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Reminders & Announcements 

•  Homework 4 is due one week from today 

•  Midterm regrade requests must be submitted by Monday 
Tuesday (Monday is a holiday!); see Piazza for 
information on the grading of problem 1 



Markov Chains 



Reasoning About Complex Scenarios 

•  The Naive Bayes algorithm works by exploiting 
independence assumptions, allowing us to efficiently 
reason about potentially complex scenarios 



Reasoning About Complex Scenarios 

•  The Naive Bayes algorithm works by exploiting 
independence assumptions, allowing us to efficiently 
reason about potentially complex scenarios 

•  Markov chains give us another way to do this when 
reasoning about temporal scenarios 



Reasoning About Complex Scenarios 

•  The Naive Bayes algorithm works by exploiting 
independence assumptions, allowing us to efficiently 
reason about potentially complex scenarios 

•  Markov chains give us another way to do this when 
reasoning about temporal scenarios 
•  The sequence of daily prices of a stock 



Reasoning About Complex Scenarios 

•  The Naive Bayes algorithm works by exploiting 
independence assumptions, allowing us to efficiently 
reason about potentially complex scenarios 

•  Markov chains give us another way to do this when 
reasoning about temporal scenarios 
•  The sequence of daily prices of a stock 
•  The sequence of websites a web surfer visits (PageRank) 



Reasoning About Complex Scenarios 

•  The Naive Bayes algorithm works by exploiting 
independence assumptions, allowing us to efficiently 
reason about potentially complex scenarios 

•  Markov chains give us another way to do this when 
reasoning about temporal scenarios 
•  The sequence of daily prices of a stock 
•  The sequence of websites a web surfer visits (PageRank) 
•  The number of packets in a network buffer over time 



Reasoning About Complex Scenarios 

•  The Naive Bayes algorithm works by exploiting 
independence assumptions, allowing us to efficiently 
reason about potentially complex scenarios 

•  Markov chains give us another way to do this when 
reasoning about temporal scenarios 
•  The sequence of daily prices of a stock 
•  The sequence of websites a web surfer visits (PageRank) 
•  The number of packets in a network buffer over time 
•  The sequence of words in an “English-looking” document 
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Markov Chains 

A Markov chain is specified by: 
•  A set of possible states S = {1, 2, …, m}, such that at 

each time t, the current state Xt ∈ S 
•  A distribution over the initial state X0 

•  A set of transition probabilities pi, j where 
pi, j = P(Xt+1 = j | Xt = i) 



A Simple Example 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

•  What are the states? 
•  What are the transition probabilities? 
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Representing Transition Probabilities 

There are multiple useful ways to represent the set of 
transition probabilities: 
•  Transition probability matrices 
•  Transition probability graphs 
 (also called state transition diagrams) 

•  The best representation depends on the problem you are 
trying to solve 



The Markov Property 

The key independence assumption we make is called the 
Markov property: For all times t, Xt+1 is conditionally 
independent of X1, X2, …, Xt-1 given Xt. 



The Markov Property 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

 Suppose that if the router remains offline for four straight 
days, I get it (temporarily) repaired, resetting it to the 
online state. 

 Can we still represent this experiment as a Markov chain? 
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n-Step Transitions 

•  We can compute the probability of any sequence of states 
using the multiplication rule and the Markov property 

•  We can efficiently compute the n-step transition 
probability, P(Xn = j | X0 = i), using the Total Probability 
Theorem, giving us the recursive formula 

€ 

P(Xn = j | X0 = i) = pk, j P(Xn−1 = k | X0 = i)
k=1

m

∑



n-Step Transitions 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

 P(X0 = 1 | X0 = 1) = 1    P(X0 = 2 | X0 = 1) = 0 
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n-Step Transitions 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

 P(X0 = 1 | X0 = 1) = 1    P(X0 = 2 | X0 = 1) = 0 
 P(X1 = 1 | X0 = 1) = 0.8   P(X1 = 2 | X0 = 1) = 0.2 
 P(X2 = 1 | X0 = 1) = 0.76   P(X2 = 2 | X0 = 1) = 0.24 
 P(X3 = 1 | X0 = 1) = 0.752   P(X3 = 2 | X0 = 1) = 0.248 
 P(X4 = 1 | X0 = 1) = 0.7504  P(X4 = 2 | X0 = 1) = 0.2496 
 P(X5 = 1 | X0 = 1) = 0.7501  P(X5 = 2 | X0 = 1) = 0.2499 
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My faulty router can be either online or offline.  If it is 
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offline the next day with probability 0.4. 
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n-Step Transitions 

My faulty router can be either online or offline.  If it is 
online one day, it will be online the next day with 
probability 0.8.  If it is offline one day, it will remain 
offline the next day with probability 0.4. 

 P(X0 = 1 | X0 = 2) = 0    P(X0 = 2 | X0 = 2) = 1 
 P(X1 = 1 | X0 = 2) = 0.6   P(X1 = 2 | X0 = 2) = 0.4 
 P(X2 = 1 | X0 = 2) = 0.72   P(X2 = 2 | X0 = 2) = 0.28 
 P(X3 = 1 | X0 = 2) = 0.744   P(X3 = 2 | X0 = 2) = 0.256 
 P(X4 = 1 | X0 = 2) = 0.7488  P(X4 = 2 | X0 = 2) = 0.2512 
 P(X5 = 1 | X0 = 2) = 0.7498  P(X5 = 2 | X0 = 2) = 0.2502 



Properties of States 



Accessibility 

•  State j is said to be accessible from state i if for some n ≥ 0, 
the n-step transition probability from i to j is positive. 



Recurrence vs. Transience 

•  State i is said to be recurrent if for every state j that is 
accessible from i, i is also accessible from j. 

•  If i is not recurrent, then it is said to be transient. 



Recurrence vs. Transience 

•  State i is said to be recurrent if for every state j that is 
accessible from i, i is also accessible from j. 

•  If i is not recurrent, then it is said to be transient. 

•  The set of all states accessible from a recurrent state form a 
recurrent class.  Note that all of the states in a recurrent 
class are accessible from each other. 
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stay within that recurrent class forever. 
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Recurrence vs. Transience 

•  If a Markov chain starts in a recurrent state, the state will 
stay within that recurrent class forever. 

•  If a (finite state) Markov chain starts in a transient state, 
the state will pass through zero or more additional transient 
states before ending up in a recurrent class. 

•  These ideas will allow us to answer questions about the 
long term behavior of Markov chains in the next class.  


