Reminders & Announcements

• Check your grade for homework 1 on Gradebook

• Homework 2 is due on Tuesday, April 26

• Check the homework 1 solutions to see how you should structure your own homework solutions – we’ll be less generous about sloppy or confusing answers next time!!

• There is no Friday section this week
Last Time

What if we have multiple random variables associated with the same event?

- Joint PMFs
- Conditioning
- Independence

Remember, most of this was just new notation for concepts we already knew. When in doubt, think about the underlying events!
Today

A bit more about joint PMFs
 • Variance of sums of independent random variables
 • Covariance and correlation

Continuous random variables
 • Probability density functions (PDFs)
 • Uniform continuous random variables
 • Exponential random variables
 • Cumulative distribution functions (CDFs)
Independence

• X and Y are independent if and only if for all \(k \) and \(l \)
 \[
p_{X,Y}(k,l) = p_X(k) \ p_Y(l)
\]
Independence

• X and Y are independent if and only if for all k and l

$$p_{X,Y}(k,l) = p_X(k) \cdot p_Y(l)$$

• This is equivalent to showing that for all k, l s.t. $p_Y(l) > 0$

$$p_X(k) = p_{X|Y}(k \mid l)$$

• This is equivalent to showing that for all k, l s.t. $p_X(k) > 0$

$$p_Y(l) = p_{Y|X}(l \mid k)$$

To prove or disprove independence, it is enough to prove or disprove any one of these conditions.
Why is independence useful?

If X_1, X_2, \ldots, X_n are all independent, then

$$E[X_1X_2\ldots X_n] = ???$$
Why is independence useful?

If X_1, X_2, ..., X_n are all independent, then

$$E[X_1X_2...X_n] = E[X_1]E[X_2]...E[X_n]$$
Why is independence useful?

If X_1, X_2, \ldots, X_n are all independent, then

$$E[X_1X_2\ldots X_n] = E[X_1]E[X_2]\ldots E[X_n]$$

and

$$\text{var}(X_1 + X_2 + \ldots + X_n) = ???$$
Why is independence useful?

If X_1, X_2, \ldots, X_n are all independent, then

$$E[X_1X_2\ldots X_n] = E[X_1]E[X_2]\ldots E[X_n]$$

and

$$\text{var}(X_1 + X_2 + \ldots + X_n) = \text{var}(X_1) + \text{var}(X_2) + \ldots + \text{var}(X_n)$$
The Sample Mean

Suppose we would like to estimate the president’s approval rating. We ask n random voters whether or not they approve of the president, and use the fraction of voters who say that they approve as our estimate.

How accurate is our estimate as a function of n?
The Sample Mean

Suppose we would like to estimate the president’s approval rating. We ask n random voters whether or not they approve of the president, and use the fraction of voters who say that they approve as our estimate.

How accurate is our estimate as a function of n?

These ideas will come up again later in the course…
Covariance

Covariance is a notion that measures the strength and direction of the relationship between two variables.
Covariance is a notion that measures the strength and direction of the relationship between two variables.

Experiment: Choose a random UCLA student.

• Let X be his height and Y be his weight. These have positive covariance or are positively correlated.
Covariance

Covariance is a notion that measures the strength and direction of the relationship between two variables.

Experiment: Choose a random UCLA student.

- Let X be his height and Y be his weight. These have positive covariance or are positively correlated.

- Let X be the number of courses he is taking and Y be the average number of hours he sleeps each night. These have negative covariance or are negatively correlated.
Covariance

Covariance is a notion that measures the strength and direction of the relationship between two variables.

Experiment: Choose a random UCLA student.

• Let X be his height and Y be his weight. These have positive covariance or are positively correlated.

• Let X be the number of courses he is taking and Y be the average number of hours he sleeps each night. These have negative covariance or are negatively correlated.

• Let X be his height and Y be the last digit of his UID. These have (roughly) zero covariance or are uncorrelated.
Covariance

Formally, the covariance of two random variables X and Y is defined as

$$\text{cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$
Covariance

Formally, the covariance of two random variables X and Y is defined as

$$\text{cov}(X, Y) = E\left[(X - E[X]) \ (Y - E[Y]) \right]$$

$$= E[XY] - E[X]E[Y]$$
Covariance

Formally, the covariance of two random variables X and Y is defined as

$$\text{cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY] - E[X]E[Y]$$

• What is $\text{cov}(X, X)$?
Covariance

Formally, the covariance of two random variables X and Y is defined as

$$\text{cov}(X, Y) = E\left[(X - E[X]) (Y - E[Y]) \right]$$
$$= E[X Y] - E[X]E[Y]$$

• What is $\text{cov}(X, X)$?
• Suppose X and Y are independent. What is $\text{cov}(X, Y)$?
Covariance

Formally, the covariance of two random variables X and Y is defined as

$$\text{cov}(X, Y) = \mathbb{E}\left[(X - \mathbb{E}[X]) (Y - \mathbb{E}[Y]) \right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

- What is $\text{cov}(X, X)$?
- Suppose X and Y are independent. What is $\text{cov}(X, Y)$?
- Suppose $\text{cov}(X, Y) = 0$. Are X and Y independent?
Continuous Random Variables

What if a random variable X can take on a continuum of different values?

- Exact execution time of a task
- Exact lifetime of a component
- Time between two requests to the Google server
Continuous Random Variables

What if a random variable X can take on a continuum of different values?

- Exact execution time of a task
- Exact lifetime of a component
- Time between two requests to the Google server

PMFs don’t quite make sense anymore…
Continuous Random Variables

What if a random variable X can take on a continuum of different values?

- Exact execution time of a task
- Exact lifetime of a component
- Time between two requests to the Google server

PMFs don’t quite make sense anymore…

- Let X be a random variable whose value is drawn uniformly at random from $[0,1]$. What is $P(X = 0.5)$?
The Probability Density Function

In place of the PMF, we introduce the probability density function (or PDF), denoted f_X. For any a and any $b \geq a$,

$$P(a \leq X \leq b) = \int_a^b f_X(k) \, dk$$
The Probability Density Function

In place of the PMF, we introduce the probability density function (or PDF), denoted \(f_X \). For any \(a \) and any \(b \geq a \),

\[
P(a \leq X \leq b) = \int_a^b f_X(k) \, dk
\]

To satisfy normalization, we need \(\int_{-\infty}^{\infty} f_X(k) \, dk = 1 \).
The Probability Density Function

For very small values of δ, we can approximate

$$P(a \leq X \leq a + \delta) = \int_a^{a+\delta} f_X(k)dk \approx f_X(a)\delta$$

This gives us a nice interpretation of $f_X(a)$ as the probability mass per unit length near a.
The Probability Density Function

For very small values of δ, we can approximate

$$P(a \leq X \leq a + \delta) = \int_a^{a+\delta} f_X(k) dk \approx f_X(a)\delta$$

This gives us a nice interpretation of $f_X(a)$ as the probability mass per unit length near a

Need to be careful with this interpretation though!!! Note that, for example, $f_X(a)$ can be bigger than 1…
Expectations

Expectation and variance of continuous random variables are similar to the discrete case.

\[E[X] = \text{???)} \]
Expectations

Expectation and variance of continuous random variables are similar to the discrete case.

\[E[X] = \int_{-\infty}^{\infty} k f_x(k) \, dk \]
Expectations

Expectation and variance of continuous random variables are similar to the discrete case.

\[E[X] = \int_{-\infty}^{\infty} k f_X(k) \, dk \]

\[E[g(X)] = ??? \]
Expectations

Expectation and variance of continuous random variables are similar to the discrete case.

\[E[X] = \int_{-\infty}^{\infty} kf_X(k)\,dk \]

\[E[g(X)] = \int_{-\infty}^{\infty} g(k) f_X(k)\,dk \]
Expectations

Expectation and variance of continuous random variables are similar to the discrete case.

\[E[X] = \int_{-\infty}^{\infty} kf_X(k) \, dk \]

\[E[g(X)] = \int_{-\infty}^{\infty} g(k) f_X(k) \, dk \]

\[\text{var}(X) = E[(X - E[X])^2] = \int_{-\infty}^{\infty} (k - E[X])^2 f_X(k) \, dk \]
Uniform PDFs

Let X be a random variable whose value is drawn uniformly at random from the range $[a, b]$
Uniform PDFs

Let X be a random variable whose value is drawn uniformly at random from the range $[a, b]$

- What is f_X? What is $E[X]$? What is $\text{var}(X)$?
Uniform PDFs

Let X be a random variable whose value is drawn uniformly at random from the range $[a, b]$.

- What is f_X? What is $E[X]$? What is $\text{var}(X)$?
- What if X was chosen from the range (a, b) instead?
Exponential Random Variables

Exponential random variables model the amount of time until an incident of interest takes place

• Length of time before a message arrives at the computer
• Length of time before a light bulb burns out
Exponential Random Variables

Exponential random variables model the amount of time until an incident of interest takes place

- Length of time before a message arrives at the computer
- Length of time before a light bulb burns out

PDF: \(f_X(k) = \lambda e^{-\lambda k} \)
Exponential Random Variables

Exponential random variables model the amount of time until an incident of interest takes place

- Length of time before a message arrives at the computer
- Length of time before a light bulb burns out

PDF: \(f_X(k) = \lambda e^{-\lambda k} \)

\[E[X] = \lambda^{-1} \quad \text{var}(X) = \lambda^{-2} \]

These can be verified using integration by parts.
Cumulative Distribution Functions

A cumulative distribution function (CDF), denoted F_X, “accumulates” probability up to a certain value of X

$$F_X(k) = P(X \leq k)$$
A cumulative distribution function (CDF), denoted F_X, “accumulates” probability up to a certain value of X

$$F_X(k) = P(X \leq k)$$

- For discrete random variables,

$$F_X(k) = ???$$
Cumulative Distribution Functions

A cumulative distribution function (CDF), denoted F_X, “accumulates” probability up to a certain value of X

$$F_X(k) = P(X \leq k)$$

• For discrete random variables,

$$F_X(k) = \sum_{x \leq k} p_X(x)$$
A cumulative distribution function (CDF), denoted F_X, “accumulates” probability up to a certain value of X:

$$F_X(k) = P(X \leq k)$$

- For discrete random variables,

$$F_X(k) = \sum_{x \leq k} p_X(x)$$

- For continuous random variables,

$$F_X(k) = ???$$
Cumulative Distribution Functions

A cumulative distribution function (CDF), denoted F_X, “accumulates” probability up to a certain value of X

$$F_X(k) = P(X \leq k)$$

- For discrete random variables,

$$F_X(k) = \sum_{x \leq k} p_X(x)$$

- For continuous random variables,

$$F_X(k) = \int_{-\infty}^{k} f_X(x)dx$$
A cumulative distribution function (CDF), denoted F_X, “accumulates” probability up to a certain value of X

$$F_X(k) = P(X \leq k)$$

- For discrete random variables,

$$F_X(k) = \sum_{x \leq k} p_X(x)$$

- For continuous random variables,

$$F_X(k) = \int_{-\infty}^{k} f_X(x) \, dx \quad \rightarrow \quad f_X(k) = \frac{dF_X}{dk}(k)$$
Consider a discrete random variable X

PMF:
Cumulative Distribution Functions

Consider a discrete random variable X

PMF:

CDF:
Cumulative Distribution Functions

Consider a uniform continuous random variable X
Cumulative Distribution Functions

Consider a uniform continuous random variable X.
Cumulative Distribution Functions

Consider a uniform continuous random variable X

Note that CDFs are always monotonically non-decreasing
Cumulative Distribution Functions

What is the cumulative distribution function of an exponential random variable with \(f_X(k) = \lambda e^{-\lambda k} \)?

(we’ll start with this next time...)