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Reminders & Announcements 

•  Homework 3 was posted on Monday and is due on 
Friday, May 18 

•  Prof. Vaughan will be traveling tomorrow and will not 
hold office hours this week 



Today… 

•  Joint probability density functions 
•  Conditional probability density functions 

 We’ll go over many of the similarities between joint & 
conditional PDFs and joint & conditional PMFs, but will 
leave others for the reading. 

 See Chapter 3 for full details! 
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•  For any a, any b ≥ a, any c, and any d ≥ c, 

€ 

P(a ≤ X ≤ b and c ≤Y ≤ d) = fX ,Y (k, l)dkdl
a

b
∫c

d
∫



Marginalization 

€ 

pX (k) = pX ,Y (k, l)
l
∑

•  Discrete case: 



Marginalization 

€ 

pX (k) = pX ,Y (k, l)
l
∑

€ 

fX (k) = fX ,Y (k,l)−∞

∞
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•  Discrete case: 

•  Continuous case: 

•  This can be used to derive an analog to Bayes’ rule too 



Joint CDFs 

€ 

FX ,Y (k,l) = P(X ≤ k,Y ≤ l)

•  Same definition for discrete and continuous: 

 though how we calculate this will differ… 



Example: Circular Uniform PDF 
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likely to hit any point (k, l) on the target. Let X and Y 
denote the coordinates of the point that you hit. 
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Independence 
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•  Analogs of the other independence tests can be used in the 
continuous case too 
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Independence 

Suppose you throw a dart at a circular target of radius r.  
Assume that you always hit the target, and you are equally 
likely to hit any point (k, l) on the target. Let X and Y 
denote the coordinates of the point that you hit. 

 Are X and Y independent? 

 What if the target was a square? 
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k
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Conditional Expectation 

 When X is discrete:   

 When X is continuous: 

 For an event A, E[X | A] is defined similarly... 

€ 

E[X |Y = l] = k
k
∑ pX |Y (k | l)

€ 

E[X |Y = l] = k
−∞

∞

∫ fX |Y (k | l)dk



Total Expectation Theorem 

 For events A1, ..., An that partition the sample space: 

€ 

E[X] = P(Ai)
i=1

n

∑ E[X | Ai]
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 For events A1, ..., An that partition the sample space: 

 When Y is discrete:   

 When Y is continuous: 

Total Expectation Theorem 

€ 

E[X] = pY (l)
l
∑ E[X |Y = l]

€ 

E[X] = fY (l)−∞

∞

∫ E[X |Y = l] dl
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 For events A1, ..., An that partition the sample space: 

 When Y is discrete:   

 When Y is continuous: 

These hold regardless of whether X is discrete or continuous 

Total Expectation Theorem 

€ 

E[X] = pY (l)
l
∑ E[X |Y = l]

€ 

E[X] = fY (l)−∞

∞

∫ E[X |Y = l] dl

€ 

E[X] = P(Ai)
i=1

n

∑ E[X | Ai]
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Searching a Sorted Linked List 

Consider a (very long) singly linked list with entries sorted 
in ascending order.  Although entries are in discrete 
positions in the list, we can approximate their locations as 
continuous values… 

X∈{1, 2, …, L} 

X∈[0, L] 0 L 



Searching a Sorted Linked List 

Let X be a random variable denoting the location of the last 
item we found.  Let Y denote the location of the next item 
that we need to search for.  We can either search for the 
next item starting at position 0 or starting at position X. 

X 0 L Y 
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Searching a Sorted Linked List 

Let X be a random variable denoting the location of the last 
item we found.  Let Y denote the location of the next item 
that we need to search for.  We can either search for the 
next item starting at position 0 or starting at position X. 

If X and Y are independent and uniform on [0, L], then what 
is the expected length of our search? 

X 0 L Y 



Searching a Sorted Linked List 

•  We could have solved this problem using discrete random 
variables, but using continuous random variables makes 
the math a little nicer and gets a good approximation 

•  You’ll see another example of this idea on homework 3 



Other Analogs 

•  There are continuous analogs of other ideas we have 
discussed too (the total probability theorem, linearity of 
expectation, etc.)  

•  Read Chapter 3 to familiarize yourself with these! 


