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Reminders & Announcements 

•  Homework 3 will be posted by the end of the day and is 
due on Friday, May 18 

•  This homework assignment will include both a written 
component and a programming component 

•  You can start the written component, but some of the 
problems require material from this Wednesday’s lecture 



Today 

Continuous random variables 
•  Probability density functions (the analog to PMFs) 
•  Cumulative distribution functions 

Common continuous random variables 
•  Uniform continuous random variables 
•  Exponential random variables 
•  Normal random variables 



Continuous Random Variables 

What if a random variable X can take on a continuum of 
different values? 
•  Exact execution time of a task 
•  Exact lifetime of a component 
•  Time between two requests to the Google server 
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What if a random variable X can take on a continuum of 
different values? 
•  Exact execution time of a task 
•  Exact lifetime of a component 
•  Time between two requests to the Google server 

PMFs don’t quite make sense anymore… 
•  Let X be a random variable whose value is drawn 

uniformly at random from [0,1].  What is P(X = 0.5)? 
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In place of the PMF, we introduce the probability density 
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∞
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The Probability Density Function 

For very small values of δ, we can approximate 

 This gives us a nice interpretation of fX(a) as the 
probability mass per unit length near a 
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The Probability Density Function 

For very small values of δ, we can approximate 

 This gives us a nice interpretation of fX(a) as the 
probability mass per unit length near a 

 Need to be careful with this interpretation though!!! Note 
that, for example, fX(a) can be bigger than 1… 

€ 

P(a ≤ X ≤ a +δ) = fX (k)dka

a+δ

∫ ≈ fX (a)δ
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Expectations 

Expectation and variance of continuous random variables are 
similar to the discrete case. 

€ 

E[X] = kfX (k)dk−∞

∞

∫

€ 

E[g(X)] = g(k) fX (k)dk−∞

∞

∫

€ 

var(X) = E[(X − E[X])2] = E[X 2] − (E[X])2
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Let X be a random variable whose value is drawn uniformly 
at random from the range [a, b] 
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Uniform PDFs 

Let X be a random variable whose value is drawn uniformly 
at random from the range [a, b] 

•  What is fX? What is E[X]? What is var(X)? 
•  What if X was chosen from the range (a, b) instead? 



Exponential Random Variables 

Exponential random variables model the amount of time 
until an incident of interest takes place 
•  Length of time before a message arrives at the computer 
•  Length of time before a light bulb burns out 
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Exponential Random Variables 

Exponential random variables model the amount of time 
until an incident of interest takes place 
•  Length of time before a message arrives at the computer 
•  Length of time before a light bulb burns out 

PDF: fX(k) = λe-λk 

E[X] = λ-1    var(X) = λ-2 
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Cumulative Distribution Functions 

A cumulative distribution function (CDF), denoted FX, 
“accumulates” probability up to a certain value of X 

FX(k) = P(X ≤ k) 

•  For discrete random variables, 

•  For continuous random variables,  

€ 

FX (k) = fX (t)dt−∞

k

∫ → fX (k) =
dFX
dk

(k)€ 

FX (k) = pX (t)
t≤k
∑



Cumulative Distribution Functions 

Consider a discrete random variable X 

    PMF:        
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Consider a discrete random variable X 

    PMF:       CDF: 



Cumulative Distribution Functions 

Consider a uniform continuous random variable X 
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Cumulative Distribution Functions 

Consider a uniform continuous random variable X 

Note that CDFs are always monotonically non-decreasing 



Exponential vs. Geometric 
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Exponential vs. Geometric 

Let X be an exponential random variable with fX(k) = λe-λk. 
FX(k) = 1 – e-λk 

Let Y be a geometric random variable with pY(k) = p(1-p)k-1. 
FY(k) = 1 – (1–p) ⎣k⎦ 

Suppose that we set p = 1 – e-λ… 



Exponential vs. Geometric 



Normal Random Variables 
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following PDF: 
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Standard Normal Random Variable 

The standard normal random variable is characterized by the 
following PDF: 

Things to notice: 
•  Maximized when x = 0 
•  Symmetric around 0 
•  Drops exponentially fast 

E[X] = 0 
Var(X) = 1 

€ 

fX (k) =
1
2π
e
−
1
2
k 2



Normal Random Variable 

A continuous random variable X is said to be normal or 
Gaussian if the PDF has the form: 
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Normal Random Variable 

A continuous random variable X is said to be normal or 
Gaussian if the PDF has the form: 

first term still just normalization 
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Normal Random Variable 

A continuous random variable X is said to be normal or 
Gaussian if the PDF has the form: 

Things to notice: 
•  Maximized when k = µ 
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Normal Random Variable 

A continuous random variable X is said to be normal or 
Gaussian if the PDF has the form: 
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Normal Random Variable 

A continuous random variable X is said to be normal or 
Gaussian if the PDF has the form: 
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Normal Random Variable 

A continuous random variable X is said to be normal or 
Gaussian if the PDF has the form: 

Things to notice: 
•  Maximized when k = µ 
•  Symmetric around µ 
•  Drops exponentially fast 
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Normal Random Variable 

A continuous random variable X is said to be normal or 
Gaussian if the PDF has the form: 

Things to notice: 
•  Maximized when k = µ 
•  Symmetric around µ 
•  Drops exponentially fast 

E[X] = µ 
Var(X) = σ2 

€ 

fX (k) =
1
2πσ

e
−
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Normal Random Variables 

E[X] = 3 

Var(X) = 0.5 

Var(X) = 1 

Var(X) = 2 



Examples 

 Normal random variables are very tractable analytically, 
and so are often used to as an approximate model in the 
natural sciences and the social sciences 

•  Measurement error or noise in an experiment 
•  The run time of a program 
•  A random student’s score on a standardized test (“bell 

curve grading”) 



Examples 

 Normal random variables are very tractable analytically, 
and so are often used to as an approximate model in the 
natural sciences and the social sciences 

•  Measurement error or noise in an experiment 
•  The run time of a program 
•  A random student’s score on a standardized test (“bell 

curve grading”) 

Could run times or student grades be exactly normal? 



Another Example: Sampling 

 Key fact: The sum or average X of a large number of 
independent and identically distributed random variables 
X1, X2, ... has a CDF that is approximately normal, 
regardless of the CDF of the individual random variables. 
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Another Example: Sampling 

 Key fact: The sum or average X of a large number of 
independent and identically distributed random variables 
X1, X2, ... has a CDF that is approximately normal, 
regardless of the CDF of the individual random variables. 

•  Example: X is the fraction of surveyed voters who 
approve of the president (sample mean). 

We’ll come back to this idea again... 


