
CS260: Machine Learning Theory
Lecture 9: Irrelevant Features & the Winnow Algorithm

October 24, 2011

Lecturer: Jennifer Wortman Vaughan

1 Learning Majority Functions

Recall that in the previous lecture we proved the following mistake bound for the Perceptron algorithm.

Theorem 1. Suppose there exists a u of unit length and values γ > 0 andD > 0 such that ∀t yt(xt ·u) ≥ γ
and ‖xt‖ ≤ D. Then, the number of mistakes made by the Perceptron algorithm is no more than (D/γ)2.

Let’s see an example of how we can apply this bound.
Suppose that every day we would like to make a prediction about a binary event, for example, whether

or not it will rain. Each day, we have access to the binary predictions of set of n experts (e.g., weather
forecasters), some of which are more accurate than others. Suppose that there exists some subset of k
experts such that the majority opinion of these k experts is always correct, but we don’t know which experts
are part of that subset. Over time, we would like to learn which experts to follow.

We can represent this problem as an online classification problem. At each round t, let xt ∈ {−1,+1}n
denote the vector of predictions of the n experts. Let w be a vector of length n where wi = 1 if expert i is
in the special subset and wi = 0 otherwise. The correct prediction for us to make at time t is 1 if w · xt ≥ 0
and 0 otherwise.

We could run the Perceptron algorithm to learn the subset of special experts. Assume that k is odd so
that the majority is always well-defined. Let’s examine how to apply the mistake bound above in this case.

First, we need a perfect target function of unit length. To get this, we can simply scale the vector w, and
let u = w/

√
k. Next, we must figure out the margin γ, which is the smallest possible value of yt(xt · u).

Since each component of xt is either +1 or −1, and k is odd, the dot product must be a multiple of 1/
√
k.

Thus, γ ≥ 1/
√
k. Clearly, D =

√
n.

Applying Theorem 1, we are able to guarantee that the Perceptron makes a number of mistakes no more
than nk. Note that we do not need to know k to run the algorithm.

(Exercise: Verify that we would get the same mistake bound if we scaled the predictions of the experts.)
This example brings out the fact that the Perceptron mistake bound can sometimes have a “hidden”

dependence on the dimension of the problem. In this case, the bound also depends on k, which can be
viewed as the number of “relevant” features of the problem.

2 Winnow

The mistake bound that we derived above has a linear dependence on the total number of experts or features.
We will now introduce the Winnow algorithm, which was designed to have better performance in cases in

All CS260 lecture notes build on the scribes’ notes written by UCLA students in the Fall 2010 offering of this course. Although
they have been carefully reviewed, it is entirely possible that some of them contain errors. If you spot an error, please email Jenn.

1



which the total number of features is large but the number of relevant features is much smaller. Winnow
looks similar to the Perceptron algorithm, but uses multiplicative weight updates instead of additive.

Like the Perceptron, Winnow maintains a current weight vector wt at each round t. We will use wi,t to
denote the weight on feature i at round t, and xi,t to denote the ith component of xt. We will go back to
having yt ∈ {0, 1} instead of {−1,+1}, and will assume that each xt is a binary string in {0, 1}n.

The Winnow Algorithm (with parameter β)

1. Initialize all the weights to one: w1,1 = w2,1 = . . . = wn,1 = 1

2. For each example xt,

• If wt · xt ≥ n, then output 1, else output 0

• If the algorithm makes a mistake, then

– If yt = 1, then ∀i such that xi,t = 1, wi,t+1 ← wi,t(1 + β)

– If yt = 0, then ∀i such that xi,t = 1, wi,t+1 ← wi,t

1+β

– In both cases (yt = 1 or 0), ∀ xi,t = 0, wi,t+1 ← wi,t

Else wt+1 ← wt

As we can see, if we make a mistake on a positive (or negative) example at time t, we increase (or
decrease) the weights of all features for which xi,t = 1. These are precisely the features that contribute to
wt · xt. Because updates are multiplicative, the weights grow faster than in the Perceptron algorithm, and
it turns out that Winnow makes fewer mistakes than the Perceptron algorithm when the number of relevant
feature is much less than the total number of features.

2.1 Learning Majority Functions with Winnow

It can be shown that Winnow can learn majority functions with a mistake bound of 2k2 log n. Clearly, we
can see that the Winnow algorithm gives a better mistake bound than the Perceptron for this class when the
number of relevant features is much smaller than the number of total features.

The proof of this result is a little complicated, so we will instead show a mistake bound for a slightly
more simple case: learning disjunctions with Winnow. The intuitions are similar.

2.2 Learning Disjunctions with Winnow

We consider an example of learning monotone disjunctions using linear thresholds with Winnow. We show
the algorithm will make at most O(k log n) mistakes, where n is the total number of variables (i.e., the
dimension of xt) and k is the number of variables that appear in the disjunction.

Recall that a monotone disjunction is a disjunction in which no literals appear negated. It is easy to
extend this result to the class of all disjunctions. The n in the mistake bound will increase to 2n. (Exercise:
Figure out how to do this.)

Theorem 2. Suppose there exists a monotone disjunction f of k variables such that for all t, f(xt) = yt.
Then the Winnow algorithm with β = 1 makes at most 2 + 3k(1 + log n) mistakes.

Proof: We will first bound the number of mistakes that are made on positive examples, and then separately
bound the number of mistakes made on negative examples. Adding these bounds will yield the result.

We will refer to the weights of variables that appear in the disjunction as “relevant weights.”

2



Step 1: Bound the number of mistakes on positive examples (yt = 1)

We start by making a few observations:

1. When we make a mistake on a positive example, at least one relevant weight is doubled. If no relevant
weight is doubled, this would imply that all relevant features were 0, which would in turn imply that
yt = 0, a contradiction.

2. The relevant weights never decrease. Suppose that a relevant weight did decrease. This would imply
that some relevant feature was 1 when yt = 0, also a contradiction.

3. Once a relevant feature i has a weight wi,t ≥ n, it can no longer be updated. If wi,t ≥ n and xi,t = 1,
then wt ·xt ≥ n and there will be no mistake. Ifwi,t ≥ n and xi,t = 0, the weight will not be updated.

Now, consider any relevant feature i. Let ` be the number of times the weight of feature i has been
doubled. Since weights are initialized to 1, the weight of i is then 2`. Since weights are never updated once
they are larger than n, we can conclude 2`−1 < n, i.e., ` < log n+1. This means the weight of each relevant
feature can not be doubled for more than log n+ 1 times.

Since at least one relevant weight will be doubled for each mistake on positive examples, and each
weight cannot be doubled more than log n+ 1 times, the number of mistakes on positive examples must be
less than k(log n+ 1).

Step 2: Bound the number of mistakes on negative examples (yt = 0)

For this part of the proof, we will use the sum of the weights, Wt =
∑n

i=1wi,t, as a potential function and
observe how it changes over time.

Let’s again state some observations:

1. Initially we have W1 = n.

2. For all t, Wt > 0.

3. Every time we make a mistake and yt = 1, the sum of weights is increased by at most n. This is
because if we make mistakes on positive examples, we will double the weight of wi,t if xi,t = 1.
Therefore, the sum of weight is increased by

∑
i:xi,t=1wi,t = wt · xt. Since we made a mistake and

labeled the point as negative, we know that wt·xt < n.

4. Every time we make a mistake and yt = 0, the sum of weights is decreased by at least n/2. By a
similar argument to the one above, in this case the sum decreases by (1/2)wt ·xt, and since we labeled
the point positive, wt · xt ≥ n.

Let Pt be the number of mistakes on positive examples up to time t, and Qt be the number of mistakes
on negative examples up to time t. We know that W1 = n. By observations 3 and 4, and the fact that Wt is
always positive, for any t,

0 < Wt ≤ n+ Ptn−Qt
n

2
,

which implies that Qt < 2Pt + 2. Therefore, the number of mistakes we make on negative examples will
be less than 2k(log n+ 1) + 2.

Combining the mistake bounds on positive examples and negative examples, we can show that a mistake
bound for learning monotone disjunction using Winnow algorithm is 2 + 3k(log n+ 1).

3


