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Reminders & Announcements 

•  Homework 2 has been posted on the website and is due 
on Tuesday, April 26 

•  Ethan will be traveling next week, so there will be no 
Monday office hours and no Friday section next week 

•  Tomorrow’s section will be devoted to homework 2 



Last Time… 

Expectation of a function: Let X be a random variable, and 
let Y = g(X) for an arbitrary function g.  Then 

€ 

E[Y ] = E[g(X)] = g(k)pX (k)
valuesk of X
∑



Last Time… 

Expectation of a function: Let X be a random variable, and 
let Y = g(X) for an arbitrary function g.  Then 

Linearity of expectation: Let X be a random variable, and let 
Y = aX + b for any scalars a and b.  Then  

E[Y] = E[aX + b] = a E[X] + b 

€ 

E[Y ] = E[g(X)] = g(k)pX (k)
valuesk of X
∑



Last Time… 

The variance of a random variable measures the dispersion 
of X around its mean.  Let µ = E[X].  Then 

var(X) = E[(X-µ)2] = E[X2] – µ2 



Last Time… 

The variance of a random variable measures the dispersion 
of X around its mean.  Let µ = E[X].  Then 

var(X) = E[(X-µ)2] = E[X2] – µ2 

The standard deviation of X is denoted σX, and is the square 
root of the variance. σX has the same units as X. 



Today 

What if we have multiple random variables associated 
with the same event? 

•  Joint PMFs 
•  Conditioning 
•  Independence 



Today 

What if we have multiple random variables associated 
with the same event? 

•  Joint PMFs 
•  Conditioning 
•  Independence 

Most of this is just new notation for concepts we 
already know! 



Joint PMFs 

•  Let X and Y be discrete random variables associated with 
the same experiment.  The joint PMF of X and Y is 
denoted pX,Y.  For any values k of X and l of Y, 

pX,Y(k, l) = P(X=k, Y=l) = P({X=k}∩{Y=l}) 
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 X = person’s height, Y = person’s weight. 



Joint PMFs 

•  Let X and Y be discrete random variables associated with 
the same experiment.  The joint PMF of X and Y is 
denoted pX,Y.  For any values k of X and l of Y, 

pX,Y(k, l) = P(X=k, Y=l) = P({X=k}∩{Y=l}) 

•  Examples: 
•  Experiment: Choose a random person in the class. 
 X = person’s height, Y = person’s weight. 
•  Experiment: Run a randomized algorithm. 
 X = execution time, Y = amount of memory used. 



Tabular Representation 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 

X 

Y 



Tabular Representation 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 

X 

Y 

pX,Y(k2, l3) =  0.1 



Tabular Representation 

Is this a valid joint PMF? How do we know? 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 

X 

Y 

pX,Y(k2, l3) =  0.1 



Marginal PMFs 

We can compute the PMFs of X and Y from their joint PMF: 

€ 

pX (k) = pX ,Y (k, l)
l
∑

€ 

pY (l) = pX ,Y (k, l)
k
∑
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Marginal PMFs 

We can compute the PMFs of X and Y from their joint PMF: 

€ 

pX (k) = pX ,Y (k, l)
l
∑

€ 

pY (l) = pX ,Y (k, l)
k
∑

l1 l2 l3 l4 pX(k) 

k1 0.1 0.1 0 0.2 0.4 

k2 0.05 0.05 0.1 0 0.2 

k3 0 0.1 0.2 0.1 0.4 



Marginal PMFs 

We can compute the PMFs of X and Y from their joint PMF: 

€ 

pX (k) = pX ,Y (k, l)
l
∑

€ 

pY (l) = pX ,Y (k, l)
k
∑

l1 l2 l3 l4 pX(k) 

k1 0.1 0.1 0 0.2 0.4 

k2 0.05 0.05 0.1 0 0.2 

k3 0 0.1 0.2 0.1 0.4 

pY(l) 0.15 0.25 0.3 0.3 



Computing Expectations 

Expectation of a function: Let X and Y be random variables, 
and g be an arbitrary function of X and Y.  Then 

€ 

E[g(X,Y )] = g(k,l)pX ,Y (k,l)
l
∑

k
∑



Computing Expectations 

Expectation of a function: Let X and Y be random variables, 
and g be an arbitrary function of X and Y.  Then 

Linearity of expectation: Let X and Y be random variables. 
Then for any scalars a, b, and c,  

E[aX + bY + c] = ??? 

€ 

E[g(X,Y )] = g(k,l)pX ,Y (k,l)
l
∑

k
∑



Computing Expectations 

Expectation of a function: Let X and Y be random variables, 
and g be an arbitrary function of X and Y.  Then 

Linearity of expectation: Let X and Y be random variables. 
Then for any scalars a, b, and c,  

E[aX + bY + c] = aE[X] + bE[Y] + c. 

€ 

E[g(X,Y )] = g(k,l)pX ,Y (k,l)
l
∑

k
∑



Three or More Random Variables 

All of this extends to more than two random variables too. 
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All of this extends to more than two random variables too. 
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Three or More Random Variables 

All of this extends to more than two random variables too. 

•  Joint PMFs: 
  pX,Y,Z(k, l, m) = P(X=k, Y=l, Z=m)  
         = P({X=k}∩{Y=l}∩{Z=m}) 

•  Expectation of a function: 

 etc. 

€ 

E[g(X,Y,Z)] = g(k, l,m)pX ,Y ,Z (k, l,m)
m
∑

l
∑

k
∑



Three or More Random Variables 

 An office decides to do a gift exchange for their annual 
holiday party.  Everyone in the office purchases a gift and 
places it in a box.  Each person is then given a random gift 
from the box.  What is the expected number of people who 
get back the gift that they purchased? 



Three or More Random Variables 

 An office decides to do a gift exchange for their annual 
holiday party.  Everyone in the office purchases a gift and 
places it in a box.  Each person is then given a random gift 
from the box.  What is the expected number of people who 
get back the gift that they purchased? 

Note that we used the fact that the expectation of a sum of 
random variables is equal to the sum of their expectations. 

Independence is not required for this! 



Conditioning 

•  The conditional PMF of X given Y is denoted pX|Y.  For 
any values k of X and l of Y, 

pX|Y(k | l) = P(X=k | Y=l) = P({X=k}|{Y=l}) 



Conditioning 

•  The conditional PMF of X given Y is denoted pX|Y.  For 
any values k of X and l of Y, 

pX|Y(k | l) = P(X=k | Y=l) = P({X=k}|{Y=l}) 

•  We can compute this PMF using the definition of 
conditional probability 



Conditioning 

•  We can compute conditional probabilities by normalizing 
the values in a particular row or column 
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k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 
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Conditioning 

•  We can compute conditional probabilities by normalizing 
the values in a particular row or column 

l1 l2 l3 l4 

k1 0.1 0.1 0 0.2 

k2 0.05 0.05 0.1 0 

k3 0 0.1 0.2 0.1 

€ 

pX |Y (k | l2) =
pX ,Y (k,l2)
pY (l2)



Conditioning 

Conditional PMFs frequently give us a convenient method 
of calculating joint PMFs.  Using the multiplication rule, 

pX,Y(k,l) = pX(k)pY|X(l|k) = pY(l)pX|Y(k|l) 



Conditioning 

Conditional PMFs frequently give us a convenient method 
of calculating joint PMFs.  Using the multiplication rule, 

pX,Y(k,l) = pX(k)pY|X(l|k) = pY(l)pX|Y(k|l) 

•  Example: If my computer has a virus, which is true with 
probability 0.2, my anti-virus program detects it with 
probability 0.7.  Otherwise, the program incorrectly 
identifies a virus with probability 0.1. 

 Let X and Y be binary variables that are 1 if my computer 
has a virus and if the program says it has a virus 
respectively.  What is pX,Y? 



Conditioning 

We can condition random variables on events too.  For a 
random variable X and event A associated with the same 
experiment, 

pX|A(k) = P(X=k | A) = P({X=k}| A) 



Conditioning 

We can condition random variables on events too.  For a 
random variable X and event A associated with the same 
experiment, 

pX|A(k) = P(X=k | A) = P({X=k}| A) 

Nothing fancy here.  All of the same reasoning applies. 



Conditioning 

We can condition random variables on events too.  For a 
random variable X and event A associated with the same 
experiment, 

pX|A(k) = P(X=k | A) = P({X=k}| A) 

Nothing fancy here.  All of the same reasoning applies. 

Remember: All of this is just notation. When in doubt, think 
about the underlying events. 



Conditional Expectation 

We can define a conditional version of expectation: 

€ 

E[X |Y = l] = ???



Conditional Expectation 

We can define a conditional version of expectation: 
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Conditional Expectation 

We can define a conditional version of expectation: 

For any function g: 
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Conditional Expectation 

We can define a conditional version of expectation: 

For any function g: 

€ 

E[X |Y = l] = kpX |Y (
k
∑ k | l)

€ 

E[g(X) |Y = l] = g(k)pX |Y (
k
∑ k | l)



Conditional Expectation 

We can define a conditional version of expectation: 

For any function g: 

Expectations can be conditioned on events A too. 

€ 

E[X |Y = l] = kpX |Y (
k
∑ k | l)

€ 

E[g(X) |Y = l] = g(k)pX |Y (
k
∑ k | l)



Total Expectation Theorem 

The Total Expectation Theorem says that for any random 
variables X and Y, 

€ 

E[X] = pY (l)
l
∑ E[X |Y = l]



Total Expectation Theorem 

The Total Expectation Theorem says that for any random 
variables X and Y, 

More generally, for any disjoint events A1, …, An that form a 
partition of Ω, 

€ 

E[X] = pY (l)
l
∑ E[X |Y = l]

€ 

E[X] = P(Ai)E[X | Ai]
i=1

n

∑



Total Expectation Theorem 

The Total Expectation Theorem says that for any random 
variables X and Y, 

More generally, for any disjoint events A1, …, An that form a 
partition of Ω, 

We could prove this using the multiplication rule and the 
definition of conditional expectation – Try this at home! 

€ 

E[X] = pY (l)
l
∑ E[X |Y = l]

€ 

E[X] = P(Ai)E[X | Ai]
i=1

n

∑



Geometric Random Variables 

Suppose we flip a coin with bias p repeatedly until it lands 
on heads. Let X be the number of times that we flip it. 



Geometric Random Variables 

Suppose we flip a coin with bias p repeatedly until it lands 
on heads. Let X be the number of times that we flip it. 

 pX(k) = ??? 



Geometric Random Variables 

Suppose we flip a coin with bias p repeatedly until it lands 
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 pX(k) = (1-p)(k-1) pk  



Geometric Random Variables 

Suppose we flip a coin with bias p repeatedly until it lands 
on heads. Let X be the number of times that we flip it. 

 pX(k) = (1-p)(k-1) pk  

We can use the total expectation theorem to compute the 
mean and variance… 



Geometric Random Variables 

Suppose we flip a coin with bias p repeatedly until it lands 
on heads. Let X be the number of times that we flip it. 

 pX(k) = (1-p)(k-1) pk  

We can use the total expectation theorem to compute the 
mean and variance… 

(we only talked about the mean in class, but the calculation 
of variance uses similar ideas..) 



Independence 

•  Recall that events A and B are independent if and only if  
P(A ∩ B) = P(A) P(B) 

•  If P(B) > 0, this condition is equivalent to 
P(A | B) = P(A) 

•  If P(A) > 0, it is equivalent to 
P(B | A) = P(B) 

To prove or disprove independence, it is enough to prove or 
disprove any one of these conditions. 



Independence 

•  X and Y are independent if and only if for all k and l 
pX,Y(k,l) = pX(k) pY(l) 

•  This is equivalent to showing that for all k, l s.t. pY(l)>0 
pX(k) = pX|Y(k | l) 

•  This is equivalent to showing that for all k, l s.t. pX(k)>0 
pY(l) = pY|X(l | k) 

To prove or disprove independence, it is enough to prove or 
disprove any one of these conditions. 



Independence 

 Are X and Y independent?  How can you tell? 

l1 l2 l3 l4 

k1 0.05 0.15 0 0.2 

k2 0.025 0.075 0 0.1 

k3 0.05 0.15 0 0.2 

X 

Y 



Independence 

 Columns are multiples of each other, which implies that  
pX|Y(k | l) is the same for all l 

l1 l2 l3 l4 

k1 0.05 0.15 0 0.2 

k2 0.025 0.075 0 0.1 

k3 0.05 0.15 0 0.2 

X 

Y 



Independence 

It is easy to show that if X and Y are independent, then 
E[XY] = E[X]E[Y] 



Independence 

It is easy to show that if X and Y are independent, then 
E[XY] = E[X]E[Y] 

Note that this is not true in general – only holds when X and 
Y are independent! 



Independence 

The definition of independence can be extended in the 
natural way to sets of more than two random variables 

pX,Y,Z(k, l, m) = pX(k) pY(l) pZ(m) 



Independence 

The definition of independence can be extended in the 
natural way to sets of more than two random variables 

pX,Y,Z(k, l, m) = pX(k) pY(l) pZ(m) 

If X, Y, and Z are independent, then any three random 
variables of the form f(X), g(Y), and h(Z) would be 
independent too. 



One more useful fact… 

If X1, X2, …, Xn are independent, then 

var(X1 + X2 + … + Xn) = var(X1) + var(X2) + … + var(Xn)  



One more useful fact… 

If X1, X2, …, Xn are independent, then 

var(X1 + X2 + … + Xn) = var(X1) + var(X2) + … + var(Xn)  

This also is not true in general – need independence! 



(we stopped here in class, but in the next lecture, we will see 
how to use this fact about the variance of sums of 
independent random variables to answer questions like the 
one on the next slide…) 



The Sample Mean 

Suppose we would like to estimate the president’s approval 
rating. We ask n random voters whether or not they 
approve of the president, and use the fraction of voters who 
say that they approve as our estimate. 

How accurate is our estimate as a function of n? 


