
CS112: Modeling Uncertainty in Information Systems

Homework 4

Due Wednesday, May 30, 2pm (submitted via courseweb)

For this assignment, you will implement a naive Bayes classifier to distinguish between two
kinds of strings. The program will take as input 2 files of training strings (one for each of the two
types of strings) and 2 files of test strings. The file that a test string is in indicates the TRUE class
for that test string. The true classes will only be used to evaluate the accuracy of your classifier.

You will be writing the naive Bayes classifier itself. This should take in training strings and
their class labels, and then, when given a test string, output the posterior probability for each class
and the MAP class for that string. Your program will also report the classification accuracy over
all the test strings.

The assignment consists of four parts, each of which is described below. You will document
your results from parts 2, 3, and 4 in a brief write-up that will be turned in along with your code.

The C++ files and data files needed for this assignment are available on Piazza attached to the
note titled “Code for Homework 4.” The files are in an archive called naive bayes.tgz. To uncom-
press this in linux, you can use the command “tar xvfz naive bayes.tgz”. There is a Makefile
included; to compile the code, simply type “make” from the command line. There is only one .cpp
file so compilation is trivial. From the command line, it would be “g++ text classifier.cpp”.

Part I: Implement the Classifier

Complete the provided code to create a classifier that uses 26 features: the presence of each
letter (A to Z, ignoring the distinction between upper and lower case) in a string. You
must implement the classes Feature and NaiveBayesClassifier in the files feature.hpp and
naive bayes classifier.hpp. You can then run the classifier using text classifier.cpp (al-
ready implemented). To implement naive bayes classifier.hpp, you need to fill in the following:

• NaiveBayesClassifier() - This is the constructor. You should set up the private member
variable vector<Feature> m features here.

• addTrainingExample(int featurePresence, int classNumber) - Adds a train-
ing example to each of the features within the NaiveBayesClassifier using
Feature.addTrainingExample(int,int). This should also modify the counts for
computing the prior probability.

• getPriorProbability(int classNumber) - Returns the prior probability of the specified
class, P(C = classNumber), calculated using a maximum likelihood estimate from the train-
ing data.

• getLikelihood(int classNumber, string s) - Returns the likelihood, that is, the proba-
bility P(F1 = f1, F2 = f2, · · · , Fn = fn|C = classNumber) of the feature vector correspond-
ing to the string given the specified class.

1



• classify(string s) - Returns the MAP class for (i.e., classifies) the specified string, using
both getPriorProbability(· · · ) and getLikelihood(· · · ).

• getPosteriorProbability(int classNumber, string s) - Returns the posterior proba-
bility, P(C = classNumber|F1 = f1, F2 = f2, · · · , Fn = fn), of the specified class given
the specified string, using getPriorProbability(· · · ), getLikelihood(· · · ), and the Total
Probability Theorem.

You will also fill in three functions in the feature class:

• isFeaturePresent(string s) - Determines whether or not the feature occurs in the string.

• addTrainingExample(int featurePresence, int classNumber) - Updates the counts
that will be used to compute the probability of the feature given a class.

• getProbOfFeatureGivenClass(int featurePresence, int classNumber) - Returns the
probability that the feature is present in a string from the given class, calculated using a
maximum likelihood estimate with smoothing (adding one to each feature count in order to
avoid getting zero or infinite probabilities).

You must not change the signatures of any of the functions within

naive bayes classifier.hpp or feature.hpp. You may add functions to these files if you like.

You do not need to add anything to your write-up for this part.

Part II: Classify Cities

Using the data files in dat/cities, use your naive Bayes classifier to classify city names into 2
classes. You will perform 3 experiments:

(a.) US vs. Russia: use usCities100.txt and russiaCities100.txt as training data, and usCities-
Next50.txt and russiaCitiesNext50.txt as test data

(b.) Russia vs. other: use russiaCities100.txt and otherCities100.txt for training, and russiaCities-
Next50.txt and otherCitiesNext50.txt for testing

(c.) US vs. other: use usCities100.txt and otherCities100.txt as training data, and usCities-
Next50.txt and otherCitiesNext50.txt as test data.

The command line format for these experiments is:

./textClassifier class1-trainfile class2-trainfile class1-testfile

class2-testfile

Run the compiled text classifier program with no arguments for additional instructions.

There is a file within naive bayes.tgz called accuracy.txt. This contains the answer for part
a. Make sure that your accuracy scores agree with the ones in that file.

2



In your write-up, report the accuracy of the classifier for parts b and c.

Note that the code reports accuracy, i.e., the fraction of correctly-classified city names, but also
another metric, mean squared error. Accuracy only looks at whether the probability produced was
above or below 0.5. For mean squared error, we see how far the probability estimate was from the
correct answer. If the classifier reports P = .9 and the answer is 1, the error is (1 − .9)2. If the
answer is 0, the answer is (.9 − 0)2. The average of those (squared) distances is what’s reported.
Smaller is better.

Part III: Classify Tweets

Twitter provides a search ability which supports filtering recent “tweets” by subject, language, and
time (among other options). In the dat/tweets directory, you’ll find some training and test sets of
tweets organized according to language and topic. Using the “hasselhoff” data sets, classify English
vs. German words on the topic of Hasselhoff. Report the accuracy in your write-up.

We can check how well the classifier performs on the training data by running the classifier with
the same pair of training data files given to the classifier as both the training input and the test
input. Try this for the “hasselhoff” data sets. Report the accuracy in your write-up and answer
the following questions. Does the classifier have higher accuracy when tested on the training data
or when tested on the fresh test data? Why might this be the case?

We could also classify tweets by topic. Using the “republican” and “democrat” data sets, classify
English tweets into 2 classes (republican and democrat). Report the accuracy in your write-up.

Part IV: Choose Two Extensions

Pick any two of the following tasks:

1. See if you can improve the performance of your classifier by adding additional features. For
example, you could add 2-letter combinations, whether a string starts or ends with a given
letter, other regular expressions, whether a string has 3 or more vowels, the length of a string,
or other features that might be helpful. Write up what you tried and report the accuracy on
the data sets from parts 2 and 3. Did the accuracy improve with these new features? (It’s ok
if it does not!) Comment about why this might be the case.

2. Code up a “correct” 3-way classifier. Compare its performance to the one that’s provided
in text classifier.cpp (which simply runs all three 1-class-vs-the-rest classifiers and picks
the one with the highest probability). Briefly describe what you did in the write-up, and
report the accuracy of both.

3. Using the original set of features, generate a plot showing how the accuracy on the test set
varies as a function of the amount of training data given.

4. Think of another task this classifier could do, get data for it, and try it out. Describe the data
you chose in the write-up, and report the accuracy of your classifier on this data. Submit the
data files.

3



Extra Credit!!!

Instead of completing two tasks from part IV, you may complete 3 or 4 tasks for extra credit. If
you complete all of the requirements for 3 tasks, 1 percentage point will be added to your final class
average. If you complete all of the requirements for 4 tasks, 2 percentage points will be added to
your final class average.

A note about compilation

We will be testing your code for part I with testing scripts on the Seasnet Linux machines. You
may develop your code on any platform you want, but it must compile on one of the Seasnet Linux
machines. You can log onto ugrad.seas.ucla.edu via SSH to access the SEASnet Linux machines.
You may also work in the Linux lab which is 4405 BH if you choose.

Submission Instructions

You must submit the following through the Assignments/Submit section of Courseweb:

• The full code for Part I which is feature.hpp and naive bayes classifier.hpp.

IMPORTANT: You must not change the signatures of any of the functions within

naive bayes classifier.hpp or feature.hpp. You may add functions to these files if you
would like.

• The full code for Part IV. The files you turn in depend on which parts you do:

1. You can use the same naive bayes classifier.hpp and feature.hpp skeleton code
from part I for this part. If you choose to do this part, you must include your
source code. Before turning the files in, rename them to feature 41.hpp and
naive bayes classifier 41.hpp. Make sure your writeup is clear in describing what
you did. (Total: 2 files)

2. You can again use the same naive bayes classifier.hpp and feature.hpp skeleton
code from part I for this part. You must include your source code. For this part, you will
also have to modify text classifier.cpp. Before turning the files in, rename them
to text classifier 42.cpp, feature 42.hpp and naive bayes classifier 42.hpp.
(Total: 3 files)

3. Your plot should be turned in as either pdf, ps, png or jpeg. Call it plot 43.pdf (or
.ps, .png, .jpeg) (Total: 1 file)

4. Your files should be called class1Training.txt, class2Training.txt,
class1Testing.txt and class2Testing.txt (Total: 4 files)

• A write-up of your results, which must include answers to all of the questions above, as well
as a description of your extensions. Your write-up should be submitted as a single PDF
document called writeup.pdf.

4



All of these parts must be submitted via courseweb by the deadline, Wednesday, May 30, 2pm.
No late assignments will be accepted.

The usual academic integrity policy applies for this assignment. You may discuss the assignment
with anyone you like, but your code and write-up must be your own work.

5


