CS 112: Computer System Modeling Fundamentals

Prof. Jenn Wortman Vaughan
May 12, 2011
Lecture 13
Reminders & Announcements

• Homework 4 has been posted on the website

• Midterms will be returned in section tomorrow
Today

• A “Naive Bayes” classifier for spam filtering
 (or, everything you need to know for homework 4)
Hypothesis Testing

• The maximum likelihood (ML) hypothesis is the hypothesis that makes the data most likely

\[H_{\text{ML}} = \arg\max_i P(D \mid H_i) \]

• The maximum a posteriori (MAP) hypothesis is the hypothesis with the maximum posterior probability

\[H_{\text{MAP}} = \arg\max_i P(H_i \mid D) = \arg\max_i P(D \mid H_i) P(H_i) \]
Parameter Estimation

• The maximum likelihood (ML) estimate is the parameter value that makes the data most likely

\[
\arg\max_{\theta} P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n; \theta)
\]

• If \(X_1, \ldots, X_n \) are independent observations, then the ML estimate is

\[
\arg\max_{\theta} \prod_{i=1}^{n} P(X_i = x_i; \theta)
\]

\[
= \arg\max_{\theta} \sum_{i=1}^{n} \log(P(X_i = x_i; \theta))
\]
Parameter Estimation

- The **maximum likelihood (ML) estimate** is the parameter value that makes the data most likely

\[
\arg\max_{\theta} f_{X_1,\ldots,X_n}(x_1,x_2,\ldots,x_n; \theta)
\]

- If \(X_1, \ldots, X_n\) are **independent** observations, then the ML estimate is

\[
\arg\max_{\theta} \prod_{i=1}^{n} f_{X_i}(x_i; \theta)
= \arg\max_{\theta} \sum_{i=1}^{n} \log(f_{X_i}(x_i; \theta))
\]
Parameter Estimation

Suppose that we would like to estimate the unknown bias p of a coin based on observations of the outcomes X_1, \ldots, X_n of n independent tosses of the coin.

What is the maximum likelihood estimate of p?
Parameter Estimation

Suppose that we would like to estimate the unknown bias p of a coin based on observations of the outcomes X_1, \ldots, X_n of n independent tosses of the coin.

What is the maximum likelihood estimate of p?

$$\frac{1}{n} \sum_{i=1}^{n} X_i$$
Parameter Estimation

Suppose that we would like to estimate the unknown bias p of a coin based on observations of the outcomes X_1, \ldots, X_n of n independent tosses of the coin.

What is the maximum likelihood estimate of p?

$$
\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{\text{# times we observed heads}}{n}
$$
Parameter Estimation

Suppose we would like to estimate the unknown parameters p_1, \ldots, p_k of a multinomial (e.g., rolls of a die) based on n independent observations.

What is the maximum likelihood estimate of each p_j?
Parameter Estimation

Suppose we would like to estimate the unknown parameters p_1, \ldots, p_k of a multinomial (e.g., rolls of a die) based on n independent observations.

What is the maximum likelihood estimate of each p_j?

\[
\frac{\text{# times we observed outcome } j}{n}
\]
Classifying Spam

• Suppose that we would like to classify a new email message as either spam or not spam
Classifying Spam

• Suppose that we would like to classify a new email message as either spam or not spam

• We can represent the email message as a vector of features, e.g., presence or absence of the word “cash”, or presence or absence of the recipient’s name
Classifying Spam

• Suppose that we would like to classify a new email message as either spam or not spam

• We can represent the email message as a vector of features, e.g., presence or absence of the word “cash”, or presence or absence of the recipient’s name

• We can use previously labeled emails (also represented as feature vectors) to build a probabilistic model
Classifying Spam

- Suppose that we would like to classify a new email message as either spam or not spam.

- We can represent the email message as a vector of features, e.g., presence or absence of the word “cash”, or presence or absence of the recipient’s name.

- We can use previously labeled emails (also represented as feature vectors) to build a probabilistic model.

- Using this model, we can calculate a MAP (or ML, if we want) hypothesis to classify the new email.
What Do We Know?

- We have two hypotheses, H_1 (spam) and H_0 (not spam)
What Do We Know?

• We have two hypotheses, H_1 (spam) and H_0 (not spam)

• We have d pieces of data (features) about the new email,

$$F_1 = f_1, F_2 = f_2, \ldots, F_d = f_d$$
What Do We Know?

• We have two hypotheses, H_1 (spam) and H_0 (not spam)

• We have d pieces of data (features) about the new email,
 \[F_1 = f_1, F_2 = f_2, \ldots, F_d = f_d \]

• The MAP hypothesis is the one that maximizes
 \[P(F_1 = f_1, \ldots, F_d = f_d \mid H_i) \cdot P(H_i) \]
What Do We Know?

- We have two hypotheses, H_1 (spam) and H_0 (not spam)

- We have d pieces of data (features) about the new email,
 \[F_1 = f_1, \ldots, F_d = f_d \]

- The MAP hypothesis is the one that maximizes
 \[P(F_1 = f_1, \ldots, F_d = f_d \mid H_i) \cdot P(H_i) \]

Our goal: Use the labeled emails to estimate this value for each hypothesis H_i so that we can find the MAP hypothesis
Step 1: Estimate the Prior

How can we estimate $P(H_i)$ from data?
Step 1: Estimate the Prior

How can we estimate $P(H_i)$ from data?

- For each previously labeled email k, let

$$X_k = \begin{cases} 1, & \text{if email is spam} \\ 0, & \text{otherwise} \end{cases}$$
Step 1: Estimate the Prior

How can we estimate $P(H_i)$ from data?

- For each previously labeled email k, let

 $$X_k = \begin{cases}
 1, & \text{if email is spam} \\
 0, & \text{otherwise}
 \end{cases}$$

- If our emails are i.i.d., these are Bernoulli random variables with unknown parameter $P(H_i)$ – can estimate this unknown parameter using maximum likelihood.
Step 1: Estimate the Prior

How can we estimate $P(H_i)$ from data?

• For each previously labeled email k, let

$$X_k = \begin{cases} 1, & \text{if email is spam} \\ 0, & \text{otherwise} \end{cases}$$

• If our emails are i.i.d., these are Bernoulli random variables with unknown parameter $P(H_i)$ – can estimate this unknown parameter using maximum likelihood

$$P(H_i) = \frac{1}{n} \sum_{k=1}^{n} X_k$$
Step 2: Make Some Assumptions

How can we estimate \(P(F_1 = f_1, \ldots, F_d = f_d \mid H_i) \) from data?
Step 2: Make Some Assumptions

How can we estimate $P(F_1 = f_1, \ldots, F_d = f_d \mid H_i)$ from data?

- We could treat this as a multinomial and use maximum likelihood here too.
Step 2: Make Some Assumptions

How can we estimate \(P(F_1 = f_1, \ldots, F_d = f_d \mid H_i) \) from data?

- We could treat this as a multinomial and use maximum likelihood here too… Why is this a bad idea?
Step 2: Make Some Assumptions

How can we estimate $P(F_1 = f_1, \ldots, F_d = f_d \mid H_i)$ from data?

- We could treat this as a multinomial and use maximum likelihood here too… Why is this a bad idea?

- Instead, we make the Naive Bayes assumption that all feature values are conditionally independent given H_i.
Step 2: Make Some Assumptions

How can we estimate $P(F_1 = f_1, \ldots, F_d = f_d \mid H_i)$ from data?

- We could treat this as a multinomial and use maximum likelihood here too… Why is this a bad idea?
- Instead, we make the Naive Bayes assumption that all feature values are conditionally independent given H_i

$$P(F_1 = f_1, \ldots, F_d = f_d \mid H_i) = \prod_{j=1}^{d} P(F_j = f_j \mid H_i)$$
Step 2: Make Some Assumptions

How can we estimate \(P(F_1 = f_1, \ldots, F_d = f_d \mid H_i) \) from data?

- We could treat this as a multinomial and use maximum likelihood here too… Why is this a bad idea?

- Instead, we make the Naive Bayes assumption that all feature values are conditionally independent given \(H_i \)

\[
P(F_1 = f_1, \ldots, F_d = f_d \mid H_i) = \prod_{j=1}^{d} P(F_j = f_j \mid H_i)
\]

- For each \(i \), have to estimate \(d \) parameters instead of \(2^{d-1} \)
Step 3: Estimate the Feature Probabilities

How can we estimate $P(F_j = f_j \mid H_i)$ from data?
Step 3: Estimate the Feature Probabilities

How can we estimate $P(F_j = f_j | H_i)$ from data?

- We can use maximum likelihood again
Step 3: Estimate the Feature Probabilities

How can we estimate $P(F_j = f_j \mid H_i)$ from data?

- We can use maximum likelihood again

$$P(F_j = f_j) = \frac{\# \text{ examples with feature } j = f_j}{\# \text{ examples}}$$
Step 3: Estimate the Feature Probabilities

How can we estimate $P(F_j = f_j \mid H_i)$ from data?

- We can use maximum likelihood again

$$P(F_j = f_j \mid H_i) = \frac{\# \text{examples w/ feature } j = f_j \text{ and label } = H_i}{\# \text{examples w/ label } = H_i}$$
Step 3: Estimate the Feature Probabilities

How can we estimate $P(F_j = f_j \mid H_i)$ from data?

- We can use maximum likelihood again

$$P(F_j = f_j \mid H_i) = \frac{\# \text{examples w/ feature } j = f_j \text{ and label } = H_i}{\# \text{examples w/ label } = H_i}$$

Problem: What happens if we don’t observe an example with a particular feature value and label together??
Step 3: Estimate the Feature Probabilities

How can we estimate $P(F_j = f_j | H_i)$ from data?

- We can use maximum likelihood with smoothing

$$P(F_j = f_j | H_i) = \frac{ (# \text{examples w/ feature } j = f_j \text{ and label } = H_i) + 1}{ (# \text{examples w/ label } = H_i) + 2}$$
The Naive Bayes Classifier

• For each i, calculate

$$P(F_1 = f_1, \ldots, F_d = f_d \mid H_i)P(H_i)$$
The Naive Bayes Classifier

• For each i, calculate

$$P(F_1 = f_1, ..., F_d = f_d | H_i)P(H_i)$$

Naive Bayes Independence Assumption
The Naive Bayes Classifier

• For each i, calculate

$$\prod_{j=1}^{d} P(F_j = f_j \mid H_i) \; P(H_i)$$
The Naive Bayes Classifier

• For each i, calculate

$$
\prod_{j=1}^{d} P(F_j = f_j \mid H_i) \cdot P(H_i)
$$

ML estimate
The Naive Bayes Classifier

• For each i, calculate

\[
\prod_{j=1}^{d} P(F_j = f_j | H_i) \cdot P(H_i)
\]

ML estimate using smoothing
The Naive Bayes Classifier

• For each i, calculate

$$
\prod_{j=1}^{d} P(F_j = f_j \mid H_i) P(H_i)
$$

ML estimate using smoothing

ML estimate

• The MAP hypothesis is the one that maximizes this
Example: Classifying Email

<table>
<thead>
<tr>
<th>“Jenn”</th>
<th>“cash”</th>
<th>“viagra”</th>
<th>spam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>???</td>
</tr>
</tbody>
</table>
Example: Classifying Email

• What if we wanted to estimate the probability that this email is spam?