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Reminders & Announcements 

•  Check your grade for homework 1 on Gradebook 

•  Homework 2 is due on Tuesday, April 26 

•  Check the homework 1 solutions to see how you should 
structure your own homework solutions – we’ll be less 
generous about sloppy or confusing answers next time!! 

•  There is no Friday section this week 



Last Time 

What if we have multiple random variables associated 
with the same event? 

•  Joint PMFs 
•  Conditioning 
•  Independence 

Remember, most of this was just new notation for 
concepts we already knew.  When in doubt, think 
about the underlying events! 



Today 

A bit more about joint PMFs 
•  Variance of sums of independent random variables 
•  Covariance and correlation 

Continuous random variables 
•  Probability density functions (PDFs) 
•  Uniform continuous random variables 
•  Exponential random variables 
•  Cumulative distribution functions (CDFs) 



Independence 

•  X and Y are independent if and only if for all k and l 
pX,Y(k,l) = pX(k) pY(l) 



Independence 

•  X and Y are independent if and only if for all k and l 
pX,Y(k,l) = pX(k) pY(l) 

•  This is equivalent to showing that for all k, l s.t. pY(l)>0 
pX(k) = pX|Y(k | l) 

•  This is equivalent to showing that for all k, l s.t. pX(k)>0 
pY(l) = pY|X(l | k) 

To prove or disprove independence, it is enough to prove or 
disprove any one of these conditions. 



Why is independence useful? 

If X1, X2, …, Xn are all independent, then 

E[X1X2…Xn] = ??? 



Why is independence useful? 

If X1, X2, …, Xn are all independent, then 

E[X1X2…Xn] = E[X1]E[X2]…E[Xn]  



Why is independence useful? 

If X1, X2, …, Xn are all independent, then 

E[X1X2…Xn] = E[X1]E[X2]…E[Xn]  

and 

var(X1 + X2 + … + Xn) = ??? 



Why is independence useful? 

If X1, X2, …, Xn are all independent, then 

E[X1X2…Xn] = E[X1]E[X2]…E[Xn]  

and 

var(X1 + X2 + … + Xn) = var(X1) + var(X2) + … + var(Xn)  



The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

How accurate is our estimate as a function of n? 



The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

How accurate is our estimate as a function of n? 

These ideas will come up again later in the course… 
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Covariance 

Covariance is a notion that measures the strength and 
direction of the relationship between two variables. 

Experiment: Choose a random UCLA student.   

•  Let X be his height and Y be his weight.  These have 
positive covariance or are positively correlated. 

•  Let X be the number of courses he is taking and Y be the 
average number of hours he sleeps each night.  These 
have negative covariance or are negatively correlated. 

•  Let X be his height and Y be the last digit of his UID.  
These have (roughly) zero covariance or are uncorrelated. 
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Covariance 

Formally, the  covariance of two random variables X and Y 
is defined as 

  cov(X, Y) = E[ (X–E[X]) (Y–E[Y]) ] 
   = E[XY] – E[X]E[Y] 

•  What is cov(X, X)? 
•  Suppose X and Y are independent.  What is cov(X, Y)? 
•  Suppose cov(X, Y) = 0.  Are X and Y independent? 



Continuous Random Variables 

What if a random variable X can take on a continuum of 
different values? 
•  Exact execution time of a task 
•  Exact lifetime of a component 
•  Time between two requests to the Google server 
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Continuous Random Variables 

What if a random variable X can take on a continuum of 
different values? 
•  Exact execution time of a task 
•  Exact lifetime of a component 
•  Time between two requests to the Google server 

PMFs don’t quite make sense anymore… 
•  Let X be a random variable whose value is drawn 

uniformly at random from [0,1].  What is P(X = 0.5)? 
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In place of the PMF, we introduce the probability density 
function (or PDF), denoted fX.  For any a and any b ≥ a,  
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The Probability Density Function 

In place of the PMF, we introduce the probability density 
function (or PDF), denoted fX.  For any a and any b ≥ a,  

To satisfy normalization, we need 
€ 

P(a ≤ X ≤ b) = fX (k)dka

b
∫

€ 

fX (k)dk−∞

∞

∫ =1



The Probability Density Function 

For very small values of δ, we can approximate 

 This gives us a nice interpretation of fX(a) as the 
probability mass per unit length near a 

€ 

P(a ≤ X ≤ a +δ) = fX (k)dka

a+δ

∫ ≈ fX (a)δ



The Probability Density Function 

For very small values of δ, we can approximate 

 This gives us a nice interpretation of fX(a) as the 
probability mass per unit length near a 

 Need to be careful with this interpretation though!!! Note 
that, for example, fX(a) can be bigger than 1… 

€ 

P(a ≤ X ≤ a +δ) = fX (k)dka

a+δ

∫ ≈ fX (a)δ
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Expectations 

Expectation and variance of continuous random variables are 
similar to the discrete case. 

€ 

E[X] = kfX (k)dk−∞

∞

∫

€ 

E[g(X)] = g(k) fX (k)dk−∞

∞

∫

€ 

var(X) = E[(X − E[X])2] = (k − E[X])2 fX (k)dk−∞

∞

∫
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Uniform PDFs 

Let X be a random variable whose value is drawn uniformly 
at random from the range [a, b] 

•  What is fX? What is E[X]? What is var(X)? 
•  What if X was chosen from the range (a, b) instead? 
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until an incident of interest takes place 
•  Length of time before a message arrives at the computer 
•  Length of time before a light bulb burns out 
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Exponential Random Variables 

Exponential random variables model the amount of time 
until an incident of interest takes place 
•  Length of time before a message arrives at the computer 
•  Length of time before a light bulb burns out 

PDF: fX(k) = λe-λk 

E[X] = λ-1    var(X) = λ-2 

These can be verified using integration by parts. 
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Cumulative Distribution Functions 

A cumulative distribution function (CDF), denoted FX, 
“accumulates” probability up to a certain value of X 

FX(k) = P(X ≤ k) 

•  For discrete random variables, 

•  For continuous random variables,  

€ 

FX (k) = pX (x)
x≤k
∑

€ 

FX (k) = fX (x)dx−∞

k
∫ → fX (k) =

dFX
dk

(k)
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Consider a discrete random variable X 

    PMF:        
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Cumulative Distribution Functions 

Consider a uniform continuous random variable X 

Note that CDFs are always monotonically non-decreasing 



Cumulative Distribution Functions 

What is the cumulative distribution function of an 
exponential random variable with fX(k) = λe-λk? 

(we’ll start with this next time...) 


