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Reminders & Announcements 

•  Tomorrow’s section will be a review session for the final 

•  Homework 5 is due at the start of section 

•  I will be traveling next week and will not have office hours 

•  Ethan’s office hours for next week: 
•  Monday, 11:30 – 12:30 
•  Wednesday, 11:30 – 12:30 



Final Exam 

•  Thursday, June 9, 3 – 6pm, in this room 

•  One double-sided sheet of hand-written notes allowed 

•  No other notes, books, calculators, cell phones, etc. 

•  Best way to study is to practice solving problems like the 
end-of-chapter problems in the book (solutions available 
on the book’s website) 



You should be able to… 

 Figure out when and how to apply the basic rules and 
definitions of probability, including 
•  the multiplication rule 
•  Bayes’ rule 
•  the total probability rule 
•  the total expectation rule 
•  the definition of conditional probability 
•  the definition of independence 
•  the counting principle 
•  the definitions of expectation and variance 



You should be able to… 

•  Translate word problems into math 

•  Define the appropriate random variables or events 

•  Be able to state the quantity that you must solve for in 
terms of these random variables or events 

•  Recognize common random variables (such as Bernoulli, 
binomial, and geometric) in problem descriptions 



Topics Covered 

•  Sample spaces, events, and basic probability (Chapter 1) 
•  Discrete and continuous random variables (Chapters 2–3) 
•  Covariance and correlation (4.2) 
•  Markov, Chebyshev, law of large numbers (5.1, 5.2, 5.4) 
•  MAP and maximum likelihood (8.1, 8.2, parts of 9.1) 
•  Naive Bayes (see link on website) 
•  Bayesian networks (see link on website) 
•  Markov chains (7.1–7.4) 

You are responsible for anything covered in the book or class! 



Convergence of Markov Chains 

Theorem: Consider any Markov chain with a single 
recurrent class, which is not periodic. Then the steady state 
probabilities of the chain are the unique values π1, ..., πm 
that satisfy the system of equations: 

 These are referred to as the balance equations. 
 When these conditions hold, X0 doesn’t matter. 
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π j = π k pk, j
k=1
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Convergence of Markov Chains 

•  What if there is only one recurrent class but it is periodic? 
•  Limit of P(Xn = i) is not well defined, but balance 

equations still give us the long term frequencies 

•  What if there are multiple recurrent states? 
•  Once a recurrent state is entered, the same ideas apply 
•  How likely are we to enter each recurrent state? 



The Gambler’s Ruin 

A gambler plays rounds of games in a casino.  At each 
round, he wins $1 with probability p and loses $1 with 
probability 1-p, independent of what happens in other 
rounds.  He continues playing until he either accumulates a 
target amount of money $m, or loses all of his money. 

•  How can we represent this scenario as a Markov chain? 
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A gambler plays rounds of games in a casino.  At each 
round, he wins $1 with probability p and loses $1 with 
probability 1-p, independent of what happens in other 
rounds.  He continues playing until he either accumulates a 
target amount of money $m, or loses all of his money. 

•  How can we represent this scenario as a Markov chain? 
•  What are the recurrent classes? 
•  What is the probability that the gambler accumulates $m? 
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Absorbing States 

•  An absorbing state in a Markov chain is a single-state 
recurrent class — that is, any state i such that pi,i =1 

•  Assume we have a Markov chain in which every state is 
either absorbing or transient 
•  Let s be a particular absorbing state 
•  Let E be the event that Xn = s for some time step n 
•  For each state i, let ai = P(E | X0 = i) 

What do we know about the values ai? 



Absorption Probability Equations 

Theorem: Consider a Markov chain in which each state is 
either absorbing or transient.  Fix a particular absorbing 
state s.  Then the probabilities ai of eventually reaching 
state s after starting at state i are the unique solutions to the 
following system of equations: 
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as =1

€ 

ai = 0 for all absorbing i ≠ s

€ 

ai = pi, ja j
j=1

m

∑ for all transient i
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Absorption Probability Equations 

•  What if we would like to calculate the probability of 
entering a multi-state recurrent class? 

•  By merging states, we are able to apply the same ideas… 
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The Gambler’s Ruin 

A gambler plays rounds of games in a casino.  At each 
round, he wins $1 with probability p and loses $1 with 
probability 1-p, independent of what happens in other 
rounds.  He continues playing until he either accumulates a 
target amount of money $m, or loses all of his money. 

•  What is the probability that the gambler accumulates $m? 

(we’ll just do the case where p = .5, but you can read the 
general solution in example 7.11 in the text) 



Gambler’s Ruin 

   m = 1000  p = 0.4999 
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   m = 1000  p = 0.499 



Gambler’s Ruin 

   m = 1000  p = 0.49 



Gambler’s Ruin 

   m = 1000  p = 0.4 



Good luck on the final 
& enjoy the summer! 


