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Reminders & Announcements 

•  Homework 3 is due this Friday 

•  We will cover the algorithm that you will implement for 
Homework 4 in class on Monday 



Inference 
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Probability Theory 

•  So far, we have assumed the existence of a fully-specified 
probabilistic model that obeys the axioms of probability. 

•  The questions that we asked have had a unique right 
answer with respect to the model. 

•  A fair die is rolled three times.  What is the probability 
that all rolls are greater than three? 
•  If the time before a hard disk fails is modeled as an 

exponential random variable with mean λ, how likely is it 
to fail in the first two years? 
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Statistical Inference 

•  In statistical inference, we are given only observations. 

•  There may not always be a single “right” answer… 

•  Based on a collection of old email, how likely is it that 
this new email is spam? 

•  For the next two classes, we will discuss techniques that 
can be used to answer questions like this. 



Types of Inference 

Hypothesis testing:  Decide which of two or more 
hypotheses is most likely to true based on some data. 
•  Determine whether an email containing a particular set of 

words is more likely to be spam or not spam 
•  Given a student’s test score, decide if he studied or not 



Types of Inference 

Hypothesis testing:  Decide which of two or more 
hypotheses is most likely to true based on some data. 
•  Determine whether an email containing a particular set of 

words is more likely to be spam or not spam 
•  Given a student’s test score, decide if he studied or not 

Parameter estimation:  Have a model that is fully specified 
except some unknown parameters we need to estimate. 
•  Estimate the bias of a coin from a sequence of flips 
•  Estimate the fraction of the population who prefers 

candidate A to candidate B based on polling data 
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Hypothesis Testing 

Let D be the event that we observed some particular data 
•  D = event that I observed an email containing the words 

“ca$h” and “viagra” 

Let H1, …, Hk be disjoint and exhaustive events representing 
hypotheses we are choosing among 
•  H1 = event that the email is spam 
•  H2 = event that the email is not spam 

What is the most likely hypothesis given the data? 
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Maximum Likelihood 

•  Suppose that we know (or can compute) the probability     
P(D | Hi) of observing data D for each hypothesis Hi 

•  The maximum likelihood (ML) hypothesis is the 
hypothesis that makes the data most likely 

HML = argmaxi P(D | Hi) 



Maximum Likelihood 

When I take the freeway to work, there is a 60% chance that 
I hit traffic.  When I take back roads, there is a 30% chance 
that I hit traffic.  Suppose I tell you that I hit traffic on the 
way to work today.  What is the maximum likelihood 
hypothesis regarding the route I took? 
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One Potential Problem 

Suppose I tell you that I only take the freeway to work 5% of 
the time.  Does it still seem most likely that I took the 
freeway today? 

How can we incorporate this information into our reasoning? 
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Bayesian Reasoning 

•  If we know P(Hi) and P(D | Hi) for each i, we can use 
Bayes’ rule to compute P(Hi | D) for each hypothesis 

•  P(Hi) is often referred to as the prior probability of Hi while 
P(Hi | D) is referred to as the posterior probability  

•  The posterior probability is a refinement of our prior belief 
about each hypothesis in light of the observed data 
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Maximum a Posteriori 

•  The maximum a posteriori (MAP) hypothesis is the 
hypothesis with the maximum posterior probability 

HMAP = argmaxi P(Hi | D) = argmaxi P(D | Hi) P(Hi) 

 When is this the same as maximum likelihood? 



Maximum a Posteriori 

When I take the freeway to work, there is a 60% chance that 
I hit traffic.  When I take back roads, there is a 30% chance 
that I hit traffic.  I take the freeway 5% of the time.  
Suppose I tell you that I hit traffic on the way to work 
today.  What is the MAP hypothesis regarding the route I 
took? 



 A Very Quick Exercise… 

•  You decide to monetize your new website by displaying 
ads.  Visitors to your site are 75% UCLA students, 10% 
programmers, and 15% members of your immediate 
family.  Students click on your ad with probability 0.1.  
Programmers click on your ad with probability 0.05.  Your 
family members click on your ad with probability 0.4.   

•  A visitor comes to your site and clicks on an ad.  What is 
the maximum likelihood hypothesis regarding the visitor 
type? What is the MAP hypothesis? 
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Suppose that we would like to estimate the unknown bias p 
of a coin based on observations of the outcomes X1, …, Xn 
of n independent tosses of the coin 

 (This is just like our polling question…) 

 We can define analogs of both ML and MAP here 
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•  The maximum likelihood (ML) estimate is the parameter 
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Parameter Estimation 

•  The maximum likelihood (ML) estimate is the parameter 
value that makes the data most likely 

•  If X1, …, Xn are independent observations, then 

“log 
likelihood” 

€ 

ˆ θ = argmax
θ

P(Xi = ki;θ )
i=1

n
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Parameter Estimation 

Suppose that we would like to estimate the unknown bias p 
of a coin based on observations of the outcomes X1, …, Xn 
of n independent tosses of the coin 

 What is the maximum likelihood estimate? 



Maximum Likelihood is Consistent 

Consistency: If θ is the true value of the parameter and θn is 
the maximum likelihood estimate after n observations, then 
for any ε > 0, 
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lim
n→∞

P θn −θ ≥ε( ) = 0



Maximum Likelihood is Consistent 

Consistency: If θ is the true value of the parameter and θn is 
the maximum likelihood estimate after n observations, then 
for any ε > 0, 

 Translation: As the number of observations gets large, the 
maximum likelihood estimate gets closer and closer to the 
true parameter value – clearly desirable for an estimate. 

€ 

lim
n→∞

P θn −θ ≥ε( ) = 0



MAP Parameter Estimation 

•  We can define an analog of MAP for parameter estimation 
too, though we won’t go into the details 

•  Can be useful if the amount of data we have observed is 
relatively small 

•  Requires that we have a prior probability distribution over 
values of the parameter θ 


