the 
definition of conditional expectation – Try this at home! 

€ 

E[X] = pY (l)
l
∑ E[X |Y = l]

€ 

E[X] = P(Ai)E[X | Ai]
i=1

n

∑



Divide & Conquer: Total Expectation 

Let X be a geometric random variable with parameter p.  
What is E[X]? 



Independence of Random Variables 



Independence 

•  Recall that events A and B are independent if and only if  
P(A ∩ B) = P(A) P(B) 

•  If P(B) > 0, this condition is equivalent to 
P(A | B) = P(A) 

•  If P(A) > 0, it is equivalent to 
P(B | A) = P(B) 

To prove or disprove independence, it is enough to prove or 
disprove any one of these conditions. 



Independence 

•  X and Y are independent if and only if for all k and l 
pX,Y(k,l) = pX(k) pY(l) 



Independence 

•  X and Y are independent if and only if for all k and l 
pX,Y(k,l) = pX(k) pY(l) 

•  This is equivalent to showing that for all k, l s.t. pY(l)>0 
pX(k) = pX|Y(k | l) 



Independence 

•  X and Y are independent if and only if for all k and l 
pX,Y(k,l) = pX(k) pY(l) 

•  This is equivalent to showing that for all k, l s.t. pY(l)>0 
pX(k) = pX|Y(k | l) 

•  This is equivalent to showing that for all k, l s.t. pX(k)>0 
pY(l) = pY|X(l | k) 



Independence 

•  X and Y are independent if and only if for all k and l 
pX,Y(k,l) = pX(k) pY(l) 

•  This is equivalent to showing that for all k, l s.t. pY(l)>0 
pX(k) = pX|Y(k | l) 

•  This is equivalent to showing that for all k, l s.t. pX(k)>0 
pY(l) = pY|X(l | k) 

To prove or disprove independence, it is enough to prove or 
disprove any one of these conditions. 



Independence 

 Are X and Y independent?  How can you tell? 

l1 l2 l3 l4 

k1 0.05 0.15 0 0.2 

k2 0.025 0.075 0 0.1 

k3 0.05 0.15 0 0.2 

X 

Y 



Independence 

 Columns are multiples of each other, which implies that  
pX|Y(k | l) is the same for all l 

l1 l2 l3 l4 

k1 0.05 0.15 0 0.2 

k2 0.025 0.075 0 0.1 

k3 0.05 0.15 0 0.2 

X 

Y 



Independence 

It is easy to show that if X and Y are independent, then 

E[XY] = E[X] E[Y] 



Independence 

It is easy to show that if X and Y are independent, then 

E[XY] = E[X] E[Y] 

Note that this is not true in general, though it can hold in 
some cases even if X and Y are not independent.  

(See the example on Piazza…) 



Independence 

The definition of independence can be extended in the 
natural way to sets of more than two random variables 

pX,Y,Z(k, l, m) = pX(k) pY(l) pZ(m) 



Independence 

The definition of independence can be extended in the 
natural way to sets of more than two random variables 

pX,Y,Z(k, l, m) = pX(k) pY(l) pZ(m) 

If X, Y, and Z are independent, then any three random 
variables of the form f(X), g(Y), and h(Z) would be 
independent too. 



Independence 

The definition of independence can be extended in the 
natural way to sets of more than two random variables 

pX,Y,Z(k, l, m) = pX(k) pY(l) pZ(m) 

If X, Y, and Z are independent, then any three random 
variables of the form f(X), g(Y), and h(Z) would be 
independent too. 

If X1, X2, …, Xn are independent, then 

E[X1 X2 … Xn] = E[X1] E[X2] … E[Xn]  



One more useful fact… 

If X1, X2, …, Xn are independent, then 

var(X1 + X2 + … + Xn) = var(X1) + var(X2) + … + var(Xn)  



One more useful fact… 

If X1, X2, …, Xn are independent, then 

var(X1 + X2 + … + Xn) = var(X1) + var(X2) + … + var(Xn)  

This also is not true in general – need independence! 



The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

How accurate is our estimate as a function of n? 



The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

How accurate is our estimate as a function of n? 

(We’ll finish this example at the start of the next class…) 


