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Reminders & Announcements 

•  Homework 2 will be posted on the course website by 
tomorrow and will be due on Monday, April 30 

•  You should be able to start the first half of the problems 
after this class and the rest after Monday’s class 



Today 

•  Expectation of a function of a random variables 
•  Variance 

•  Joint probability mass functions 
•  Conditional probability mass functions 



Functions of Random Variables 

•  If X is a random variable, and f is a function, then Y=f (X) 
is also a random variable 
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Functions of Random Variables 

•  If X is a random variable, and f is a function, then Y=f (X) 
is also a random variable 

•  How can we calculate pY(l) for some value l? 

•  Suppose X is equally likely to take on any value in the set 
{-2, -1, 0, 1, 2} and Y = |X|.  What are pX and pY? 



Expected Value of Functions of RVs 

•  Let X be a random variable and let Y=f (X).  What is E[Y]? 



Expected Value of Functions of RVs 

•  Let X be a random variable and let Y=f (X).  What is E[Y]? 

Can compute E[Y] without computing pY directly!  



Expected Value of Functions of RVs 

•  Let X be a random variable and let Y=f (X).  What is E[Y]? 

Can compute E[Y] without computing pY directly!  

•  Let X be a random variable and suppose Y = aX+b for 
scalars a and b.  What is E[Y]? 



Variance 



Variance 

The variance of a random variable measures the dispersion 
of X around its mean.  Let µ = E[X].  Then 

var(X) = E[(X-µ)2] = E[X2] – µ2 
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Variance 

The variance of a random variable measures the dispersion 
of X around its mean.  Let µ = E[X].  Then 

var(X) = E[(X-µ)2] = E[X2] – µ2 

•  Verify on your own that these expressions are equivalent!! 
•  Note that the variance is never negative. (When is it zero?) 

The standard deviation of X is denoted σX, and is the square 
root of the variance. σX has the same units as X. 



Computing Variance 

 With probability 0.6 there is low traffic and it takes me 30 
minutes to get to work.  The rest of the time there is high 
traffic and it takes me 50 minutes.  Let X be the number of 
minutes of my commute.   

What is E[X]?  What is var(X)? What is σX? 



Computing Variance 

 Let X be a random variable, and let Y = aX + b for some 
scalar values a and b.   

 We know that E[Y] = aE[X] + b. 

 What is var(Y)? What about σY? 



Variance of the Bernoulli 

Consider a Bernoulli random variable X with parameter p. 

We know that the probability mass function is defined as: 
pX(1) = p 

   pX(0) = 1-p 

What is var(X)?  What is σX? 



Multiple Random Variables 



Joint PMFs 

•  Let X and Y be discrete random variables associated with 
the same experiment.  The joint PMF of X and Y is 
denoted pX,Y.  For any values k of X and l of Y, 

pX,Y(k, l) = P({X=k}∩{Y=l}) = P(X=k, Y=l)  
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•  Experiment: Choose a random person in the class. 
 X = person’s height, Y = person’s weight. 



Joint PMFs 

•  Let X and Y be discrete random variables associated with 
the same experiment.  The joint PMF of X and Y is 
denoted pX,Y.  For any values k of X and l of Y, 

pX,Y(k, l) = P({X=k}∩{Y=l}) = P(X=k, Y=l)  

•  Examples: 
•  Experiment: Choose a random person in the class. 
 X = person’s height, Y = person’s weight. 
•  Experiment: Run a randomized algorithm. 
 X = execution time, Y = amount of memory used. 



Tabular Representation 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 

X 

Y 



Tabular Representation 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 

X 

Y 

pX,Y(k2, l3) =  0.1 



Tabular Representation 

Is this a valid joint PMF? How do we know? 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 

X 

Y 

pX,Y(k2, l3) =  0.1 



Marginal PMFs 

We can compute the PMFs of X and Y from their joint PMF: 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 



Marginal PMFs 

We can compute the PMFs of X and Y from their joint PMF: 

€ 

pX (k) = pX ,Y (k, l)
l
∑

l1 l2 l3 l4 pX(k) 

k1 0.1 0.1 0 0.2 0.4 

k2 0.05 0.05 0.1 0 0.2 

k3 0 0.1 0.2 0.1 0.4 



Marginal PMFs 

We can compute the PMFs of X and Y from their joint PMF: 

€ 

pX (k) = pX ,Y (k, l)
l
∑

€ 

pY (l) = pX ,Y (k, l)
k
∑

l1 l2 l3 l4 pX(k) 

k1 0.1 0.1 0 0.2 0.4 

k2 0.05 0.05 0.1 0 0.2 

k3 0 0.1 0.2 0.1 0.4 

pY(l) 0.15 0.25 0.3 0.3 



Expectation 

Expectation of a function: Let X and Y be random variables, 
and f be an arbitrary function of X and Y.  Then 

€ 

E[ f (X,Y )] = f (k,l)pX ,Y (k,l)
l
∑

k
∑



Expectation 

Expectation of a function: Let X and Y be random variables, 
and f be an arbitrary function of X and Y.  Then 

Linearity of expectation: Let X and Y be random variables. 
Then for any scalars a, b, and c,  

E[aX + bY + c] = ??? 

€ 

E[ f (X,Y )] = f (k,l)pX ,Y (k,l)
l
∑

k
∑



Expectation 

Expectation of a function: Let X and Y be random variables, 
and f be an arbitrary function of X and Y.  Then 

Linearity of expectation: Let X and Y be random variables. 
Then for any scalars a, b, and c,  

E[aX + bY + c] = aE[X] + bE[Y] + c. 

€ 

E[ f (X,Y )] = f (k,l)pX ,Y (k,l)
l
∑

k
∑



Three or More Random Variables 

All of this extends to more than two random variables too. 



Three or More Random Variables 

All of this extends to more than two random variables too. 

•  Joint PMFs: 
  pX,Y,Z(k, l, m) = P(X=k, Y=l, Z=m)  
         = P({X=k}∩{Y=l}∩{Z=m}) 



Three or More Random Variables 

All of this extends to more than two random variables too. 

•  Joint PMFs: 
  pX,Y,Z(k, l, m) = P(X=k, Y=l, Z=m)  
         = P({X=k}∩{Y=l}∩{Z=m}) 

•  Expectation of a function: 

 etc. 

€ 

E[ f (X,Y,Z)] = f (k, l,m)pX ,Y ,Z (k, l,m)
m
∑

l
∑

k
∑



Three or More Random Variables 

 An office decides to do a gift exchange for their annual 
holiday party.  Everyone in the office purchases a gift and 
places it in a box.  Each person is then given a random gift 
from the box.  What is the expected number of people who 
get back the gift that they purchased? 



Three or More Random Variables 

 An office decides to do a gift exchange for their annual 
holiday party.  Everyone in the office purchases a gift and 
places it in a box.  Each person is then given a random gift 
from the box.  What is the expected number of people who 
get back the gift that they purchased? 

Note that we used the fact that the expectation of a sum of 
random variables is equal to the sum of their expectations. 

Independence is not required for this! 



Three or More Random Variables 

•  What is the expected value of a binomial random variable 
with parameters p and n? 



Conditioning 

•  The conditional PMF of X given Y is denoted pX|Y.  For 
any values k of X and l of Y, 

pX|Y(k | l) = P({X=k}|{Y=l}) = P(X=k | Y=l) 



Conditioning 

•  The conditional PMF of X given Y is denoted pX|Y.  For 
any values k of X and l of Y, 

pX|Y(k | l) = P({X=k}|{Y=l}) = P(X=k | Y=l) 

•  We can compute this PMF using the definition of 
conditional probability 



Conditioning 

•  We can compute conditional probabilities by normalizing 
the values in a particular row or column 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 



Conditioning 

•  We can compute conditional probabilities by normalizing 
the values in a particular row or column 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 

€ 

pX |Y (k | l2) =
pX ,Y (k,l2)
pY (l2)



Conditioning 

Conditional PMFs frequently give us a convenient method 
of calculating joint PMFs.  Using the multiplication rule, 

pX,Y(k,l) = pX(k)pY|X(l|k) = pY(l)pX|Y(k|l) 



Conditioning 

Conditional PMFs frequently give us a convenient method 
of calculating joint PMFs.  Using the multiplication rule, 

pX,Y(k,l) = pX(k)pY|X(l|k) = pY(l)pX|Y(k|l) 

(We’ll continue with some examples next time…) 


